SEISMICITY AND CRUSTAL STRUCTURE OF NORTH-CENTRAL ARIZONA

by

MARC WOLFGANG SYDOW

A Thesis
Submitted in Partial Fulfillment
of the Requirements for the Degree of
Master of Science in Geology
Northern Arizona University
August 1987

Approved:

[Signatures]
ABSTRACT

SEISMICITY AND CRUSTAL STRUCTURE OF NORTH-CENTRAL ARIZONA

MARC WOLFGANG SYDOW

The seismicity of northern Arizona is concentrated in a band that extends from the northwestern corner of the state to Chino Valley in west-central Arizona. Near the Colorado River (at approximately 36°N latitude, 112°N longitude), the trend of this seismic band changes from southeasterly to south-southwesterly. This band of seismicity, termed the northern Arizona seismic belt (NASB), is bound on either side by relatively aseismic areas. Many events within this band have had Modified Mercalli Intensities greater than or equal to V, and one event of Intensity VII occurred near Flagstaff, Arizona, near the southeastern margin of the NASB. Epicenters from microseismic studies in and around the San Francisco volcanic field (SFVF) of north-central Arizona follow the same trend as that defined by the historic epicenters. The NASB may be a southern extension of the Intermountain Seismic Belt that trends from southwestern Utah to northwestern Montana.

Microseismic studies in and near the SFVF (1976-1985) have documented a lower level of seismicity than is found in the NASB to the north and south. This seismicity consists of microseismic swarms and single events. The majority of the events are relatively shallow (<6 km), and are therefore probably not directly related to a magma body that has been hypothesized to lie at depths of 9-34 km beneath San
Francisco Mountain. Much of the seismicity recorded during these surveys was located in northwest-trending fault systems.

Several crustal models used in seismic studies of northern Arizona were examined and compared. Each of these models were quite similar, but one model, with uppermost crustal P-wave velocities of 4.7 and 6.2 km/sec corresponding to layer thicknesses of 1.5 and 28.5 km respectively, did prove to be better than the others. This model was then used for hypocenter locations during this investigation.

Several tectonic elements (i.e. structural style and stress orientations) suggest that Basin and Range-type tectonics are encroaching onto the southwestern edge of the Colorado Plateau. Isochrons of magmatism show the same arcuate pattern as the NASB, suggesting that the NASB may define the neotectonic boundary between the southwestern Colorado Plateau and Basin and Range.
# Table of Contents

List of Tables .................................................. viii
List of Figures ................................................ ix

Chapter

1. Introduction .................................................. 1
   Purpose of Study ........................................... 1
   Regional Geologic Setting ................................ 2
   Colorado Plateau .......................................... 2
   Basin and Range .......................................... 9
   Fault Systems of Northern Arizona ..................... 11
   Regional Seismicity ....................................... 18
   Intermountain Seismic Belt .............................. 18
   Nevada Seismic Zone .................................... 21
   Seismicity in Arizona .................................... 21
   Northern Arizona Seismic Belt ......................... 23

2. Methods of Data Collection and Analysis .................. 26
   Incorporation of Historic Seismicity ..................... 26
   Reanalysis of Historic Seismicity in
   Northern Arizona ......................................... 27
   Previous Surveys ......................................... 27
Microearthquake Survey of the Parks,

Arizona Area (1985) ................................................. 28
Logistics ............................................................... 28
Field Methods ......................................................... 36
Error Sources ......................................................... 36
BASIC-HYPO ......................................................... 38

3. Crustal Structure of North-central Arizona ....................... 42
Warren Model (1969) ................................................. 42
Schnapp et al. Model (1976) ........................................ 42
Kruger-Knuepfer et al. Model (1985) ............................... 46
Johnson and Sbar Model (1987) .................................... 47
Experimental Model .................................................. 48
Crustal Model Used in 1985 Study .................................. 48

4. Seismicity of North-central Arizona ................................ 50
Recurrence Rates ...................................................... 50
Microearthquake Swarms ............................................. 51
Definitions .................................................................. 51
Locations .................................................................. 55
Microearthquakes ....................................................... 61
Magnitudes ............................................................... 61
Depths ................................................................. 65
Locations ............................................................... 67
Fault Trends ............................................................ 70
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Station locations for 1983 microearthquake survey</td>
<td>30</td>
</tr>
<tr>
<td>2.</td>
<td>Station locations for 1985 microearthquake survey</td>
<td>35</td>
</tr>
<tr>
<td>3.</td>
<td>Crustal velocity models used in northern Arizona</td>
<td>43</td>
</tr>
<tr>
<td>4.</td>
<td>Hypocenter locations and RMS values for 1985 microearthquakes and construction blast using crustal models in Table 3</td>
<td>44</td>
</tr>
<tr>
<td>5.</td>
<td>Data from four seismic surveys conducted in and near the San Francisco volcanic field (1976-1985)</td>
<td>52</td>
</tr>
<tr>
<td>6.</td>
<td>Comparison of magnitudes determined by the National Earthquake Information Service (NEIS) with magnitudes determined by examination of station FLAG and field station records</td>
<td>64</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>1.</td>
<td>Geologic provinces of and near the study area</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Geologic provinces of the southern Colorado Plateau</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Plateau boundary faults and plateaus of the southern Colorado Plateau in northern Arizona</td>
<td>6</td>
</tr>
<tr>
<td>4.</td>
<td>Silicic centers of the San Francisco volcanic field</td>
<td>8</td>
</tr>
<tr>
<td>5.</td>
<td>Fault systems of the San Francisco volcanic field</td>
<td>10</td>
</tr>
<tr>
<td>6.</td>
<td>Fault trends of northern Arizona</td>
<td>12</td>
</tr>
<tr>
<td>7.</td>
<td>Major faults in the Lake Mary area</td>
<td>14</td>
</tr>
<tr>
<td>8.</td>
<td>Areas with high levels of seismicity within the Intermountain Seismic Belt</td>
<td>20</td>
</tr>
<tr>
<td>9.</td>
<td>Northern Arizona seismic belt</td>
<td>24</td>
</tr>
<tr>
<td>10.</td>
<td>Temporary seismic station locations from the 1983 survey</td>
<td>29</td>
</tr>
</tbody>
</table>
11. Permanent stations operating in northern Arizona
   as of July, 1987.................................................. 33

12. Temporary seismic station locations that provided
    data for microearthquake locations during the
    1985 survey.................................................... 34

13. Example of best solution for 1985 microearthquake ......... 40

14. Recurrence interval curves for San Francisco
    volcanic field, 60 and 200 nautical mile radius
    of Flagstaff, Arizona, and the Intermountain
    Seismic Belt.................................................. 53

15. Photograph of microearthquake recorded on
    8-23-85 at station Bull Basin (BLB)....................... 54

16. Photograph of microearthquake swarm recorded
    on 8-26-1983 at station Schultz Pass (SHP).............. 57

17. Swarm locations within the Cataract Creek fault system..... 59

18. Cross-section showing relationship of southwest dipping
    Anderson Mesa fault and hypocenters and epicenters of
    10 events of the October 5-7, 1979 swarm............... 60

20. Microearthquake epicenters (1976-1985) and fault trends of northern Arizona................................ 69

21. Focal mechanism solutions and major faults of northern Arizona.............................................. 74

A complete text version is located at NAU’s Cline Library