

Requirements Specification Document
Version 1.2

Team Members: Joseph Griffith, Robert McIntosh, Brandon Samz, Corban Stevens

Project Sponsor: Gary Matsch and Harlan Mitchell

Faculty Mentor: Austin Sanders

Created: 11/20/17

Revised: 12/7/17

Accepted as baseline requirements for the project:

Client: ___________________________________ Date: _____________________

Team: ___________________________________ Date: _____________________

Table of Contents

1. Introduction
2. Problem Statement
3. Solution Vision
4. Project Requirements

4.1. Functional Requirements
4.2. Performance Requirements
4.3. Environmental Requirements

5. Potential Risks
6. Project Plan
7. Conclusion

1

1. Introduction
__

Every day, over one hundred-thousand flights are scheduled across the globe. With so
many flights occurring everyday accidents are inevitable. In 2016 alone, there were sixty
five accidents on commercial airlines resulting in ten deaths. Accidents can happen for
a number of reasons, most of which are out of the control of aircraft operators and
engineers. However, it is the responsibility of the aircraft engineers and operators to
minimize the risk of failure as much as possible. Our concern focuses on the needs of
the engineer and any engineer, will tell you the best way to see a problem in your
system before it happens is to collect ample operation data.

Technology today is data driven, and, as software developers, data is paramount to
building and maintaining successful solutions. Our team (BlueSky Group) has been
tasked with assisting our client in their goal of obtaining more data. Gary Matsch and
Harlan Mitchell with Honeywell Aerospace develop turbine engines and engine control
systems for a myriad of private jets. These engines and their connected systems
generate data every flight, data that is paramount to the reliability of their product.
Currently, this data is downloaded from a computer that monitors the engine's
performance through a wired connection. Honeywell Aerospace technicians periodically
connect to this Engine Control Unit (ECU) and retrieve the data as often as they can.
However, this process does not happen frequently enough. The cumbersome process
of physically connecting to a computer and downloading this data on location greatly
limits the amount of flight data that Honeywell can collect. Developing a wireless
solution to this problem would allow Honeywell to collect ample data but this solution
would not bring immediate profit to their company, in other words there is no business
case to solve this problem. This is where our team comes in; our clients, Gary Matsch
and Harlan Mitchell, see this cumbersome wired process as an embarrassment to the
company in an age when everything is wireless. To assist our client in proving to his
superiors the importance of this solution we at BlueSky Group will be developing a
prototype that solves this problem.

Our prototype will take the form of a mobile app that uses bluetooth to connect to the
Engine Control Units and download their data and process it. Currently Honeywell
technicians use an archaic Engine Management System called EEI to process flight
data. Once they have downloaded the data from the ECU, this system displays the data
in a way that can be analyzed by the technicians. Our prototype will emulate the
functions of this system on a mobile platform, allowing for ease of access to this data.
Our prototype will allow for a safe and easy way to download flight data on a much
larger scale meaning greater reliability for the products Honeywell Aerospace creates.

2

2. Problem Statement
__

The current problem that we face is the frequency of collecting all of the data that would
be needed to analyze and identify problems before it is too late. Currently, the process
of extracting this data from the engine control unit is a very long and cumbersome task.
This means that, while aircraft are required to download and review this data at set
intervals, those are the only times that this data is being looked at, and clearly this is not
often enough. The reason that this process is so cumbersome and slow is because the
whole process and program are wildly out of date when compared to modern
technology. The current process begins with the technician setting up their laptop and
connecting an RS-232 cable to it. They then have to walk into the aircraft’s cabin and
connect the cable into the plane manually. Once that has been completed, the
technician can start the download using EEI software. This software is so old that it can
only run on Windows XP. Once the download has been started, the download can take
up to thirty minutes to if a download has not been completed recently, and if you are
running a commercial aircraft that is basically in the air flying twenty four seven, that
may be too much time to spend on the ground not making any money. In summary, the
problem that our project seeks to solve is this; in order to prevent engine failure, data
needs to be downloaded at frequent intervals, and, in its current state, the data is not
being downloaded enough. This is because the way that data is collected is
cumbersome and slow which is not an option for commercial airlines, and our solution
will greatly improve upon this problem.

3

3. Solution Vision
__

Our primary goal with this project is to bring Honeywell’s data acquisition methods into
the 21st century. To do so we will be implementing a mobile application with Bluetooth
capability to access their flight data. The mobile application will emulate the functionality
of Honeywell’s current engine monitoring software, EEI, while displaying the flight data
in a way that is fitting for a mobile application. The final piece of our puzzle will be to
emulate the engine control unit itself using Linux Virtualbox. This solution will afford
Honeywell a certain level of efficiency through some key features;

● The ability to access flight data without a wired connection
● The ability to transmit this data to Honeywell immediately
● The ability to access flight data anywhere in the world regardless of internet

connectivity
● The ability to download all flight data kept by the ECU
● The ability to download flight data with only minor intrusion in the aircraft’s cabin
● The ability to view and process flight data mobily

In this way and with these features we can ensure that Honeywell will collect ample
flight data. As mentioned before the flight data itself is created by the turbine engine's
control unit. It will be our mission to access this data wirelessly and present it in a way
that can be used by technicians. Honeywell’s current software allows the technician to
see warnings on faulty parts, failures in non-critical systems otherwise unseen to the
pilot, and various graphical data on engine performance. Our solution will do just the
same while adhering to the restrictions of a mobile platform. For the mobile platform
itself we have elected to use Android Studio as it is the platform our team has the most
experience with and direct access to. We considered using IOS for this project but
quickly realized we did not have the means of developing in this platform. However, we
do not see this as a major issue as Android Studio will meet all of our mobile platform
requirements. Of course our mobile application will rely heavily on the data it is fed.
Unfortunately for our team however, we will not be given direct access to an actual
turbine engine and its ECU. So for the purpose of testing our system, we must recreate
this system in a way that is true to the original function. Our plan here is to use a Linux
Virtualbox as the ECU used on Honeywell turbines is a Linux machine. Furthermore, we
must create our own flight data as we will not be provided any real data from Honeywell.
We see this as our greatest challenge moving forward but plan to mitigate the risks by
studying EEI (Honeywell’s engine monitoring software) to understand what information
is required by it. We originally planned to emulate the engine’s control unit using a
Raspberry Pi. While this solution is feasible it is not very practical in that it would require

4

a great deal of time to merely set up Bluetooth functionality. Given the time our team
may pursue this avenue as it would add a level of complexity to our demonstrations but
for the time being we have elected to focus on achieving full system functionality first.
Now when it comes to the wireless connectivity we briefly considered Wifi but quickly
chose Bluetooth for a number of reasons. First it inherently includes a level of security
as the devices must be within range and consent to creating a connection. Second
Bluetooth allows connection to be made anywhere in the world regardless of internet
connectivity.

 Figure 1: Overview of System Functionality

Our system could be expanded in many ways that would benefit the company as well.
For instance the app could theoretically be made to monitor a live feed of flight data.
The app could also be expanded to automatically download and deliver data to
Honeywell on certain intervals or upon arrival at an airport. In summary our system will
provide Honeywell ease of access to their flight data. This access will ensure greater
reliability of their systems by ultimately allowing for data to be downloaded more often.

5

4.1 Functional Requirements
__

In this section, we will outline the functionality necessary to effectively meet our client’s
needs. All of the functional, performance-based, and environmental requirements will be
expanded on and relate to the following set of top level domain requirements.

1. Top Level Domain Requirement: Engine download application is accessible to users
with a smartphone or tablet.
1.1. Accessible with a smartphone: Most users of the engine download

application will be using a smartphone. Smartphones are much smaller
than tablets, so less detailed data will be displayed.

1.1.1. The application should have a navigation menu so that different
screens can be easily navigated to.

1.1.2. The application should support scrolling so that it can be navigated
easily.

1.2. Accessible with a tablet: Tablets allow the user to see more of the data
without having to scroll or go to another window. They are also very
helpful when the technician has to view graphs in detail or manipulate
something on a densely crowded screen.

1.2.1. The application should scale and take advantage of increased
screen size on a tablet.

1.2.2. The application should have an expanded view of the graphs so
that greater detail is displayed.

2. Top Level Domain Requirement: Engine data can be downloaded any time or place
the plane has landed, with only a smartphone or tablet running the engine
download application.
2.1. Application should be able to download flight data regardless of internet

connection.
2.1.1. Download should be possible as long as the user is within 10

meters of the aircraft.
2.1.2. Application should list available engine control units to download

data from.
2.1.2.1. Application should keep track of recently accessed engine

control units.
2.1.2.2. Application should list the engine control units in a formatted

string of numbers, which are randomly generated and
assigned to each ECU.

6

3. Top Level Domain Requirement: Application should be able to download all of the
data from the ECU.
3.1. Application should display progress of the download.

3.1.1. Application should verify when a download is completed.
3.1.2. If a download fails to complete the user should be notified.

3.1.2.1. If download fails to complete on the first run user should be
able to restart the download.

3.2. Application should be capable of storing all of the engine’s flight data.
3.2.1. If device does not have enough available storage to complete

download the user should be notified.
3.3. Application should display the file size of the ECU’s current available flight

data.
4. Top Level Domain Requirement: Application should allow for review of engine data,

with functionality similar to EEI.
4.1. The application should function similarly to the EEI software provided to

the group.
4.1.1. The application should have engine data that includes the engine

serial number, the aircraft id, the download date and time, engine
position, and the operator who performed the download.

4.1.2. The application should include engine maintenance data that
includes the number of maintenance conditions, number of
exceedances, number of events, number of chips, and the number
of impending oil filter bypasses.

4.1.3. The application should include statistics on the engine and the
ECU.

4.1.3.1. Information regarding engine usage and engine landing
should be included.

4.1.4. The application should show data regarding different systems for
aircraft takeoff, climb, and cruise.

4.1.5. The application should show a list of faults that occur with a
timestamp so that the technicians will know when they occurred.

5. Top Level Domain Requirement: The application will be able to establish a secure
connection with the laptop for testing using Bluetooth. In order to achieve this
both the laptop and the application must abide by protocols established by
Bluetooth. The laptop will act as a server that will provide the data that has been
gathered from the ECU, and the the application will act as the client which is
going to be receiving the information sent by the server.

7

5.1. Establishing connection as a server: Our laptop will operate as the server for
our Bluetooth connection. In order to do this first it will have to maintain an
open Bluetooth server socket. This server socket will listen for incoming
connection requests, and provide a connected Bluetooth socket after a
request is accepted. When the Bluetooth socket is acquired from the
server socket the server socket will then be discarded in order to make
sure that our laptop will not accept any more connections.

5.1.1. In order to get a Bluetooth server socket our application will call the
method listenUsingRfcommWithServiceRecord(). This will
automatically write a new service discovery protocol database entry
on the device. The UUID of the app will also be included in the
entry which establishes the basis for the Bluetooth communication

5.1.2. To start listening for connections, our program will call accept() on
the server socket

5.1.3. Our program will then call close() in order to close the connection to
make sure that other devices cannot join the same connection.

5.2. Establishing connection as a client: The application will operate as the client
in this project. The application will initiate a connection with the laptop that
is accepting an open connection on an open server socket. Our
application will create a Bluetooth device object that represents the remote
device. It will then use that Bluetooth device to acquire a Bluetooth socket
and initiate the connection.

5.2.1. Our application will initialize a Bluetooth socket object that will allow
our application to connect to a Bluetooth device. The UUID that is
given in this creation must match the UUID that is used by the
server or else the connection will not be allowed. This will be made
sure because the UUID value will be hard coded into the
application

5.2.2. Our application will then establish a connection by calling connect()
which will initiate a lookup to find a remote device with a matching
UUID. if the lookup is successful then the connection is created.

5.2.3. If the method times out then it will throw an IOException which we
will then handle by letting the user know a connection could not be
completed.

8

4.2 Performance Requirements
__

This section details the performance requirements for this project. These performance
requirements specify how the functional requirements are expected to perform in
aspects such as speed, accuracy, etc.

1. Application downloads data with zero data loss or corruption.
1.1. It is important that all engine data received is accurate so that the

application does not misinterpret or fail to report important data.
1.1.1. Bluetooth connections manage data using packets similar to TCP.

As such, the underlying Bluetooth protocol handles this requirement
by ensuring that each packet is received and is not corrupt, and
resends the packet if not. However, during the test phase, this
requirement may also be tested by manually hashing the download
file on each end and comparing the hash.

2. Application downloads data within 1 minute.
2.1. One of the main focuses of this application is to speed up the data

download process. As such, we want the application to download the data
as fast as possible, while still providing some leeway due to unavoidable
connection issues.

2.1.1. This time was determined using the 5 MB max file size of the data
to be downloaded and average download speeds of Bluetooth 3 or
4. Verifying this requirement is met should involve averaging
download times from multiple downloads that minimize outside
factors (signal interference, phone distance from microcontroller,
etc).

3. Application reports no incorrect data.
3.1. As previously mentioned, it is important that the application is highly

accurate with data to ensure that issues aren’t mistakenly diagnosed or
missed, as this could result in major engine failure or unnecessary
maintenance.

3.1.1. As download data will be generated for testing purposes, the team
should be able to verify that the application properly displays data
by manually parsing it and comparing with what is displayed in the
application. This requirement is verified by ensuring that all data in
the testing process is correctly reported.

9

4. Application will establish a connection between the laptop and the device in
under 15 seconds.
4.1. In order to have an application that is focused on speeding up the data

recovery from the ECU, speed is a key factor in everything that this
application needs to do. When it comes to establishing the Bluetooth
connection, the application should be able to establish the connection
within 15 seconds.

4.1.1. The application will be able to establish a connection within 15
seconds because we will be operating our Bluetooth connection in
the way that is directed by the Bluetooth documentation. This will
ensure that the application is establishing a connection as soon as
possible because it is operating in the intended way.

4.1.2. The application will also be able to establish a Bluetooth connection
in under 15 seconds because the application will be able to pair
with the laptop because the laptop will be looking for a Bluetooth
socket which can only be provided by our application. This
Bluetooth socket will be initiated once the application is prompted to
connect to a device. This means that the devices should
automatically pair once they have been once they have been
initially paired with each other.

10

4.3 Environmental Requirements
__

This section details the environmental requirements for this project. These are
requirements that are imposed upon the project due having been specifically asked for
by the client or as a result of chosen technologies.

1. The application will run on Android OS.
1.1. As specified by the project, the application must be mobile. This means

that it must be able to run on a mobile phone. As not all members of the
team have Mac computers, and thus are not able to write iOS
applications, we have decided to write the application for Android OS.

2. Application should be able to run on all Android devices.
2.1. Application should transfer user interface seamlessly between devices

2.1.1. Application interface should be scalable between tablets and
mobile smart phones.

2.2. Application interface should be able to display in both portrait and
landscape mode.

3. As specified by our project sponsor the application will be able to mimic the basic
functions of EEI in a different layout that is newer than what is currently being
used.
3.1. The application will mimic the functionality of EEI. From our analysis of the

current EEI, the most important feature that we need to implement is the
functionality to analyze the data and identify if there are any immediate
faults that need to be recognized. For example, if a sensor has failed and
is in need of repair the EEI will be able to recognize that and report that to
the user.

3.1.1. The EEI is able to identify when a sensor has failed and is in need
of repair because, if a sensor is broken, then it will not be reporting
data. When this is happening, it either means that the sensor or its
connection needs to be repaired or that it is just broken altogether.
The application will be able to identify these conditions and report
them back to the user.

3.2. The application will be able to display the ECU data to the user.
3.2.1. The application will display data to the user through use of a library

with the ability to display the data in a graphical format that will be
appealing to the user.

4. At least 5 dummy engine data files should be created and be able to be
downloaded by the application.
4.1. The file type must be consistent across these 5 files.
4.2. The fields and units of measure should be consistent with those found in

an actual .dld file.

11

5. Potential Risks
__

Currently, the team has identified three major risks that are important to consider while
implementing our application. These three risks are Bluetooth connectivity issues,
misinterpreted data, and long download times. These risks have been deemed
important due to their effects on the function of the plane and its diagnostics as well as
possible maintenance costs to the owner.

The first major risk to consider is Bluetooth connectivity issues. This could be caused by
having too much interference with the signal or possible errors with the code and device
that could prevent Bluetooth connection. In either of these cases, the result would be no
connection to the ECU at all, preventing flight data from being downloaded. This issue
has a medium severity, as the result would be either having to reschedule the data
download or having the data download take longer than expected. There is low risk for
this issue, however, as newer standards of Bluetooth and well written code make it
extremely likely that there will not be connectivity issues. Mitigation for this issue would
need to be implemented in the form of a secondary connection option. This could look
like either continuing to equip the plane with the current serial connection as a backup
and using the current EEI solution, or providing functionality within the application to
function using a wired serial connection (USB). This second option would, however,
impose more requirements on the system than currently listed.

Another risk is that of the application having programming errors that cause data from
the download to be interpreted incorrectly. This could result in issues with the engine
not being diagnosed properly, which could ultimately result in a malfunction leading to
even higher repair costs or possibly engine failure/plane crashes. Another result is the
possibility of the application to report that something is wrong with a specific
component, when there is actually no issue. Although this won’t mask an actual issue,
this false reporting could cause unnecessary time and money to be spent, as the part in
question may be replaced when it doesn’t need to be. The best mitigation strategy for
these types of errors is extensive testing of the application, specifically the module that
parses and interprets received data. This will help ensure that the application can
handle a large variety of data reliably.

Although seemingly minor, there is also a risk that the data download takes a longer
time than expected. There are multiple factors that could contribute to a longer
download time, such as larger data sizes, Bluetooth interference, and older hardware
with slower Bluetooth adapters. The direct impact of longer download times is more time
being wasted. The severity of this issue is low, as, although it may cause delays in the
plane being ready for use again or extra maintenance being needed to be scheduled,
the likelihood of this issue occurring is also low as long as downloads are occurring as
frequently as expected. As such, it is important that the application is as efficient as
possible to limit download times. If the application is as efficient as possible, then
factors contributing to slowdown will be minimized.

12

6. Project Plan
__

Having researched feasibility and laid out requirements, it is important to have a
schedule and plan moving forward. As there are multiple components required in the
application to be built, the team has identified key components of the system and
prioritized those over others. The plan, presented below, serves as an outline of tasks
that have already been accomplished and tasks that will be accomplished in the future.

Figure 2: Schedule of Operations Sept 2017 - May 2018

Technological Feasibility (10/1 - 10/31)
The first task that relates to the requirements outlined by our client is the Technological
Feasibility. In this step, our team researched if certain parts of our solution vision are
actually viable to take the time to design and implement. Figuring this out during the
beginning of the project will prevent us from finding out later that some of our design
decisions will not work the way we planned for them to. This phase of the project was
completed in late October.

Tech Demo’s (11/1 - 11/30)
The second portion of the project will be the Technical Demos for the various
technologies that we will be using. This part will familiarize the team with how these
technologies work. This will also provide the team with examples of how the different
parts of the product will work. This phase of the project will be executed during the
month of November.

Bluetooth Data Transfer (12/1 - 1/31)
The next portion of the project will deal with the Bluetooth Data Transfer. This is dealing
with how we will transfer data through a Bluetooth connection from one device to
another. Being able to transfer the data is a very crucial requirement that our client has
given us. The whole point of this project is to allow for the engine flight data to be sent
wirelessly instead of having a wired connection. This phase of the project will begin at
the start December and last until the end of January.

13

User Interface Design (1/1 - 2/28)
This UI Design is the next portion of the project that will be worked on after the team
figures out how to send our data through a Bluetooth connection. This portion is
important because it will allow our team to create an easily navigable application. This
will allow our users to not be frustrated when they need to use it. This phase of the
project will start at the beginning of January and finish at the end of February.

 Flight Data Display and Processing (2/1 - 3/31)
After the completion of our UI design, our team will then work on the Flight Data Display
and Processing. Our application has to display the flight data that it has received and
display it in a way that the technicians be able to easily understand so that they know
how the plane is performing. This is the area where we will accomplish this. This portion
of the project will start at the beginning of February and be completed by the end of
March.

Testing and Bug Fixing (4/1 - 4/30)
Testing and Bug Fixing will be the next major part of the project. Since our application
will be used to create a business case to allow the wireless transfer of flight data so that
airplanes are checked more often, we want or application to work when it is tested and
presented. This is why finding and fixing any bugs that may occur is very important. This
portion will start at the beginning at the beginning of April and finish at the end of April.

Deployment (5/1 - 5/31)
The final portion of the project will be the Deployment phase. This is when we will give
our client the finished project so that they can get approval to switch their data transfer
method to a wireless system instead of the wired one that they are currently using. This
phase will begin during May.

14

7. Conclusion
__

Problems with aircraft engines can be fatal, and the best way to ensure that the engine
is properly functioning is to review data as often as possible. Our team, BlueSky Group,
is working with Gary Matsch and Harlan Mitchell of Honeywell to solve the problem of
lack of data downloads and complicated wired connections. The current process for
downloading and reviewing engine data is outdated and time-consuming, which make
for downloads not happening very often and Honeywell not getting as much data as
they would like. BlueSky Group’s solution to this is to create a mobile application that
will connect to the ECU and download engine data wirelessly, via Bluetooth. This
application will allow the technician to view the received data on the spot and identify
any potential issues. This solution will make engine downloads a simple process which
uses tools most technicians already carry around with them, eliminating the use of a
bulky laptop attached to long wires.

This document serves to identify key requirements of the system to be built. With
necessary functionality and requirements in place, the team will be able to focus on
building software that meets these requirements instead of trying to build software with
a constantly evolving idea of what needs to be done. This will allow for a consistent and
coherent application that will function well and properly meet the needs of the client.

Before the team was able to build these requirements, it was necessary to research
various technologies to determine any possible limitations, issues, or risks. As such, the
team is well on its way to demonstrating that these technologies will work well together
to meet the application requirements. Furthermore, we are confident that we will be able
to then expand upon these technology demos to implement the fully functioning
application.

15

