

1

Software Design Document
2/16/2018

Version 2.0

Project
Tailored Tutoring Business Portal

Robert Lokken

Mentor
Ana Paula C. Steinmacher

Team

Alex Kahn
Jesus Garcia
Taylor Walker
Tyler Mitchell

2

Table of Contents

1) Introduction…………………………………………………………………..3

2) Implementation

Overview……………………………………………………………………...5

3) Architectural
 Overview………………………………………………………………...…….6

4) Module and
 Interface Descriptions……………………………………………………....8

5) Implementation Plan……………………………………………………….20

6) Conclusion…………………………………………………………………..22

3

1) Introduction
With the growth of the internet and technology, and the hassle of in-person tutoring,
there has been a steady rise in online tutoring platforms. It just seems “easier”, and
“more-efficient” to access tutoring online. While learning styles may be a personal
preference, the data and statistics on the industry supports that claim for the majority of
people. In 2016, the total revenue of online tutoring services was $411 million dollars,
with an annual growth rate from 2011 to 2016 of 4.2% [1]. For 2017 to 2021 the
projected annual growth rate is 12.75% [2], meaning that the market is expected to
double during this time. But why are we interested in this?

Meet our client, Tailored Tutoring Co., and their founder and CEO, Robert Lokken. A
smaller, Flagstaff-local start-up in the online tutoring industry. While they are up against
some of the industry-giants like Chegg, and people’s choice of the most complete online
tutoring platform: WebWiseTutors [3], Tailored Tutoring is finding their niche market that
really makes companies successful.

This is where Tailored Tutoring Co. shines. Not only are they a local Flagstaff start-up,
tailoring specifically to NAU (Flagstaff AZ) students and courses. But, they also have
plans to grow their business down to ASU in Phoenix, and then University of Arizona in
Tucson. However, what truly sets Tailored Tutoring Co. apart from their competitors
and potentiates their capability for growth, is their unique “Problem-Submission” feature.

The “Problem-Submission” feature allows students to upload a picture of their
homework problem to the site, and receive a personalized video-solution that they can
then view and watch as many times as they want. When you look at some of the
industry-giants, they do not have this option. As a user/student, sometimes you just
need help with one or two specific problems that you don’t understand. Do you really
need to schedule and set up a whole 30-minute or 1-hour long tutoring session for help
on one problem? Or, isn’t it easier to submit a picture of your problem, and then have
access to a detailed video-solution that you can rewatch?

While this “Problem-Submission” feature is what makes Tailored Tutoring Co. unique, it
is also a laborious and completely manual process for founder and CEO, Robert
Lokken. Currently, it is a big pain for Robert because it is such a manual, tedious, and
time-wasting problem for him. To briefly summarize, Robert receives an email
notification that a problem has been submitted, then manually go find and notify a
qualified tutor in that subject matter, wait on the tutor to notify him that a video-solution
has been created, and then Robert has to upload the video and create a personalized

4

link to send to the student/user. Another user submits a problem?...repeat the tedious
process over and over. As the Tailored Tutor Co. begins to grow and scale, Robert
needs to be eliminated from the equation, and automation must be implemented.

That is where we, Business Web Solutions, come in. We are building an online portal
for both users and the tutors; where students can submit and keep track of their
problems, and tutors can receive notifications and post video solutions. The online
portal will handle all forms of notification, so that the whole process is automated and
enjoyable; thus eliminating Robert from the process. The top part of Figure 1 below
shows the process as it is currently is, with Robert manually having to take care of every
problem-submission. However, the bottom part of Figure 1 shows our automation
process and the web-application handling everything.

Figure 1: Automation Process

This document will focus on this online portal and the actual implementation of it. A
brief overview of what we will be building is an online web-application where students
can log-in, view their profile, submit and manage their problems/questions, as well as
receive notifications, pay for, and view their video-solutions once complete. From the
tutor side it will be much the same, except they will receive notifications when problems
in their subject area have been submitted, and will be able to post video-solutions
through the online portal. This web-application will handle all of the automation,
notifying both Students and Tutors, and serving as a central place for both users to
access everything they need.

Also, the web-application will completely eliminate the need for Robert’s constant
attention and involvement, thus allowing him to focus on running the business and
helping Tailored Tutoring Co. to continue to grow and scale. For Robert and Tailored
Tutoring Co., we see this online portal as solving a huge area of pain and fixing a
bottleneck in their business workflow. With the implementation of the the
web-application, we hope to provide a much needed solution of automation for our

5

client, as well as create a user-friendly online portal and experience for the users of
Tailored Tutoring Co.

2) Implementation Overview
In order to remove Robert from the day-to-day manual handling of the business, we are
building an online portal to implement automation and take care of the User’s needs.
To be more specific, this online portal will actually be a web-application capable of
handling user log-in, with a database to store user’s information. This database will also
need to store pictures of problems submitted and videos for solutions posted. The
web-application will require many different technologies working together cohesively to
implement and create the whole system.

For example, are full tech stack will include: React JS, MongoDB, FireBase, and
Amazon Web Services. Excluding FireBase, in previous documents, we have already
explained why we chose each technology that we did. Here, we will describe how each
technology will be utilized in our web-application.

In order to understand how each piece of technology is being used, we have to
understand a basic working process of our web-application. A new user will be
welcomed to a “Sign-Up” page, and that user will enter their credentials to create an
account. These credentials will be stored in our MongoDB, database, and each user
will be assigned a unique user_id in our database. The user will then continue onto
their Profile Page (essentially their Home page), and utilizing ReactJS, React will render
certain elements or “divs” on the page to present the users information. For the users
Profile Page, this include the users name, their school, and even a profile picture.
React will also handle presenting these elements on the page in a visually and orderly
fashion.

Lastly, AWS (Amazon Web Services) is our online hosting and storage space. It will be
used to store and handle all of our image uploads and downloads, as well as all of the
videos, or video solutions from the tutors. For example, on the users Profile Page, they
may choose to include an image for their profile picture. AWS will hold all of our
images, including homework submission images as well as users profile pictures. So,
ReactJS will render this image element to the page, calling on MongoDB holding the
user’s unique user_id and a field with a link to that pictures hosted url on AWS. AWS
will return this image, which will be rendered via React JS and visually displayed to the
page and the user. The Figure 2 below should help to visually follow this process.

6

Figure 2, Tech Flow

As you can see from Figure 2 above, our complete web-application involves a few
pieces of technology, all integrated together to create the full application. One more tool
we should note here, but won’t be discussing too much in later sections is our use of
FireBase. We used this tool to authenticate our users during login and creating
accounts during sign up. It enables us to generate a unique id to tie to each account
and to access the profile data in our MongoDB. But, since that is its only role, and for
the sake of simplicity, we will solely refer to MongoDB for this whole process (even
though FireBase is also technically used).

With an overview of all of the technologies and how they will be utilized in our
web-application, we will now continue onto the architectural overview.

3) Architectural Overview
From a high-level, we see our online web-application as being broken up into two major
parts: Front end and back end, represented by the User Profiles and The System,

7

respectively. We use these two higher-level pieces to then break down the actual
functionality and control-flow of our web-application.

Figure 3: Project Architectural Overview

In Figure 3 above, we can see a breakdown of the User Profiles being the Student
Profiles (or View), the Tutor View, and the Admin View. Along with the unique key
functionalities of each one of these users (ex: Image Upload, Add Classes..etc). The
System, above, is an expansion on Figure 2, and how our pieces of tech work in order
to produce the views and functionality that the users experience. Along with the key
unique functionalities of The System, which will be processing images that are
uploaded, as well as sending out notifications to users.

8

While this is a higher-level overview of our whole web-application, we also want to
provide a good example of how all of these pieces work together to complete a process
or particular function. We will go into further detail on each functionality of our
web-application in the section, Module and Interface Descriptions. But for now, we will
use one example from above to provide a general understanding of all of the pieces.

The Student Profile Page needs to be able to Add Classes that the user is currently
taking. From the Student homepage (profile page), there will be a button to add
classes. Once clicked and there, a student will choose from available classes. ReactJS
will grab these elements chosen on the page, and pass it to mongoDB to be stored
under the user_id of that Student user (currently logged-in), in the corresponding
“classes” field. These classes will then

While that is just one example of a certain functionality of our web-application, in
general, this is the roles that each piece of our web-application will be playing
throughout each process. With the User Profile Pages being broken into either Student,
Tutor, or Admin, and having their unique functionalities. And with ReactJS rendering
the display, and passing elements to be stored in MongoDB, while AWS will be hosting
all of our storage. In the next section, we will go more into the detail for each
functionality and process of our web-application.

4) Module and Interface Descriptions

As explained in the overview section above, we have broken our web-application into
two major parts or modules, consisting of User Profiles, and The System. User Profiles
will encompass Student Profiles, Tutor Profiles, and Admin Profiles, where we will
discuss the key functionality and differences unique to each user base. All modules and
pieces, especially The System, will have to work together in order to provide the overall
goals and functionality of our web-application. We will provide graphics, where needed,
in order to help visualize the workflow and decision trees of our modules and
web-application.

4.0 All User Profiles
Key functionalities:

● Sign-Up
● Log-In

Sign-up/Log-in

9

For all of the User Profiles (Students, Tutors, and Admin), the basic workflow will look
like the diagram, Figure 4.11, below:

Figure 4.11: User Log in/Sign up

Where they will then differ slightly, is when they get to their Profile Page. The theme,
feel, and general layout will be similar across all profile pages, but each User type will
have a unique set of functions and capabilities available to them. We will first take a
look at the Student Profiles view and capabilities.

4.1 Student Profiles
Key functionalities:

● Add classes enrolled in
● Upload images
● View Video-Solutions (Includes Payment Processing)

Profile Page
The Student Profile will include the Student User’s bio information, such as name,
location, and school. However, they will also need access to:

● Add classes they are enrolled in to their profile
● Upload images, or homework submission problems
● View Video Solutions, posted by Tutors. Also, pay for these video solutions

Adding enrolled classes to their profile, homework submission, and viewing solutions
will be the key functionalities of the Student Profile, depicted in Figure 4.11 below.

10

Figure 4.11, Student Key-Features

On the Student Profile Page, there will be a link enabling them to access each one of
these key features.

HW Image Uploading
The student will click the link “Upload Homework Problem”, which will taken them to a
page where they can upload an image. The student can there choose a local image
file, and click to submit it (Note: the Student will also be asked to add a “Subject” tag
with the image, see next section “Updating Class List” to better understand subjects).
Below, in Figure 4.12, is an image of what happens to make this process work.

Figure 4.12, HW Image Upload

11

React creates a bucket object, that holds an image file. This file is then sent to AWS to
be stored, where a link is created, and the link is then stored in our database under the
users user_id. This enables the image to be stored on our AWS server, while the
information linking it is now saved and accessible for retrieval by being stored in our
Mongo database.

Updating Class List
The Student User will click a button “Add Classes”, which will take them to a page
where they can choose from available class categories, or subjects. React will render
these available subjects from an array in our database, Mongo. Below, in Figure 4.13 is
a visual of this process.

Figure 4.13, Adding Classes/Subjects

As you can see from the figure above, React will ask Mongo for the array variable of
Classes, which Mongo will pass back to React. React will then parse this array,
presenting each item (or class subject), with an Radio button. The Student User will
then be able to click these Radio buttons (or subjects), and add them to their profile.

Adding them to their profile will work much in the same way, whereby React saves
these Radio components that have been set to True, or On. And then React will pass
these back to Mongo to be stored under the user’s user_id. This information will then
be displayed on their Student Profile/Home Page (when refreshed).

12

Video Viewing & Payment Processing
The System will send the Student a notification that a video solution has been posted
for their problem. Within this notification will be a link to view it, however, it will first
route them to a payment option in order to be able to view the video. This process is
described below in Figure 4.14.

Figure 4.14, Student View and Payment Process

Once the Student User completes payment, they will be redirected to a new page where
they can view their video solution. For payment, we are working on implementing a
Paypal API. Simply, the link will link to the Paypal API, and once completed, will be
rerouted to our video viewing page. Once we correctly implement the Paypal API, it will
be very easy to simply route to the Paypal API Page, and then back to the Video Page
using React.

In order to retrieve the video, it will work much in the same way as the “HW Image
Uploading”, except in reverse (See Figure 4.15 below).

13

Figure 4.15, Video View Process

React will load the page, asking for the video element from Mongo. Mongo will retrieve
the link stored under the user_id (tutor’s), and AWS will serve that link back to the page
as React renders it.

4.2 Tutor Profiles
Key Functionalities:

● Add “Classes” that they are qualified to tutor in
● Add Calendar Availability
● Upload Video Solutions

Profile Page
The Tutor Profile will include the Tutor User’s bio information, such as name and
location. However, they will also need access to:

● Add classes they are qualified to tutor in
● Add time that they are available to tutor
● Post Video Solutions, to students submitted problems

Adding classes they are qualified to tutor in, adding calendar availability, and posting
video-solutions will be the key functionalities of the Tutor Profile, depicted in Figure 4.21
below.

14

Figure 4.21, Tutor Key-Features

Add Class
This process is also the same as the student profile, in figure 4.13, where the tutor
clicks the ‘add classes’ button, then enters their qualified classes to tutor, and this data
is persisted in the database to be shown on their profile page. Please see section,
“Updating Class List”, under “4.1 Student Profiles”, if a further explanation is needed.

Calendar Syncing
Another important service for the tutor profiles is to sync their calendars with the
system. Currently, they can set their working availability and sync their calendars to the
website, a service which we will preserve so that they can be scheduled easily. This
process is described in Figure 4.22 below.

15

Figure 4.22, Calendar Sync

We will be keeping the current calendar sync page from the original site. However,
when tutors update their availability, we will use React to retrieve these elements from
the page and store it in our Mongo database under that Tutor User’s user_id.

Video Upload
This process will work much like the “HW Image Upload” found in section “4.1 Student
Profiles”, except with tutors and videos instead of student users and images. However,
a quick look at Figure 4.23 should help remind and explain it.

16

Figure 4.23, Video Upload

4.3 Admin Profiles
Key Functionalities:

● Create/view/delete Tutor Profiles
● Add/Delete Subjects

The main function of the administrator profiles is to manage tutor profiles, which can be
done through the FireBase interface. This interface is easy to use, and already
developed with FireBase, and allows administrators to create and delete tutor profiles at
will. This access, password and controls to the database, will be given to Mr. Lokken
once we complete the web-application system. It is a back-end profile, not a forward
facing one.

Also, Mr. Lokken will be shown how to edit a particular variable in the database,
“Subjects”. That way he can add and delete class subjects that they currently offer
tutoring in. “Subjects” will be the array/list that is available to both Student Users and
Tutor Users when they click the “Add Classes” button.

17

4.4 The System
Key Functionalities:

● Process Images -> Notifying Available Tutors in Class/Subject area
● Send Notifications

Remember, The System here refers to all of the backend functionality of our
web-application including ReactJS, MongoDB, AWS, and FireBase. Much of the
previous sections on User Profiles describe The System, doing quite a bit already. You
should be familiar with how The System works. For that reason, in this section, we will
treat The System as a whole, and focus more on the decision making and logical
processes involved in two more key functionalities that don’t fall under any of the User
functionalities: processing images and sending notifications.

Send Notifications
We will first explain notifications, which will help us to better understand an essential
element in the “Process Images” functionality. Our system will send notifications upon
two events occurring, either a Student User uploads a HW Image, or a Tutor User
uploads a video solution. Both of these events will trigger a notification, depicted in
Figure 4.41 below.

Figure 4.41, Notification Events

18

If a Tutor uploads a video solution, The System will notify the Student User that the
video solution belongs to that their hw problem has been answered. Vise versa, if a
Student uploads a hw image problem, The System will process the image, described in
the section below, and then notify available tutors that a hw problem has been
submitted that they may now answer. As of right now, we are still unsure whether we
will be implementing notifications through the User Profile Pages, or with just email
using AWS. For that reason, we will not go into detail here on The System process.

Process Images
The System needs to recognize when a Student uploads an image, store and read the
Class/Subject associated with the image submission, and then read and see a list of all
currently available Tutors that are able to teach in that subject.

This would involve saving the “Subject Tag”, and then parsing all tutors that have that
“Subject Tag” attached to their profile, and finally checking Calendar Availability, and
parsing currently available tutors, and then sending those tutors a profile notification.
Also, possibly sending notifications to currently-unavailable tutors if None are
currently-available. A visual can be seen in Figure 4.42 below.

19

Figure 4.42, Process Images Flow

Here, The System is essentially parsing information and implementing a little bit of logic.
To quickly describe the back-end of The System here, it is very similar to other
processes previously discussed. The System, or React will take in the element
associated with “Subject Tag”, utilizing a function and passing it back to Mongo, where
we will perform a search on all Tutor Users with “Subject-Tag” in their subjects array/list.
From there, The System will have a leftover of all the Tutors with that “Subject Tag”.

From there, The System will parse that results of tutor users further, by checking the
availability of those Tutor Users. Utilizing a time function, if there are currently available
Tutor Users with that “Subject Tag”, a notification will be sent out to all of those Tutor
Users. If not, it will send it out to all of the Tutor Users with the “Subject Tag” (this will
include unavailable tutor users, obviously).

20

5) Implementation Plans
As discussed before, this software solution requires the implementation of many
different pieces working together. That being said, we will try to break down production
of the software into many different actionable pieces and steps. However, there will be
much overlap and constantly checking for synchronization so that we don’t waste time
building a piece that won’t work or function with the rest of the software as a whole.

Chart 5.1, Gantt Chart

Above is a Gantt Chart visualizing the breakdown and timeline of the development of
our web-application. Two important segments of our production, to note, are the time
before spring break (March 16th), and the segment after spring break. Our main goal
before spring break is to have a completely functioning version 1.0 of our software up
and running. After spring break is when we plan to polish this version of our
web-application, making it pretty, ironing out the kinks, debugging, and implementing
user-testing. As with any software, the development process is never truly complete,
and the software gets updated and improved with continued use and feedback.
However, our goal is to have a working infrastructure by March 16th, and an improved

21

and polished version 1.0 ready for our client by the end of the Ugrads Presentation, or
April 27th.

The Gantt Chart above shows specific tasks and functionality, along with a timeline of
when it is being built. However, it does not show which individual in our group,
Business Web Solutions, will actually be building each component. This is because our
group functions in a way where each individual offers to build or complete certain tasks
that align with their strengths or interests at the time. It has worked for us in the past,
and will work for us in the future. But, to provide a general understanding of the main
focus for each team member, below we have provided a table showing the team
member’s name and their focus and strengths. Note, this is still flexible, but what we
generally notice and adhere to. An example of our strengths and some of our task are
listed in Table 5.1 below.

Team
Member

Strengths/Interests Examples of Task

Taylor Walker Front-End, User Interaction Ex: Student Profile,
Front-End Aesthetics

Alex Kahn Front-End, User Interaction Ex: Tutor Profile, Calendar
Synchronization

Tyler Mitchell Back-End, Overall System Cohesion,
Authentication

Ex: LogIn/SignUp Database
Authentication

Jesus Garcia Back-End, Overall System Cohesion,
Uploads/Downloads

Ex: AWS Servers-Code
Live, Video Upload

Table 5.1, Team Member’s Strengths

This section’s goal was to provide the reader with an understanding of how the
software, web-application, is incrementally being built out over the semester. As well as
provide the tentative timelines of those tasks, and who will be focusing on building them.
We are currently on-time in accordance with our Gantt Chart (Chart 5.1), with tasks
such as Video Upload, and having a live connection to our AWS server already being
completed. However, this our plan, to the best of our knowledge, but we will also be
implementing an Agile development process and handle breakthroughs and issues as
they arise. Timelines may be affected as development occurs, but we will use our Gantt
Chart as a guideline to keep on pace.

22

6) Conclusions

In conclusion, Tailored Tutoring Co. has a really unique feature, “Problem Submission”,
that sets them apart from the rest of the online-tutoring industry. However, in its current
state, the process is completely manual and extremely cumbersome and
time-consuming for founder and CEO, Robert Lokken. Our solution is to build an online
web-application where users of Tailored Tutoring Co. can interact with this
web-application and The System, which will completely automate the “Problem
Submission” process and more.

We have discussed the tools we will be using to build this web application, which
consist of MongoDB, AWS, and React. Also, we have abstractly broken down our
solution into 2 major pieces: User Profiles and The System, where User Profiles entails
Student, Tutor, and even Admin Profiles. Discussing the key differences and
functionalities of each, as well as how they all interact with each other to complete the
whole make up and functionality of our web-application.

We are currently on pace to have our web-application built by March 16th (Spring
Break), already having completed several tasks on our Gantt Chart and having key
functionalities such as user sign-up and log-in already implemented. Also, we have the
beginnings of our user profiles pages set up and viewable. Once we implement all of
the functionality of our application by March 16th, we will be able to continue refining it
for the remainder of the semester.

But most importantly, this automation and online web-application we are developing will
enable Tailored Tutoring Co. to be able to grow and scale as a company. Completely
removing Mr. Lokken from the equation and solving his current problem. Now, not only
can Mr. Lokken focus on growing the business, instead of running the day-to-day
operations. But, the business, or web-application, will be able to handle the and grow
right along with them.

23

References
1. “Online Tutoring Services: Market Research Report.” Online Tutoring Services

Market Research | IBISWorld,
www.ibisworld.com/industry-trends/specialized-market-research-reports/online-re
tail/lifestyle-services/online-tutoring-services.html.

2. Ravipati, Sri. “Online Tutoring Market to Grow 12.75% Between 2017-2021.”
THE Journal,
thejournal.com/articles/2017/01/12/online-tutoring-market-to-grow-12-percent-bet
ween-2017-2021.aspx.

3. “The Best Online Tutoring Services of 2017.” Reviews.com,
www.reviews.com/online-tutoring/.

http://www.ibisworld.com/industry-trends/specialized-market-research-reports/online-retail/lifestyle-services/online-tutoring-services.html
http://www.ibisworld.com/industry-trends/specialized-market-research-reports/online-retail/lifestyle-services/online-tutoring-services.html

