CLEAN ENERGY WATER DISINFECTION SYSTEM

Prepared for the Waste-Management, Education, & Research Consortium Environmental Design Competition

JAMM, Inc. Environmental Engineering Meshal Hussain Ashley Ullstrom Marilla Lamb

Jo-Anne Barcellano

Project Understanding

Problem Statement

- Water-borne diseases
 - Result in 3.6 million deaths each year
 - Cause one child to die every 20 seconds
- Therefore we must
 - Design a universally applicable water disinfection system for use in rural, third-world areas and in emergency situations
- WERC held a competition to find a solution which would
 - Use existing technologies in a new, creative way
 - Disinfect water to World Health Organization (WHO) drinking water guidelines

Design Criteria

- The system must:
 - Use renewable energy
 - Be a mobile unit
 - Be cost effective
 - Be applicable to rural, third-world settings
 - Meet a flow of 3,000 gallons per day
 - Be easy for ordinary citizens in third-world environments to implement, operate, and maintain

Scope of Work

- Project Management
- Research
- Evaluation of Solutions
- Design
- Construction
- Testing & Analysis
- Documentation

Project Management

Team Structure

- Project Manager Meshal Hussain
 - Delegating tasks, client communication, scheduling
- Construction Manager Marilla Lamb
 - Construction schedule, procuring materials
- Research Manager Ashley Ullstrom
 - Delegating research, gathering documents, lab management
- Documents Editor Jo-Anne Barcellano
 - Report management, meeting minutes, compiling and editing documents
- Coordination & Communication
 - Weekly meetings with PDT members
 - Ongoing correspondence with client via email

Created a Gantt Chart

	Novemb	oer)	D	ecen	nber	2010		1	Jan	uary	2011		T.	Feb	ruary 2	011				rch 20				Apr	il 2011	
	22	29	6	13	1 2	20	27	03	10	17	24	4 3	1	07	14	21	28	07	71	4	21	28	04	11	18	25
Feasability					_						_		_													
TASK 1										-															_	
1.1 PDT Meetings																										
1.2 Coord. Meetings																										
1.3 Quality Control																										
TASK 2																					1					
2.1 Research Disinfection																_					-					
2.2 Research Alt. Energy																										
TASK 3					_		1.							1			-				1	-				
3.1 Compare Alternatives																										
3.2 Cost Estimate				-																	1					
3.3 Trtmt Decison Matrices					-	2																				
3.4 Power Decision Matrix									- (- 1		-				1.1					
Select Each Component						•																				
TASK 4												-										2	1. 5-			
4.0 Selection of Final Desig	gn					-											1.1									
Final Design												•														
TASK 5																										
5.0 Document Design																										
Design Documentation						-						•														
66% of Documentation				-								•						- 54		_			1.		-	
Implementation																										
1.0 Procurement of Materi	al		1				11-		_			0											1			
2.0 Construction														0						7						
Construction	1.						2							1				18		1			1.8			
WERC Competition																							•			
3.0 Testing and Analysis													1							1						
4.0 Documentation												_														
WERC Documentation															1					•						
Final Documentation																										

Quality Assurance & Quality Control

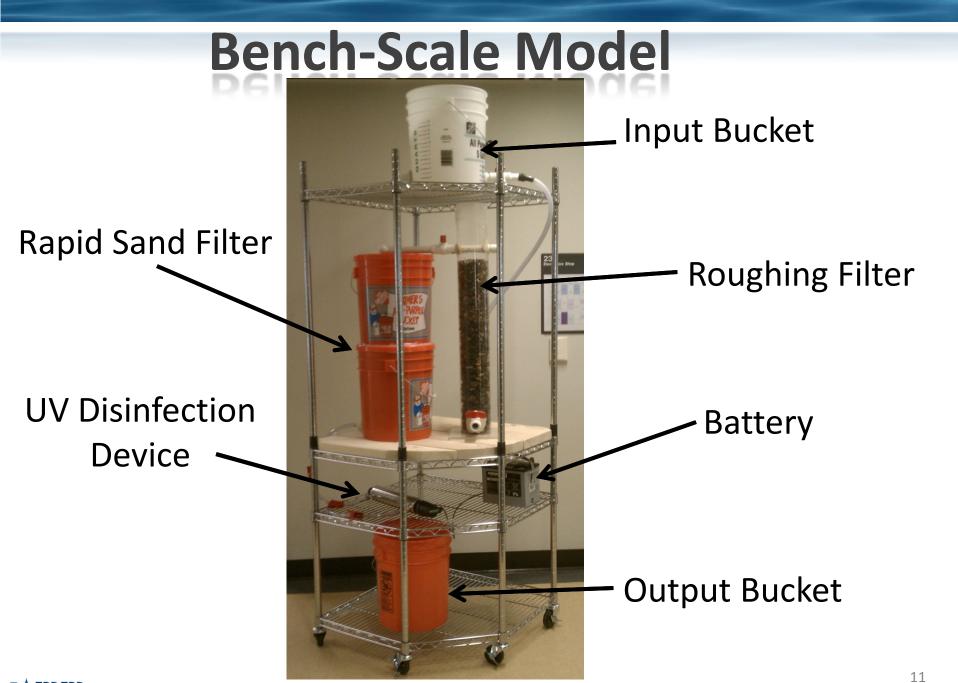
- QA/QC plan developed
 - Turbidity and bacteria tests
 - Calculations
 - Written documents
 - Schematics

Selection of Design

- Research
- Identification of potential solutions
 - Pretreatment
 - Rapid sand filters, roughing filters, sedimentation, washable sediment filters
 - Disinfection
 - Ozone generator, ceramic filter, ultraviolet disinfection, ultrafiltration
 - Renewable energy
 - Wind power, solar power, man power

Selection of Design

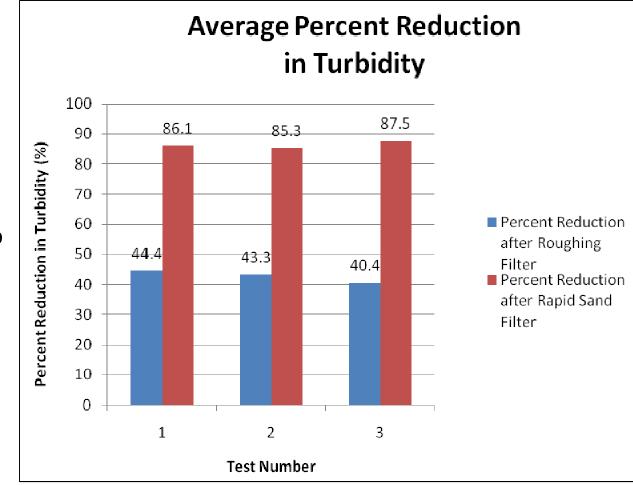
- Evaluation of potential solutions
- Results from decision matrices
- Final design
 - Pretreatment: rapid sand filter & roughing filter
 - Disinfection: ultraviolet (UV) disinfection
 - Renewable energy: solar power & human power


Potential Solutions	Score
Pretreatment	
Rapid Sand Filter	4.38
Roughing Filter	3.83
Sedimentation	4.44
Washable Sediment Filter	4.33
Disinfection	
Ozone Generator	3.39
Ceramic Filter	2.61
Ultraviolet Disinfection	3.70
Ultrafiltration	3.12
Renewable Energy	
Wind Power	3.02
Solar Power	4.16
Man Power	4.00

Design Development

- Built and tested many configurations for roughing filters and rapid sand filters until finalizing each component
- Integrated all components into a final benchscale model
 - Used for testing and analysis
 - Used sizes and flow rates to design the full scale system
 - Used for demonstration purposes at the competition

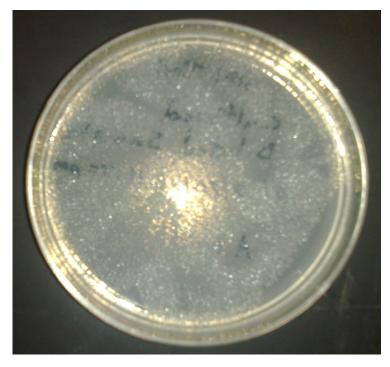
Quality Assurance & Quality Control

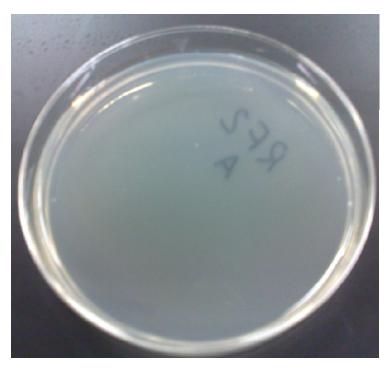

- Turbidity testing
 - Used blanks and a calibration curve to ensure validity of the data
 - Performed multiple tests
- Bacteria testing
 - Used the heterotrophic plate count method
 - Performed multiple tests and used blanks
 - Appropriate procedures were followed to ensure no contamination

Technical Evaluation

Turbidity results

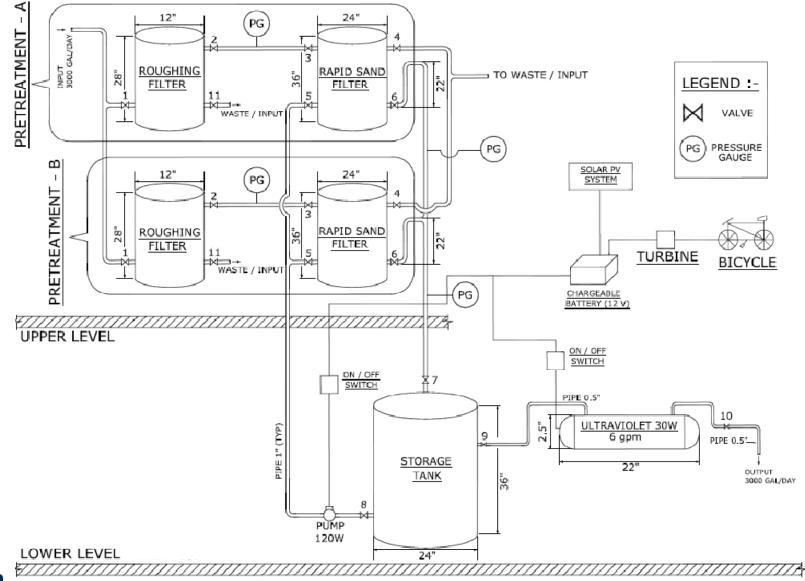
- Input water:25 NTU
- Total reduction in turbidity by more than 85%
- Output water:3.5 NTU




Technical Evaluation

Bacteria results

Total removal of bacteria


Input Water Bacteria Growth

Output Water Bacteria Growth

Description of Design

J≜mm

Operation & Maintenance

- Community members will operate the system
- Trained system operator for repairs and maintenance
 - Pretreatment
 - Clean roughing filter
 - Backwash rapid sand filter
 - Disinfection
 - Clean quartz sleeve
 - Replace UV bulb
 - Power
 - Periodic replacement of battery
- Lifetime of 6 years

Cost of Implementation

Labor costs

- Community education, field and system analysis, system implementation, construction
- Cost of materials: \$2,250

ltem	Quantity	Ur	nit Price	Sι	ub-Total
1" PVC Ball Valve	18	\$	2.00	\$	36.00
1" Pipe (20 feet)	1	\$	5.00	\$	5.00
Tank, 25" Diameter, 36" Height	3	\$	45.00	\$	135.00
Tank, 12" Diameter, 28" Height	2	\$	47.00	\$	94.00
Backwash Pump 12V	1	\$	150.00	\$	150.00
UV Disinfection Device 5 GPM	1	\$	274.00	\$	274.00
Chargeable Battery 12v 150 Amp-H	1	\$	200.00	\$	200.00
ON/OFF 12v Switches	2	\$	3.50	\$	7.00
PV Panel & Battery Charger 230W	1	\$	690.00	\$	690.00
Man Powered Bicycle 200W DC Generator	1	\$	660.00	\$	660.00
			Tatal	4.7	

Total \$2,251.00 17

Cost of Operation

Cost of operation after 6 years: \$1.41/day

• Equivalent to disinfecting 20 gallons for \$0.01

Maintenance Parts	Replacement Frequency		Unit Price		1 Year Cost		3 Year	6 Year		
							Cost		Cost	
Initial Capital Cost		\$	2,251.00							
UV Disinfection Lamp	Every 2 Years	\$	61.00		-	\$	61.00	\$	183.00	
Chargeable Battery 12v	Every 3 Years	\$	200.00		-	\$	200.00	\$	400.00	
Others	Every 1 Year	\$	45.00	\$	45.00	\$	135.00	\$	270.00	
Cost of Operation per Day					6.29	\$	2.42	\$	1.41	
Cost of Operation per Gallon					0.00210	\$(0.00081	\$(0.00047	

• System is cost effective

- Low initial cost: ~ \$4.00/person
- Low cost of operation: \$400 every 3 years
- Payout period of 7 months
- Rate of return of 196%

Recommendations for Implementation

- Implementation stages will take about 3 months
 - Education of community members
 - Site analysis
 - Development of construction plan
 - Construction
 - Testing of disinfected water
 - Training of system operator & community
 - Development of maintenance plan

Project Schedule

Initial Estimate

	Task	Ash	et to b	nne elland barcelland Mar	Ha anh Mest	ial sail a
	1.1 PDT Meetings	16	16	16	16	64
	1.2 Coordination Meetings	10	10	10	10	40
	1.3 Quality Control	7	7	7	7	28
	2.1 Research Disinfection Systems	16	-	16	16	48
.^	2.2 Research Types of Alternative Energy	-	16	-	-	16
PHAS	3.1 Comparison of Alternatives	8	8	4	4	24
žų.	3.2 Cost Estimates	-	-	4	4	8
	3.3 Pretreatment Disinfection Decision Matrix	8	4	8	4	24
	3.4 Power System Decision Matrix	-	4	-	4	8
	4.0 Selection of Final Design	10	16	16	16	58
	5.0 Documentation of Design	6	6	6	20	38
	1.0 Procurement of Materials	10	-	6	-	16
	2.0 Construction	16	16	14	16	62
PHAS	3.0 Testing and Analysis	14	14	14	4	46
\$	4.0 Documentation	12	16	12	12	52
	TOTAL HOURS	133	133	133	133	532

Project Schedule

• Final Hours = 728 hours

	Task	Ashley	Jo-Anne	Marilla	Meshal	Total
0.	1.0 Procurement of Materials	10	-	6	16	32
St	2.0 Construction	64	64	56	64	248
PHASEZ	3.0 Testing and Analysis	28	28	28	8	92
y	4.0 Documentation	12	16	12	12	52
	TOTAL HOURS	182	182	182	182	728

• 12 hours per person per week for 16 weeks

Project Schedule

	Milestone	Date
	Disinfection system and power source	12/23/2010
دير	Selection of Final Design	1/27/2011
PHASE	Documentation of Design	1/28/2011
	66% of Project Documentation	1/28/2011
	WERC Documentation	3/15/2011
et b	Construction Complete	3/15/2011
PHASE	WERC Competition	4/3/2011
	Final Documentation	4/28/2011

Project Budget

 Our total cost increased by \$9,791 due to the additional time spent on the project

		Total]	Total Final
	Est	imated Cost		Cost
Labor	\$	47,953.68	\$	57,744.78
Non-Labor	\$	1,666.46	\$	1,666.46
Total	\$	49,620.14	\$	59,411.23

 Additional hours and costs were approved by the client

Conclusion

- Disinfection System:
 - Meets all of WERC's criteria
 - Disinfects 3,000 gallons of water in 12 hours to WHO's guidelines
 - Will be very useful in rural, third-world areas
- Competition Results:
 - No results were given at the competition
- Project Completion:
 - Completed scope of work
 - Stayed on schedule
 - Communicated and worked together effectively as a team

Acknowledgements

Advisors

- Dr. Wilbert Odem
- Dr. Marti Blad
- Dr. Terry Baxter
- Additional thanks to
 - Dr. Bridget Bero
 - Dr. Monroe Weber-Shirk
 - Evan Thomas
 - Kevin Davenport
- WERC Environmental Design Competition

