

Technological Feasibility Analysis

Team Members: Joseph Griffith, Robert McIntosh, Brandon Samz, Corban Stevens

Project Sponsor: Harlan Mitchell

Faculty Mentor: Austin Sanders

Created: 10/24/17

Revised: 10/26/17

Table of Contents

1. Introduction
2. Technological Challenges
3. Technological Analysis

3.1. Bluetooth, Wifi, and NFC
3.1.1. Bluetooth
3.1.2. Wifi
3.1.3. NFC

3.2. Raspberry Pi and Linux Virtualbox
3.2.1. Raspberry Pi
3.2.2. Linux Virtualbox

3.3. Test Script Language
3.3.1. C
3.3.2. Python
3.3.3. Java

3.4. Android vs. iOS
3.4.1. Android
3.4.2. Apple iOS

3.5. Displaying Data Within Android
3.5.1. MPAndroidChart
3.5.2. Williamchart
3.5.3. Table in Android

4. Technology Integration
5. Conclusion

1. Introduction
Technology today is data driven, and, as software developers, data is paramount to

building and maintaining successful solutions. Our team (BlueSky Group) has been tasked with
assisting our client in their goal of obtaining more data. Harlan Mitchell and Honeywell
Aerospace develop turbine engines and engine control systems for a myriad of private jets.
These engines and their connected systems generate ample data every flight, data that is
paramount to the reliability of their product. Currently, this data is downloaded from a computer
that monitors the engine's performance through a wired connection. Honeywell Aerospace
technicians periodically connect to this Engine Control Unit (ECU) and retrieve the data as often
as they can. However, this process does not happen frequently enough. The cumbersome
process of physically connecting to a computer and downloading this data on location greatly
limits the amount of flight data that Honeywell can collect. Developing a wireless solution to this
problem would allow Honeywell to collect ample data but this solution would not bring
immediate profit to their company, in other words there is no business case to solve this
problem. This is where our team comes in; our client Harlan Mitchell sees this cumbersome
wired process as an embarrassment to the company in an age when everything is wireless. To
assist our client in proving to his superiors the importance of this solution we at BlueSky Group
will be developing a prototype that solves this problem.

Our prototype will take the form of a mobile app that uses bluetooth to connect to the
Engine Control Units and download their data and process it. Currently Honeywell technicians
use an archaic Engine Management System called EEI to process flight data. Once they have
downloaded the data from the ECU, this system displays the data in a way that can be analyzed
by the technicians. Our prototype will emulate the functions of this system on a mobile platform,
allowing for ease of access to this data. Our prototype will allow for a safe and easy way to
download flight data on a much larger scale meaning greater reliability for the products
Honeywell Aerospace creates

2. Technological Challenges

A majority of the challenges we face concern connecting to the Engine Control Unit and
downloading its flight data. First, we need to determine what technology we will use to transmit
this data. The long term plan for Honeywell is to install Bluetooth microcontrollers on all of their
aircraft. So it is likely that our solution will use Bluetooth, however we intend to explore all
possible options. Next, we need to determine how we are going to simulate the aforementioned
process without direct access to an aircraft. For testing purposes, we need a solution that is
accessible while still using a Linux OS. The Honeywell microcontrollers will use a Linux OS so it
is imperative that our tests do as well. Once we have determined what Linux OS platform we will
use we need to determine what programming language will be used to transmit the flight data.
After overcoming the data transmission challenges, we can turn our focus to the functionality of
our mobile application. The application we build needs to simulate Honeywell’s Engine
Management Software EEI. So, for our final challenge we have to choose a mobile platform and
a means of displaying the flight data that is similar to EEI.

3. Technological Analysis

After reviewing the technological challenges, five key pieces of implementation have
been identified, all of which have various options. These technological issues and their options
for implementation are as follows:

● Bluetooth, WiFi or NFC for communication between the application and plane

● Raspberry Pi or Linux Virtualbox for the platform that the test program runs on
● Programming language the test script should be written in
● iOS or Android for implementation of the application
● Library to display data within the application

These five issues will be discussed further in the following sections, with various options being
weighed.

3.1. Bluetooth, WiFi, and NFC

This section deals with what technologies we are going to use in our application that will
allow for wireless communication between our app and the plane. This technology will need to
be be able to download a 500MB file in around 4 or 5 minutes over a wireless signal. The
current version of Honeywell’s system takes much too long to download data over a wired
connection, and we want to improve the download speed as well as make the connection
wireless. The connection also needs to be secure. Our client has expressed the need for our
connection to be secure so that other people will not be able send commands to the plane or
retrieve data without the proper permissions. Lastly, the connection also needs to be usable no
matter where the plane has landed therefore the technology needs to be able to be used
anywhere in the world.

3.1.1. Bluetooth - The first technology that we looked into was Bluetooth. Bluetooth is a low
power wireless connectivity technology used to transfer data and broadcast information
between two devices. This option is appealing to us because we believe it meets all of our
criteria that we need for our connection.

● Speed - Depending on the version of Bluetooth that we are able to use, Bluetooth has
solid all around speeds. Bluetooth 3.0 and 4.0 both have a max speed of 25Mbit/s and
Bluetooth 5.0 has a max speed of 50Mbit/s

● Security - Bluetooth uses encryption when transferring data from one device to another,
this built in security is very appealing to us because it means that we will not have to add
extra security measures into our application because the connection by itself is
inherently secure.

● Availability - If we choose to use this technology, then the device that we put onto the
plane will require Bluetooth capabilities along with our application. This means that we
will be able to establish a connection anywhere in the world because the connection will
only be between the device and the place as long as both the plane and the device have
Bluetooth capabilities.

3.1.2. Wifi - This is a technology for wireless local area networking with devices that are able to
have a wireless internet connection. WiFi is in almost every modern device and it is very
commonly used when two devices need to communicate with each other like ours do for this
project.

● Speed - When it comes to WiFi speeds there is a high degree of variation. The speed at
which we can transfer data depends on the speed of the connection that the plane has
with the outside world. From our research we have gathered the the max speed is
around 15 Mbps

● Security - WiFi by itself is not secure at all. It can be intercepted by other people without
too much trouble. If we were to use WiFi then we would have add in our own security
measures which would add on more work to our project in total.

● Availability - In order to use WiFi the device needs a network signal from an internet
provider. This means that our application would only be able to work in places where our
device can access a network signal. Unfortunately, a network signal is not available
everywhere on the planet. This means that our application would only be able to work in
certain areas of the globe where there is a network signal.

3.1.3. NFC (Near Field Communication) - This technology is a set of communication protocols
that enable two electronic devices to establish communication by bringing them close together.

● Speed - NFC provides a low speed connection. Through research we have found that the
max NFC speed is around 424Kbit/s which is extremely slow compared to the other
options.

● Security - NFC connection is based off of a contract-less encryption. This means that
while the signal itself is secure between the two devices, anyone is able to communicate
with that device. This means that someone could communicate with the device without
expressed permission.

● Availability - NFC communication is always available as long as both devices have NFC
capabilities. This also means that NFC will be available to use anywhere in the world.

 Max Speed (Mbytes

/s)
Security Availability

Bluetooth 3.125 – 6.25 Built in everywhere

WiFi 15 none Only where network
signal is available

NFC 0.05 Built in everywhere
Table 1: Technological feasibility of Bluetooth, Wifi, and NFC;

Chosen Approach - After looking at our options of available technologies our group has decided
that we will be using Bluetooth because it is the most flexible option and it meets all of our
needs. The speed it offers while it is not the best is still enough for us to use. It also is secure by
default which means we do not need to add any extra layers of security although it may be
something we explore if we have time. Lastly it also will be available anywhere on the planet
because both the device and the plane will have Bluetooth capabilities. With Bluetooth meeting
all of these requirements it is the obvious choice out of the three, and we think that it will be the
best choice for us to use in our project.

Proving Feasibility - The team plans to prove the feasibility of using Bluetooth in combination
with other necessary components. Since the team will be proving feasibility of writing a simple
Bluetooth script to communicate with a test unit, a large (500mb or so) file will be sent as part of
the process. This will prove that this amount of data is able to be sent without any issues and
over a reasonable amount of time.

3.2. Raspberry Pi vs. Linux Virtualbox
An integral part of our prototype is emulating the microcontrollers that will be placed

onboard the aircraft. Our mobile app will use bluetooth to connect to these microcontrollers and
download the flight data. For the purposes of our prototype, we need to emulate this process in
a way that can be demonstrated and tested without direct access to an aircraft. These
microcontrollers will use Linux as their operating system, so it is imperative that our prototype
does as well. Above all else, our solution to this challenge must be bluetooth enabled. The two
solutions to this challenge that our team has considered are the Raspberry Pi and a Linux
Virtualbox.

3.2.1. Raspberry Pi - The Raspberry Pi is a compact microcomputer very similar to the ones that
would be installed on board the aircraft. The Pi has had three iterations each building on the
functionality of the last. However, for our prototype we have narrowed down the options to the
two latest Raspberry Pi releases.

● Raspberry Pi 2 - The Raspberry Pi 2 does not come with Bluetooth built in but a
“Bluetooth dongle” can be bought for $10- $13 and inserted into the usb ports. One can
check if the device is being recognized by typing “lsusb” into the device terminal. If the
raspberry pi is not recognizing the Bluetooth dongle use “update” in the terminal to
update the system. From here all one need do is use the following command to install
Bluetooth capability.
“Sudo apt-get install bluetooth bluez-utils blueman bluez
python-gobject python-gobject-2”

● Raspberry Pi 3 - The Raspberry Pi 3 comes with wifi and Bluetooth 4.1 enabled. However
some steps must be taken to enable its use on the device:

1. From the Raspberry Pi desktop, open a new terminal window.
2. Type “sudo bluetoothctl” then press enter and input the administrator

password
3. Next, enter “agent on” and press enter. Then type “default-agent” and

press enter.
4. Type “scan on” and press enter one more time. The unique addresses of all

the Bluetooth devices around the Raspberry Pi will appear and look something
like an alphanumeric XX:XX:XX:XX:XX:XX . If the device to be paired is set as
discoverable (or put into pairing mode), the device nickname may appear to the
right of the address. If not, a little trial and error or waiting to find the correct
device will be necessary.

5. To pair the device, type “pair [device Bluetooth address] ”. The
command will look something like pair XX:XX:XX:XX:XX:XX .

3.2.2. Linux Virtualbox - The Linux Virtualbox would allow all of our team members to test our
prototype without having to purchase a microcomputer such as the Raspberry Pi. Furthermore,
this solution would provide ease of access to a Linux system as none of us currently own one.
That being said it is imperative that the Virtualbox is capable of using its host machines
bluetooth capability. The following instructions verify that the Virtualbox can achieve this
requirement.

● Enabling Bluetooth on Linux Virtualbox
1. Disable Bluetooth Adapter from Device Manager in Host Machine.
2. Disable all services in Host Machine that are using Bluetooth. (TaskManager ->

Services -> Press B to find Bluetooth Services & Stop).
3. Start Virtualbox Ubuntu.
4. Enable Bluetooth Adapter from Device Manager in Host Machine.
5. In Virtualbox, go to Device -> USB -> Select Bluetooth Radio.
6. Open terminal to check Bluetooth status: “sudo/etc/init.d/bluetooth

status”

● Sending A File to a Bluetooth Device
1. Open the Activities overview and start typing Bluetooth.
2. Click on Bluetooth to open the panel.
3. Make sure Bluetooth is enabled: the switch in the titlebar should be set to ON.
4. In the Devices list, select the device to which to send the files. If the desired

device is not shown as connected in the list, it needs to be connected (a panel
specific to the external device appears).

5. Check Send Files and the file chooser will appear.
6. The owner of the receiving device usually has to press a button to accept the file.

The Bluetooth File Transfer dialog will show the progress bar. Click “close” when
the transfer is complete.

Chosen Approach - Since both of these solutions meet the requirements of Bluetooth capability
and a Linux OS our decision ultimately comes down to what is the most accessible for our team.
The Raspberry Pi is relatively affordable and closer to what will be installed on Honeywell’s
systems however the setup of a Raspberry Pi is a long and cumbersome process. Furthermore
it would require us writing a script that connects to a Bluetooth device and sends the flight data
file upon booting the system. We feel that for this reason as well as the cost of purchasing four
Raspberry Pi’s that the Linux Virtualbox would be much more accessible. The Linux Virtualbox
would allow each of us to test our implementations from home and ultimately focus more time
on adding functionality to our app. However, if we succeed in developing the main functionalities
of EEI in our mobile app ahead of schedule then we would like to develop the Raspberry Pi
approach in order to better demonstrate our prototype.

Proving Feasibility - Our team will test Linux Virtualbox’s effectiveness by using the
aforementioned steps to enable Bluetooth connection with a mobile device and send a basic
file. This will demonstrate Linux Virtualbox’s capability to emulate the Bluetooth Microcontrollers
Honeywell will be installing in their aircraft.

3.3. Test Script Language

As we are not provided an actual Engine Control Unit with Bluetooth capability, it will be
necessary to create something to simulate the engine. This test unit will need to be able to
connect to our application via Bluetooth, receive a Bluetooth request for data, and send a
stream of data back to the application, again via Bluetooth. Additionally this test unit will need to
either generate test data in a format determined by the group or read test data from a file (in this
same format determined by the group). This test data is the data that will be sent to our
application. Ultimately this test unit will serve to demonstrate the capabilities of our application,

but is not the main focus of the project. The decision for implementing the test unit comes down
to which language a script will be written in to implement these Bluetooth commands and
functionality, and the options are C, Python, and Java.

3.3.1. C

● Dependencies - BlueZ is required for programming a Bluetooth application in C in a Linux
environment. As this test unit will be used for our own demonstration purposes, it will be
our responsibility to set up the environment required for this approach.

● Documentation and Examples - Very little documentation is provided for the BlueZ library
itself. However there are examples available for creating a Bluetooth connection using C.

● Code Difficulty - In order to create a connection, it is necessary to open a socket using
the Bluetooth adapter which is done similarly to creating a TCP socket in C, along with
the Bluetooth library itself. Once this socket is created, sending and receiving data is
done identically to a TCP connection in C. It is not immediately clear how the UUID is
set, which is used when connecting via the Android application. Overall fairly
straightforward for those familiar with network programming, but has some confusing
and involved pieces.

3.3.2. Python

● Dependencies - Python distutils, BlueZ, and Pybluez are required for programming a
Bluetooth application in Python in a Linux environment. As this test unit will be used for
our own demonstration purposes, it will be our responsibility to set up the environment
required for this approach.

● Documentation and Examples - PyBluez provides documentation for the classes that it
provides, as well as examples for creating a Bluetooth connection using Python.

● Code Difficulty - Again, a socket is created using functions provided by the PyBluez
library. Once this socket is created, PyBluez provides a function to advertise the services
to nearby devices, and a UUID can be provided. Once a connection is accepted there
are simple functions to send and receive data. All functions are well named and simple,
which means creating a connection and sending data is able to be done without a lot of
code.

3.3.3. Java

● Dependencies - BlueZ and BlueCove are required for programming a Bluetooth
application in Java in a Linux environment. As this test unit will be used for our own
demonstration purposes, it will be our responsibility to set up the environment required
for this approach.

● Documentation and Examples - The classes implemented within BlueCove have their own
documentation, however examples using BlueCove are harder to find and don’t have
very much explanation.

● Code Difficulty - Similar to the other approaches, it seems a socket needs to be created
and can then be used similarly to a TCP connection. There are, however, very few well
documented examples, so figuring out the proper methods to use. Furthermore, as this

approach uses Java, everything needs to be encapsulated within a class which is then
run a main() method, which adds an unnecessary layer of difficulty.

Chosen Approach - Of all these options, the best for our purposes will be writing the test script in
Python. As our client wants this to run on a Linux environment, this will work well, as most Linux
distributions come with Python as well. PyBluez provides simple interfaces and functions to
establish Bluetooth connections, which means the team can focus on writing the application and
not the test unit.

Proving Feasibility - We plan to test our choice by using the client and server Bluetooth example
scripts provided. The team will run the server script on one machine running Linux and the client
script on another. We then plan to send some random data between the two machines to show
that the Bluetooth connection works and is able to transmit data as required.

3.4. Android vs. iOS
This project can be developed for one of two platforms - Android or iOS. Both of these platforms
will do what we need to accomplish in order to satisfy the customer. Due to the limited scope of
our project and our time constraints, we can only develop for one of these platforms. Each
platform brings with it a different set of languages and tools.

3.4.1. Android - There are many devices around the world that use Android. It can be developed
on any machine that can run Android Studio or Visual Studio. Developing for Android is
something that our group is familiar with making this option the most appealing to us.

● Accessibility - Android applications are typically programmed in Java, which our group
has ample experience working with it. This means that we will not have to waste time
learning the ins and outs of a new language when we start prototyping and building our
product.

● Compatibility - Android can be run on a variety of devices, meaning that our application
can be used on many kinds of mobile devices. Unfortunately, this comes at a cost.
Applications made for more recent versions of Android are sometimes incompatible with
older versions. In order for our application to work on the wide range of devices that it
will probably be deployed and used on, we will have to develop for the older versions of
Android. This means that we will not be able to use some of the improvements that have
been added to Android overtime. We will also not be able to support the users that have
not yet updated their systems.

● Cost - One of the great things about developing for Android is the cost. It does not cost
anything to deploy applications and no special hardware is required to begin
development. All we need is a computer that is able run an IDE such as Android studio.

3.4.2. Apple iOS

 iOS is somewhat similar to Android, but has some qualities that make it a more
appealing development choice. The development process, however, is more difficult to begin.

● Accessibility - iOS applications are typically coded in Objective-C, which comes at the
cost of time for our team considering we have no experience with this language. With
this in mind we have elected to instead spend this time developing in a language familiar
to all of us in order to implement more functionality.

● Compatibility - One of the biggest reasons for using iOS over Android is that the
applications that we develop are probably going to work on older versions of iOS. This is
mostly because Apple does not let other manufacturers use iOS for their own devices.
This means that the programmer will not have to worry about it not working on their
devices.

● Cost: A major drawback when developing for iOS, especially with small development
teams, is the cost. To develop an iOS application, macOS, Apple’s operating system that
is used on their Macs, is required. There is no legal way to run macOS on a non-Apple
computer, and doing so is a breach of their terms of service. This means that it is
necessary to own a Mac to develop for iOS. Unfortunately, only one person in our group
owns a Mac. Also, in order to deploy an application to the App Store, there is a $99
annual fee that one must pay.

Chosen Approach - Android will be the best development option for our group. The applications
that we develop for it will be able to do what we need to do without us having to pay for
computers or a license. Android development is already something that our group is familiar
with, so we will not be surprised or confused while we develop our product. We will also not
have to learn a new programming language. Developing for Android provides us with a low cost
solution for our project needs and requirements.

Proving Feasibility - In order to show that Android is a feasible choice, the team will create a
simple “Hello World” application. The team will then put the application onto an Android device
in order to test it properly. This will demonstrate that the team is able to create an Android
application and has the necessary environment in which to develop our final product.

3.5. Displaying Data Within Android
Once all the data is received via Bluetooth, it is important that the application displays that data
in a format that is easily viewable for the user and highlights important data. Generally data
should be able to be filtered on certain criteria such as type of data (i.e. which sensor the data
came from), time of data (i.e. data between two dates), or any combination. Options we have
found after research include two separate Android libraries (MPAndroidChart and Williamchart)
or a basic table display within Android.

3.5.1. MPAndroidChart

● Usage - Add the library as a Gradle dependency to the project, which is standardly
supported in Android Studio. This allows any updates to the library to automatically be

used in the application without re-downloading the library. This library also provides
support to download the .jar file which can be included in the application. This method
will not break, but any updates to the library will have to be manually downloaded.

● Documentation and Examples - Detailed documentation via javadoc provided for the library
as well as its own wiki provided with the library on Github. Additionally, the library
provides source code for examples which is included in the library repository. All of these
resources provide good documentation and serve to help figure out how to implement
certain features that are necessary for our application.

● Functionality Provided - Provides 8 different chart types, value highlighting, and adjustable
axes. All of these features allow for users to zoom in or out on certain displays to find
data and read the data value at particular points. This functionality will be helpful for
users to find the data that they need.

3.5.2. Williamchart

● Usage - Library can be added as a Gradle dependency to the project. This method is
supported within Android Studio and allows any updates to the library be used
automatically without re-downloading the library into the project.

● Documentation and Examples - This library provides a javadoc which documents the
classes provided within the library. As this is the only documentation provided by the
library, it would be necessary to experiment and read through thoroughly to implement
necessary features in the project.

● Functionality Provided - Provides 5 different chart types. These charts provide various
methods to modify the view, so features like zooming and scrolling could be
implemented; however, would be more difficult to implement as they are not explicitly
defined in the library.

3.5.3. Table in Android

● Usage - Table layouts are provided in Android and are generally used to format specific
buttons and widgets on a page. This could be used to display our data by giving color to
the grid lines and displaying the data on a standard table.

● Documentation and Examples - As this is implemented within Android, there is
documentation provided by Android as well as examples from various users on the
internet. As this display would be very basic, there are a large number of examples from
users trying to create simple applications.

● Functionality Provided - Provides very basic functionality and would allow the data to be
displayed without a lot of effort. The downside to this is that it is harder to format the data
in a nice way that is easily readable by the user and not all information is well displayed
in a table.

Chosen Approach - Of all these options, the best will be a combination of MPAndroidChart and a
standard table layout within Android. The table will be necessary to display small pertinent
information that may not necessarily translate well as a graph, whereas MPAndroidChart will

provide more full-featured data visualization options to display the data in a timely manner to the
app user.

Proving Feasibility - In order to test the chosen approach, the team plans on creating a simple
test application using the example classes provided by the MPAndroidChart library. We will then
modify the charts to demonstrate necessary features, such as highlighting particular data points,
filtering data, and opening new screens after selecting certain data points. This will demonstrate
that the MPAndroidChart library provides the functionality necessary to display data in a format
that is easy for a user to understand.

4. Technology Integration
The biggest integration issue that we would face would be when the Android device has to
receive data via Bluetooth from the Linux Virtualbox that is running our Python scripts.
Fortunately, both of these devices will be using Bluetooth, so the transfer of data should be
simple as long as we follow the Bluetooth protocol guidelines. The rest of the technologies that
we are planning to integrate where meant to be used together. MPAndroidChart was built as an
Android library, so having it interact with Android will be no problem. Android supports the use of
Bluetooth natively. Unfortunately, many Linux distributions do not support Bluetooth out of the
box. In order to use Bluetooth on a Linux machine, it is necessary to install the appropriate
packages such as blueman or bluez. Python is easy to get working on Linux. In fact, it even
comes preinstalled on many Linux distributions. If the distribution that we choose to use does
not already have python installed, it can be easily installed using package repositories or from
source.

Chart 1: Technology Integration
5. Conclusion

We are BlueSky Group, and we are creating a mobile app that will be able to wirelessly
download engine data from an aircraft in a much simpler, faster, and more secure way than
before. This will allow Honeywell to have a product that customers can use in that age of

connected aircraft, and there will no longer be a need for bulk cables and time consuming
downloads which is a current embarrassment to the company. Our application will allow
Honeywell to get away from their old outdated technology and move into the new connected era
of maintaining aerospace technologies. This document is intended to serve as the feasibility for
our project and outline the different technological problems we plan to face and how we are
going to overcome those problems.

Challenge Proposed solution Confidence level

Means of communication
between a mobile device and
the engines on board
computer.

Use Bluetooth for wireless
communication between our
app the the plane

Strong

Determining a platform to run
our tests on that simulate
Honeywell’s ultimate goal of
installing Bluetooth
microcontrollers on their
aircraft.

Linux Virtualbox then if time
permits Raspberry Pi

Strong

Choosing a language to write
our Bluetooth data transfer
script in.

Python Strong

Picking a platform to create
our mobile application in.

Android Strong

Determining a way to display
flight data that meets or
exceeds EEI standards.

MPAndroidChart Moderate

Table 2: Challenges and Proposed Solutions

Overall, we are confident in the solutions that we have chosen and I think that they will be the
right choices for our project. We have put in enough hours of research that we believe each of
these solutions is the best for our project. Some of the remaining open ended questions that we
did not answer in this document are what kinds of libraries are we going to use for our app;
however, many of the libraries that we are going to look at for the technologies we have listed
are all well supported and well documented. This means that we are pretty much going to only
have one choice when it comes to what kinds of libraries we will use for our project, and those
are the officially supported ones.

