Renewable Energy Research and Sustainability in Arizona

Joseph H. Simmons
Arizona Research Institute for Solar Energy
AzRISE
Electricity Generation in Arizona (2006)

- Solar = 0.01%
- But solar is the most abundant renewable

- Coal 42.1%
- Nuclear 25.4%
- Natural gas 25.6%
- Hydro 6.8%
The Arizona Research Institute for Solar Energy

- Goal is to stimulate and guide the development and deployment of solar energy in Arizona.
- Combine science, engineering, economics, policy, education, workforce training, outreach, student programs.
- Approach is to form multi-disciplinary teams of faculty, natl. labs, industry, utilities to solve strategic problems.
- Partners at ASU, NAU, CSM, UCo, NMSU, UNLV, Sandia, NREL, PNL, Argonne, NIST.
- Current programs: 30 projects, 60+ students, 15 departments, 5 colleges 15 sponsors.
Solar Energy R&D

- Electricity generation:
 - Solar trough technology
 - Heat exchange fluids
 - Thermal storage fluids (MSE)
 - Thermal storage systems (AME)
 - Solar tower technology
 - Thermodynamics (AME)
 - Heliostats
 - Heat exchange fluids (MSE)
 - Heat engines
Solar Energy R&D

- Electricity generation:
 - Photovoltaics (MSE, Chemistry, ECE, OSC)
 - Efficiency
 - Cost
 - New materials, quantum dots, porous silicon, optical resonators
 - Transparent conductors
 - Sealants and reliability
 - Multi-junction cells (MSE, OSC)
 - Triple junctions – cost and processing
 - Going to more junctions – new materials, buffer layers
 - Cost, cost, cost (Eller, MSE)
Solar Energy R&D

Electricity generation:

- Concentrators:
 - CPV – Roger Angel (Astronomy)
 - Concentrated Solar Thermal – Stirling engines
 - Concentrated Solar Thermal – Brayton Engines (Southwest Solar Technologies) (MSE)
Solar Energy R&D

- **Measurements and testing**
 - TEP Solar Test Yard (Physics, ECE)
 - Solar irradiance, effects of long term exposure on module behavior and life time expectancy (MSE, Physics, Atmospheric Sciences)
 - Weather forecasting (Atmospheric sciences)

Alexander Cronin: TEP solar test yard (45 arrays)
Renewable energy: Variation in Production – NEEDS ENERGY STORAGE

- Good days produce predictable amount of energy
- Not so good days are more or less unpredictable
- Variation in production and demand

TEP test yard data in December 2008 (blue = DC power, red = AC power)
Professor Alexander Cronin (UA)
<table>
<thead>
<tr>
<th>Duration</th>
<th>Hydrogen</th>
<th>CAES</th>
<th>Thermal</th>
<th>Hydroelec</th>
<th>Flow cell</th>
<th>batteries</th>
<th>Supercap</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mos</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 weeks</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 days</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 hours</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>2 hours</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>40 min</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10 min</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>20 sec</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 second</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Long term **Intermediate** **Fast**
AzRISE Storage Research Areas

- **Supercapacitors**: New materials, membranes (MSE, ECE)
 - Partnership with NanoTune
- **Batteries**: New electrodes, electrolytes, controls (MSE, OSC)
 - Partnership with Lux Aviation (Solar Car), Sion
- **Compressed Air Energy Storage**: (MSE, MGE, CEEM)
 - Improved efficiency, new compression methods
 - Partnership with Southwest Solar Tech., AZ utilities
- **Pumped Hydroelectric**: (CEEM, Astronomy, Biosphere)
 - Survey of potential sites in Arizona
- **Hydrogen**: New materials, storage (MSE, OSC)
 - Partnership with Sandia National Labs, EMC
- **Biomass**: (Ag and ABE)
 - Future partnership with research at UA Biofuels Institute
Solar Energy Economics & Policy

- Economics of Compressed Air Energy Storage (CAES) and PV for energy arbitrage and power plant system optimization for utility-scale applications in AZ
- Evaluation of the value of potential battery technology
- Environmental benefits of investment in solar energy technology
- Arizona and SW region solar energy and economic outlook
- Market/risk analysis, best practices
- Land use analysis
- Policy incentives
- Climate change mitigation potential
- Options for integration of solar energy and storage into the energy supply system
- City, county and municipal planning for solar energy implementation

![Graph showing economic value of efficiency improvement](image-url)
Build strategies that can strengthen Arizona’s national and global solar presence

- Economic Research Report for deploying Solar in Arizona:
 - Costs, benefits, risks and opportunities
 - Estimated levelized cost of energy by technology
 - Impacts: jobs, environmental, water use, land use, societal
 - Policy recommendations
 - State-wide implementation action plan

- Policy Recommendations:
 - Integrated resource planning
 - Land designation for solar development
 - Utility sector incentives
 - Quality jobs through renewables
 - R & D policy and incentives
 - Storage and transmission
Educational Objectives

• Public awareness:
 – Lectures and seminars, expos and demonstrations
 – Public education

• Workforce training/retraining:
 – Technical training
 – Certificates for solar cell installers, maintenance, etc.

• Degree programs:
 – Undergraduate specialties in solar, renewable energy, sustainability
 – Graduate research and advanced degrees
 – Post graduate training

• New solar cells on campus:
 – Monitoring of solar flux, cloud effect and cell output on the web
 – Partnership with Arizona utilities
Student Projects

- Solar Decathlon – Arizona Solar House
- Solar Racing Car
- Solar Concept Car