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Preface 

Character theory provides a powerful tool for proving theorems about 
finite groups. 1n fact.. there are some important results, such as Frobenius' 
theorern. for which no proof without characters is known. (Unlil fairly 
recentlYI Bumsidets pQr{ theorem was another outstanding example of this.) 

Although" significant part of this hook deals with techniques for applying 
characte .. to "pur." group theory. an even larger part is d.voted to the 
properties Of charact6rs themselves and how lhese propertic. reflect and are 
reflected in the .trudure of the group. 

The reader will need to know sorne basic finite group theory: the Sylow 
theorem. and how to use them and some elementary properties of permuta­
tion group. and solvable and nilpotent group •. A knowledge of additional 
topics such as transfer and the Schur-Za •• enh.u. theorern would be helpful 
at II few point. but i. not ..... nti.1. The other prerequisites are Oaloi. theory 
and some familiarity with rings.. In summary, the content of a first-year 
graduate algebra course should provide sufficient preparation. 

Chapter 1 consists of ring theoretic prelirninaries. and Chapters 2-·6 and 
8 contain the basic material ofch.racter theory. Chapter 7 is concerned with 
one of the mOre important techniques for the application of characters to 
group theory. 

The ernphasis in all chapters e~cept 1.9, 10, and 15 is on characters over 
the complex nurnbers rather than On module •• nd representations over 
other fields. In Chapter 9. irreducible representation. Over arbitrary fields 
arc considered; and in Chapter 10. thi' is specialized to subfield. of Ihe 
complex numbers. Chapter 15 is an introduction (and only that) to Brauer's 
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M.(F) 
Xv 
Av 
A> 

+.1:' 
M(V) 
".,(V) 
J(A) 
CI(g) 
t. 
X' 
0(0) 
Z(~) 
lH 
det X 

Notation 

algebra of II x /I matrices over F 
linear transformation of the A-module V. induced by x € A 
{:>Ovlx E A} 
regular A-module 
internal direct sum 
sec Definition 1.12 
see Lemma 1.13 
the Jacobson radical, Problem 1.4 
eonjug-dey class of g 
symmetric group of dogree /I 

transpose of the matrix X 
the order of y 
see Definition 2.26 
restriction of X to If 
s .. Problem 2.3 
the algebra homomorphism l..{C[G]) .... C induced by X 
X-I y.1 xy. the commutator 
see Lemmo 4.4 and the discussion preceding it 
see Definition 4.20 
see Definition S.J 
induced character 
stabilizer of ~ in permutation representation 
inertia group. Definition 6.10 
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xii Nota.tion 

o(x) determinant.1 order of X. equals the order of det X in group 
of'linear characters 

O. the field Ok''''') 
0'(0).0"(0) minimal normal subgroups of p·power index and index 

prime to p 
R[.SI'] ring of R·linear combinations of //' s;; Irr(O) 
R[.9']' (.95 R[y] 19(1) z O} 
P(O • .If') lWII" III e JI")] 
g" II,'. II •• II.' see the discussion following Lemma 8,18 . 
• ~E see the discussion at beginning of Chapter 9 
F(x) the field generated over ~. by the values of X 
m,(x) the Schur index. Definition 10, I 
Z(O. A). B(O. A). 11(0, A) see the discu"ion rreceding Theorem t 1.7 
M(O} the Schur multiplier. Definition 11.12 
A lhe group of linear characters of A 
Ch(019).lrr(OI8) see the discussion preceding Definition 11.23 
cor.a(R) n l1' for g E G 
c.d,(O) {x(I)lx e Irr(O)) 
V(x) vanishing·offsubgroup, <x Ei Olx(x) ,. 0) 
d,I.(O) derived length of 0 
F(O) Fitling subgroup of G 

: \. ~ : 

biG) max(e,d,(G)) ,'. 
O,(G), 0,,(0) maximal normal subgroup of order a power of p. prime to p 
Trrs(O) the set of S·inv.rianl X e Irr(G) 
(I~G) Frattini subgroup or 0 
IBr( 0) the set or irreducible Brauer characters or 0 
dx'l' decomposition numbers j Definition 15.9 
(1). the projective character associated with", e IBr(O) 
BI(G) the scI of p.blocks or 0 
e., l. the idempolent and algebra homomorphism of Z(F[O]) 

b(:K) 
.;i' 
a.,(X') 
6(8) 
d(B) 

associated with B ~ BI(O) 
the set of defect groups for the cl ... :K 
the sum of the elements of ,r in F[G] 
coefficient or.;f in '" 
the set of derect groups for BE Bl(O) 
defect of B" ill(O) 

,.", 

. " 

\" 

'j " 
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:,,:1 Algebras, modulEll!!; and representatioIlB 
':1', i 

,. "'I" 

"fl':.'" '" .L) ,I ,r;;I' . 

: ,; .,! i I,~,';~" !,: ! ~ :,' I 

;;l!iCha~~r ,theory provid~a,means or aPl>lyiog ring theoretic techniques 
to the stud), of finite groupw. Although much of the theory can be developed 

·iii:othi.r, ways; it',se.;n,smore·natural to approach characters via rinp: (or 
more .accurately; algebrtis);;;lbe' pUrp<l&e of ,this chapter i. to providetbe 
~er ~th the rmg, tbeOri=ric P~Uilliles needed in the rest of the book. 
, ,Many of the resulll ill fhis chapter are true in more general contex." 
than those considerecl.here. ,Nevcnheless, an effort has been made to aVOid 
excess generality and/to prove only that which will be needed later, 

(1.1) DIll'INITJON·· l:el F be a flelo aod lei II be ao F·yector space which i. 
also a ring with I: Suppose ror all c e F .nd x. y ~ A. that 

«X))I a c(xy) - ,,(cy), 

Then A is an F -algebra. 

::'\Vemc~tion .~;;in~ el~ml!ies~falgebras over a field F: 

111:(0) 'M,(F) iithe aigebra:ot'. >< "matrices over the field F, 
':·;··(b) Lorv be an 'F-vectorspaCo:. Then End(V), the .. t of F·line.r trans· 

.COrmations.:ir Yo iian F.algebra under the following conyention •. If x. 
ye End( V), then xy i. defined by (v)xy _ «v)x)y and if c e F, then e" i. 
defined by (v)(e") - (ov)x: or COU"",, (v)(x + y) ~ (v)x + (v)y . 

. F"Thi. is agoodpl~~io digress briefty \0 discuss some notational con· 
Yontions whioh will be used throughout thi. boo~, In writing scalar mullipli· 
cation in a voctor 'paC<!. the scalar may be written on either side of the vector 



a Chaptet I 

to which it is applied. Similarly, functions ate written on whichever side is 
con"enient, but the rule for function compO.ition i. always" Ig means do I 
first, then g." Because of this rule, in those situations where function composi­
tion is important [as in example (b)). it will usually be convenient to write 
functions on the ril!ht, 

We now return to another examph: of an algebra, the one of primary 
impOrtance for us; the group algebra. 

(c) Let G be a finite group. Then F[G] i. the .. t of "formal" sums n: ... a,ula, e Fl. The ,tructure of an F.vector space i. given to F[G] in the 
obvious way and the element of F[G] for which a, - I and a. ~ 0 if h." 9 i. 
identified with g. This identification embed. G into F[G] and in fact G is a 
basis for F[G]. One result of this identitication is to give a new meaning for 
t a,fI· We may noW view this expression not only asa furmal8um, but also as. 
an actual surn, a linear combination of the bas.is vectors.IFinally. hJ'"dcfine 
multiplication on F[G], we multiply the basis vectors according to their 
group multiplication and extend linearly to all of F[G). It is ,outineto check 
that this defines the structU,e of an F·algebra on F[G]. 

The construction of F[G)"suggests a general m.thod:~rcon.tructing 
algebras which should be mentioned. Let A be a finite dimenSional F-algebra 
with F-basis ViI •••• VII' We have then v,vJ l1li L'CIJ.kVAli where.cj~'e- F ate the, 
multiplication constants of A with respect to the basis {v,}. It is'cl.;ar that th.;'; 
constants determine I,he algebra. so that any n.-dimensional algebra may-bO° 
specified by prescribing n 3 constants c'ji. ~ F. Of coursc, only a small su.bset 
of all possible sets of constants define an algebra since mos.t sets of consta.nts 
dl:flnc multiplications that turn out to be nonassociative. 

From now on, the word "algebra" in this book will mean a finite di"! 
mensional algebra. We make a ft:w observations and definitiOIl8 beror," going 
on to prove anything. 

L<:t A be an F-algebra. Then F· I = (e1ie. F) i. a subalgebra of A 
contained in the center Z(A) since (c1)x - «Ix) ~ «:.:1) "', x(c1) for x e,,t, 
It is-sometimes convenient to id~n.tif)' F with F . 1 and thus. to view F as a 
suhalgebra of A. If I is a Icft orright ideal of A as a ring and x e J and c e F, 
we have eX ~ (c1)x ~ x(el) e land I is ... subspace. (If we, hadllot required 
algebras to contain I, then ideal. would not automatically. be" subspace •. ) 
U I i. an ideal (this means two •• ided),thenA/J has the .~tu(C. of. "'" F.;. 
algebra in a natural manner. ,'. . ' .... '; 1. .; .... 

If A and 8 are F·.lgebras and 'P i. a rini homomorphism. from ,4. t"J\ 
with tp{l) - l, it is not necessarily .. rue that cp is an F-linear transformation, 

:'j".".' . 
(1.2) DIlflNlTlON 
satisfie. 

Let A and 8 be F·algeb,as. SuppOsc that 'P: A .... 8 
1·', 

Algebras, modules, and repr,ysentahons 

(a) 'P(XY) = 'P(x)tp(y) for all x. Y" A; 
(b) 'P(I) = I; 

(e) '" is an F.linear transformation. 

Then '-P is an algebra homomorphism or an F -homomorphism. 

3 

(1.3) OBFlNITION Let A be an F·algehra and let V be a finite dimensional 
F-vector space. Suppose ror every v E V and x E A that a unique vx E V ii\ 
defined. Assume for all x, Y" A. v, WE V, and c E F that 

(a) (v + w)x = vx + wx, 
(b) V(X + y) = vx + vy, 
(c) (vx)y = v(xy). 
(d) (cv)x = c(vx) ~ v(cx), 
(0) vi = v. 

Then V is an A-module, 

Let V be an A-module. Each x E A defines a map .xv; V _ V by v 1---* v.\:, 
By (a) and part of (d) of th. definition of a module, Xv" End(V). By (b), (c). 
(e~ ~nd pa~t of (d). the map x ...... Xv is an algebra homomorphism A ~ End(V). 
Its Image IS denoted by Av. 

So~e important example. of module. are the following. If A 0;; End(V), 
t~en V IS an A-module in a natural way" If A = M"(F~ then the row .pace of 
dimenSion n ov~r F I~ an A-module undel' matrix multiplication, If A is any 
~lgebra, then A ItsclrlS an A-module under right multiplication, This module 
I. called the reg"lar A·module and is denoted by A'. 
. If V IS an A-module an~ W, S V is an A-invariant subspace, then W is a 
sl4b~dule of V. Thus the right Ideals of A are exactly the submodules of AD, 
If W IS a sublnodule of V, then the space I1W become, an A-module in the 
usoual manner'oN01C that if I is a pl'o~cr id!:al of AI then the oqjccts A/I, 

, A /1, and (A/I) are all defined and all dlfferen~ being rc.p<ctively an algebra. 
an A.~odule: and the regular (A/I)-module. However, A'/I i, an A.module 
whIch is ~nnIhIlau~d by I (i.e., ir v ~ A"/I and .~ e II lh!:n vx 0;;: 0), and so it 
,,:,",y be viewed as an (AII)-module. As such it become. (A/Jr. 

If V and ,W ~re A-modules, a linear transformation qJ: V ---+ W is an 
, ~-homomorphlsm If 'P,(ux) .". ,CP(v)~ for all v E V and x E A. An A-isomorphism 

,:: ... 1~ an A-h~momorphlsm WhI~h IS onc~to~one and onto and, as is the usual 
'. -:: .. !I~ V and ~ ar~ A~lson:orphic, they are e"actly the same "as seen 
,. A.. For mstance, In thiS :!iltuat.JOIl they arc annihilated by exactly the same 

ofelemenlS of A. 

The set HOnlA( V, W) or A-homomorphisms from V to W has tl\estrueturc 
,an ':spaco by (c'P)(v) = <"pv) fo, c E F and (ip + 9)(v) D ip(v) + .~(v). 
addihOn. HomA(V, V) IS a nng [,emember, ip,9 is defined by (v)q>8 _ 

and In fact HomA(V. V) IS an f'-algebra. It is exat:tly the centralizer 
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4 Cboptor I 

of A,. in End(V) and is denoted E.(V). If /!. g E.(V), then V i. an /!.-modult 
and EoIV) '" A,., Later in this chapter we shall find a sufficient conditio" 
for equality here. 

(1.4) OeF1NI110N Let V be a nonzero A-module. TbCI\ V is irreducible 
if its only .ubmodules are 0 and V. 

It i. obvious that if ({! E Hom.(V, W) then kcr rp and im ({! are sub­
modules of V and Iv, rcspectively. The following important lemma is now 
immediate. 

(\.5) LEMMA (Schur) If V and II' arc irreducible A-rnOdull'$, then every 
nonzero clement of HomA(V, 11') has an itlVerse in Hom.(W, V),' ' 

An immediate consequence of Schur's lemma is that if V is an irreducible 
A~modulcl then E ... (V) is a division al{jebr(~. i.e" every nonzero element is 
invertible. ' 
(1.6) COROLLA~Y Let F be algebraically closed, A an F-algebr., and Van 
irreducible A-module. Then E.(V) ~ F· I. the set of scalar multiplications 
on V 

Proof Clearly, F· 1 S EA(V), Let .'} E E.(V). Then 8 is a Iincartrsns­
formation of a finite dimensional vector space V over F and so has an oigenr 

value A. Then 8 - .(1 e E,(V) and is not invertible. Thus 8 - 11 - 0 and 
.9: 11 eF·! as claimed. I 

To justify the study or irreducible module. we remark that for certain 
algebra" every module is a direct sum of i!'reducible ones, and thus to know 
all irreducibles is to know all modules for these algebras. It happen. that, 
group algebra. over fields of chM.cteristie zero are among these fortunate 
algebras. This will rollow from Maschkc's theorem which will be proved 
shortly. ' 

(1.7) DEFINITION Let V be an A·module, Suppose for every submodulc 
W s; V, there exists another submodule U SO V such that V - W4- U 
(the dot indicating that the sum is direct), Then V is a complerely reducible 
module. 

Observe that irreducible modules are completely reducible ••• r •• 11 
modules over fields (i.e., vector ,paces). 

(1.8) D~~JNITION An algebra A is scmislmpl. if its regular module, A' is 
completely reducible. 

(1.9) 'I'HPDREM (Maschke) Lct G be a finite group and F a field whose 
charaCleristic does not divide IGI. Then every F[G]-module is completely 
reducible. 

! 

. 
'. 

I, 

,i""" hg runs oVer G liS 9 doe'-forfixedh. 
Jf w ~ W, we'h';ve "'0 e'W f""'all 9 eG and thus rp(wg) m "'y. It follows 

that ,9(,.,) = w. Now let U ~ ker,~, an F[G},ubmodule of Ie We have 
,9(v) E W, so that ,9(a)v)) w ,9(v) and ,9(v - ,9(v)) - 9(t!) - ,9(v) ~ O. Thus 
" - ,9(v) + (v - ,9(v)) " W + U and V ~ W + U. Finally. if we 11'" U, 
we have", = ,9(11') - 0, so that V - W + U and the proof is comple'" I 

,t:-consequen"" of ~,aschk~", theorem is that F[G] is semi,impl. if 
chai(F).rIGI. The converse of thi'-statement i, also true and the reader is 
rererred to}he, problems for a proof. 

(1;10) , THBOIU!M" ut,v be an A-module. Then V is completely reducible 
iff it i, a .um of irreducible submodules. '. 

I. \ ", "," , t, ~."" .,,,. :. ;' 

,/,roo/ Suppose V .. '!: Y"where the I'; are irreducible. ut w \; :~ 
By. ~ni!e din;t,~nsionality~ choOse U 10; V maximal such that W n U ~ O. 
W~1 cbum that W + U 0;. V. Otherwise, we may cboose V. ~ W + U and 
th~ (W + Ul,l"l V. ~O by ,the irreducibility of 1';. It follow. that 
W n (U + V,) .; 0 and thisvii>lates the maximality oW. Thus V ~ W + U 
and V is completely reducible. 

Conversely,suppose V i. completely reducible and let S be the Sum of all 
of the irreducible oubmooules of V. If S < v. we may write V _ S 4- T with 
T '" O. By finite dimensionality, T contains an irreducible .ubmodule which 
is acontradiclion' since T n S - 0; I 
(1:1',1)" LEMMA '. LCUf, be 'a~' A;~odule and suppose V = L V. where the V, 
are;irreducible 8ubmollules, Then V is the direet sum of SOme of the V. 's. 

, " • , '" i" • I 

. Proof Choose w, 50' V maximal with the property that W is the direet 
8um'of some' V,'8. If W '<I'; then V. It W for SOme ~. Sin"" V, is irreducible, 
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we have W ,.., V. = 0 and W. = W oj. V. :> W. This violates the maximality 
of W and we. conclude that W ~ Vas deaired. . .: c. '.'O'. 

We sec from the previous two results that the' completely I reducible 
module. are exactly the direct sums of irreducible module •. lI follOWS that 
in order to know a\l module. for. group algebra over Ii field of c.~araeter: 
istic 0, it suffices to know all irreducible modules. .' '. l .. 

(1.12) D8FINITION Let V be a completely reducible A.-module and let M 
be an irreducible A-module. The M-IwIMfl'/UlOW part of V. deno\ed M(V). 

. is the sum of all those submodules orv which are isomorphic to M. 

. 'Observe that if M ;; N. then M(I') ~ N(V)"A.wiil'~8k~wn shortly, if 
AI and Narc nonisomorphic irreducible A"modules, then M( V) f"'l N(V) !Ill ~::' " 

If V has no submodules i,omorphic to M. then M(V) & 0. 

(1.13) LEMMA Let V ~ :1:> w. be a direct sum of A-modules with W. 
irreducible for al,ll. Let M he any irreducible A-module. Then .. 

(a) M( V) is anE .. ( V)-submodule of V; 
(b) M(V) ~ 'E {W.I W. ill' Ml; . . ., .. 
(c) The number ",,(V) of W. which are .somorph.c to M ,s an IOvattant 

of V. independent of the given direct sum decomposition. 

Proof (a) Let 9 e EA( V). We need to shQwM,(1:')9 ;;;.ty~'?: It, su~ces 
to show that if W iii V and W ~ M, then W9" M(1(j. ThIs IS suffic.e~t 
because M(V) is the sum of such W. If wa - 0, tbertis 'liinhing to prove: if 
W9 ,. 0, then since W9 is. homomorphic image ofthe irredu<:ible module w., 
we have W.9 ;l! W O! M. Thu. W8 iii M(V). 'r";,' " .. '. ,,' 

(b) Clearly. 'E (W.I w. ~ M) iii M( V). Let n, be the projection map of V 
onto w.. Now let WS;; V. W", M. It njW) '" O. then n)W) ~ tfj and 
W O! tfj. TIluujW) iii E{W.IWi;;t M} forallj. However~ W 50 LJ"t»:> 
and hence W iii 'E {W.I w. !If M}. It follows that M(V) SO 'E (W.I W. O! M}." 

(c) By (b), we have dim M(V) ~ n,,(V) dim M and it is immediate th~~ 
n,,( V) is an invariant. • 

By part (b) of Lcmffia 1.13 it follows that a completely r~~cibl. module i. 
the direct .um of it, M-homogencou, components for dlShnet M. In par-. 
tieular. M(V) n N(V) = 0 if M ;Ii N. . , 

We wish to discuss "all irreducibt. A-modul •• :· ·This poSCII some 
difficultie.: First, we really mean ".U isomorphism ~Ia.se. of irreducibl~, 
A-module,."1t would he convenient to have a represent~t!ve set of A-modul~s. 
By this we mean a set A(A) of irreducible A-modules-WIth the property that 
eyery irreduciblc A-module i. isomorphic.to exactly ""c;clemcllt of A(A). 
Since modu~ are external to. the algebra, it is not clear MINon. can find .• · 

Algebru, modules, and representalioIU 7 

representative set for a given algebra A. To do this we need to prOduce a 
sct of A-modules large enough to contain copies or a\l irreducible •. The next 
lemma' shows that the set or homomorphic images of A' sulllees. 

(1.14) LnMMA Let A be an F-.Igebra. Then every irreducible A-module is 
isom.orphic to a factor module of AO, If A is 8ernhdmpic, then every irreducible 
A-module is isomorphic to a submodule of A'. 

Proof Let V be an irreducible A-module. choose 0 ;0 ve V. and definc 
9:A ... V by .9(x) = vx. Then 9 is clearly F-linear and ,9(xy) = vxy = 9(x)y 
so that 9 e Hom.(A'. V). Now, v e llll .9 .. V and hence im 8 = V since V 
isjrreducible. Let W ~ ker .9. Then V::: A"/W. If A i. semisimple. then 
A~ - W oj. U and A'/W ~ U. The proof is complete. I 

Now fix a represent.tive set A(A) of irreducible A-modules. By part (b) 
of Lemma 1.13, we have V = 'E' "''''<A)M(V) for eVery completely re­
ducible A-module V. Suppose A is a semisimple algcbra. We can then 
apply the above to A" and write A' = 'E' M(A'). It turns out that M(A') is 
actually a two-sided ideal of A. For n",ational cOllvenience, we write M(A) 
for M(A') in what follows. 

(US) TIlEOREM (Wedderburn) Let A be a semi.imple algebra and let 
M be an irreducible A-module. Then 

(a) M(A) is a minimal ideal of A; 
(b) if W is irreducible, then it i. annihilated by M(A) unless W ~ M. 
(c) the map X .... :eN i. ooe"to-ono from M(A) onto AM" End(M); 
(d) A(A) i. a finite set. 

Proof If X "A, the map S.; y,... xy .. ti.fies 9x e EA(AO). Therefore, by 
Lemma 1.13(a), xM(A) ~ M(A)9x so M(A) and M(A) is a left ideal. SinCe 
M(A) is a ,ubmodule of A', it follows that it is an ideal of A. Mininiality will 
follow after (c) is proved. 

If W is an irreducible A-module with W )t M, thell W(A) ,.., M(A) ~ 0 by 
Lemma 1.13(b). Since W(A) and M(A) arc ideals. we have W(A)M(A) = O. 
By Lemma 1.14, A' has •• ubmodule W. ~ Wand W. ;; W(A), sO that 
M(A) annihilates Wo. Since W !If W., they hay. the same annihilator in A 
and (b) foUows. 

By (h). it follows that Xw ~ 0 if x e M(A) and M ;t w. It now follow. from 
the direct S\lm decomposition A ';;:::; l:" MI'«t"I)M(A) that for y e A~ we have 
YM ~ x ... where x is the component of yin M(A). We conclude that the map 
x .... :c" maps M(A) onto A". If.< e M(A) and .'" = 0, then it follows from (b) 
that x annihilate. every irreducible, and hence every completely reducible 
A-module. Thus x = Ix e A'x ~ 0 and (c) is proved. 

,. 
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To show the minim.lity of M(A), let I <: M(A) be an ideal of A. Now 
M(A) is a sum of ;ubmodule. isomorphic to M and thus there exists Mo !;; 

M(A), M. ~ M, M. 'ti I. As M. (\ 1<: M. and Mo;;;' M is irreducible, we 
have Mo " I m O. Thus M.I 5;; M. " I ~ 0 and I annihilates Mo and hence 
also M. Therefore, if x e I, we have Xu ;;; O. However, X' t-Io- Xu is one~to .. one 
for x e M(A) and thus x = O. We conclude that I = 0 and the minimality of 
M(A) is proved. 

Finally, M(A) '" 0 for every M by Lemma 1.14, and yet 
A = ~'/./' .. N",M(A) is finite dimensional. It follows that 1.4I'(A) I is finite 
and the proof is complete. I 

Observe that each M(A) is actually an algebra, its unit element being the 
component of I in M(A) under the decomposition A = L' M(A). Since the 
map x >-> x" is an algebra homomorphism from A to AM' it follows from (e) 
of the theorem th.t the restriction of this map to M(A) is an algebra iso-
morphism from M(A) onto AM' . 

Since M,(A)M,(A) 0 for MI ~ M" it follows that every ideal of the 
algebra M(A) is in fact an ideal of A. We conclude from the minim.lity or 
M(A) as an ideal of A, that M(A) i •• simple algebra, i.e .. it h.s no nontrivial 
proper ideals. Thus the preceding theorem •• serts (among other things) 
that a semisimple algebra is a direct sum of simple algebras. This is a IKIm.· 
what more usual statement of Wedderburn', theorem. (It is also true .that 
every simple algebra is semisimple. This follows from Problem !.S.) 

To review the 'ituation now; group algebras over fields Qf characteristic 
zero are semisimplc; scmisimple algebras arc direct sumS of ideals M(A) 
and M(A) is naturally isomorphic to AM' What remains is to study the simple 
algebras AM' This i, the purpose of the "double centralizer" theorem which 
follows. The proof we give here is based on an idea of M. Rieffel. . 

It should be remarked that the bypothesi, that A i, semi'imple is act~ally 
superfluous since the theorem is really about A" which is automatically 
semisimple when M is completely reducible, See Problem 1.6. 

(1.16) THllORCM (Double Centralizer) Let A be asemisimple algebra ilDd 
leI M be an irreducible A-module. Let D m EA(M). Then E.,(M) ~ AM' ' ., , 

Proof It is no loss 10 replace M by an isomorphic module, and"; b; 
Lemma 1.14, we may assume that M s;; A". Let I - M(A) sO that M. fli l . . , 

It is clear that A" .. E,,(M) so we prove tbe reverse inclusion .. Let 
,9 ~ E.,(M) so that (m.),9 a (m,9)a for. e D. If m e M,,~efine~,.: M~,A bYi 

(x)a~ - mx. Sincem E M iu right ideal of A, we havo","",e M and.«".:' M..:o M. 
If a ~ A and )( ~ M, we have (xa)a~ G m(xa) ~ (mila ~ (x~~)a. It' follows 
that ~~ e EA(M) ~ D. Thu. for m, n ~ M, we have 

(0) 
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Now fix n e ,M with. n " 0 and let. be Ih. unit clement of I, We have 
AnA s; I and by the minimalilY of the ideal I, we have. E I = AnA and 
e - L a,.b, for suitable a" b, '" A. If me M, we have 

; m _m •• ,m La,lIb, = L(ma/)(nb,). 

SinCe tha, e M and lib,·"" M; Equation (0) yields for an m e M that 
'" • ., , I ' 

mil - L «ma,)(nb,»).9 .. r (ma,)((nb,)Il) 5 m r a~("b,)9), 
q,'.', :,,:, ,',.1 . ,"'" •• i', .h'(,I,<,.", , 

Thus:!) - "101 SlAw where u .. lJ.tI~('M9), The proof is complete, I : 
(l :17)' COI\OLLARY Let· A bt , .. iitmisimPi. algebra over an algebraically 
closed field F and let M be an ,in'educible A-module. Then 

. (a) A,,'; End(M): 
(b) dim(AAI) s dim(M(A) - dim(M)': 

.: ,(c) n.,(A') ~ dim(M).: . 

F~rthenno;."if .:.r(A) isal1i\preSentative set of irreducible A.modules, then 
, ~ ,:', I, ',' " , . ", , 

I (d) dim(A) ... t.r .... {.,dim(M)2, 
!(e) . dim(Z(A» .. I.I(A)I. 

:,' PrOOf;. Bytoro!laryl(~ E~(¥) ~ F. I for irreducible M and thus A" ~ 
I,. ,(M),~ iEnd(¥): ~.Y, •• le~~~li#lralgebra, End(M) ~ M,tF), theplge­
b~~ofd x d~~~~;."':liere~:ifdirl'1M.ThusdimA" ~ dim(l!nd(M)) w d2

• 

~Ince M(A);i .~.t; ~e .Mve (b~ Now M(A) is the direct sum of n.,(A') 
II!'morphie. ,~op'l~.~r ~" thlU!: ~~,.,i.~im M(A) :- ."M(A'). dim M M dn.,(A-), 
and (e) follow~ •. ~mce A,~ ,r· " ..... {~;M(A), (d) IS Immediate from (b). 
•.. Finally, .I~\.~:"::" Z(¥,(~JF:N~WZ(A") ;. AM." E.(M) - A~ i"l F' I 
:uF ... !: Thlls, d~,,z" ~ .. dlm(~.(A.v» ~ L Clearly, r· M'''''~'' SO; Z(A) 
and dtin(!: Z") ~I.I(A)I. HowcYV, if. e Z(A), write % - L aM, a" E M(A~ 
If U E M(A~ then .. ua" M u: - %u - a"u since the distinct M(A)'s annihilate 
~';h: othcr. Thus a~ Ii! Z~ and!: Z" - Z(A). The proof i. complete. I 

. :'!, , ~ ... 

, ",", ".": ,'"" \. , 

'.,'i Although t~e"word ·repr.~tations" constitut .. one third of the title 
or Ibi. cMpter; !II) flU' ·pothing has been said about them. In fact, that isn't 
really I!",e, bCIca ..... as we shall. see, rcpmentations are JUSt a different way 

.. ofloolClIl8 at modul.... j,i,';1' , "i "i' 

; (UB) l)1!I'INI'I'ION' Let·· .... ·'b'eii.n F;.tFbra. A repres,nlarion of A is an 
algebra, .homOl1lorPhiaiJf :X: 'A,..o M ,(1"). The integer n is the degree of .I. 
Two I1i\p_tations .I, ,'fl of.~ " are slmll"" if there exists. nonsingular 
".x n II'Ultm P, such that X(a) - P- 'tJ(a)P for all a e A. 
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: . Clearly; similarity is an equivalence relation amoDgrepresc:ntations. Al~o, 
if.t) is a representation of degree: nand P is. any nonsingu~ n x n matrIx, 
then the formulaI(a) ~ p-l'!J(a)P defines a new representallon I. 

It i. easy to build modules from representations and representations from 
modules. If I is a representation of degree n of the F -algebra A, let V be the 
n-dimensional rOW vector space over F . .If ve Vand X is any n X " matrix 
over F. then vX E V. Define va 5 vIta) for a E A. It is routine to check that 
this lives the structure of an A-module to V. 

COn .... r .. ly, if M is an A-module, choo .. an F-basi. for M and let I(a) 
be the matrix of a" with respect to thi. basi •. It i. now easy.to cbeck that I 
is a representation. Note that a different choice Qfbasis might giv~ a different,. 
representation (and usually does). . ' 

Starting with a representation I, constructing the module'!' as above, 
and then choosing the appropriate basis for V and const1"uctIng the cor­
responding representation will result in the original repr,csentation·X. 

Suppo" V and W are A-modules and .9" Hom.(V, W). How does this 
situation look from the representation point of view? Choose bases tv and tw 
for V and W. Sincc .9 is a linear transformation from V to W, it has a matrix 
P with respect to the given bases. Note that P is m x. n where m ... dim V 
and " ~ dim W. Now, the fact that (!la)9 - (v.9)o for all v e.v and a e A 
yields I(a)1' _ P'!J(a), where 1 and '!J arc th." represen~tion' giv:n by V 
and W with respect to the basestyand two If .9",~~odulelsomorph .. m, the~ 
P i. nonsingular and the ahove matrix equation yields that I. and '!J ~re, 
similar representations. In particular, the different represc:ntatlons arl$1l1:8 
from a given module with different choices of baSis art ~ll s~.mila.r. , ~,~;;,:; 

The above reasoning may be reversed to show that If th~ rep,:,,"ptaU9,!" 
arising frOm V and W with respect to ba ... tv and tw ar~ .im~lar. then V 
and Wan: in fact isomorphic modules. It follows that there I:S a natural 
onc~to-onl; corrcspondcnce between isomorphism classes of A-moq.u.lcs ~?d 
s;milarity classes of repn:sentations of A. '. "" 

If V is an A-module and W < V is a proper nomero subm,~!,l~, ~h~ .... 
basis (,W for Wand extend this to tv. a basis for V. Numberty so t~t the last 
m v«.'tors are &'w t where m = dim W. Let I be the representation o~ ,A 
corresponding to V with respect to the basis 6 y• and let ~ be th., r~presenta­
tion corresponding to W with respect to the basiS dB'.lt, ~s t~~,~~J~~r..~~ ~ ir~r 
a E A that ,I(a) has the f<,rm ,.";,,. 

I(a) _ (3<
o
a) U(a)\ "('~I\~ I 

.'D(~)r 
Furthermore 3 is a repre .. ntation correopondingto VIW. Note tllat U i.·a 
function fro"; A into (n - m) " m matri ... (where'. - dim V\ but U i,..,/ 
a representation_ '\ :;),;":;:!,,~".~~,J I'~ . 
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'The representation :£ is said to he in reduced form and onl: similar to X 
isredlldble. Thus the irreducible.representations correspond to the irreducible 
modules. 

If there exists a submodule U 5; V in the above situation, with V = 
W + U, then the basis for W may be extended to V by adjoining to it a 
basis for U. When this is done, the result is that Uta) ~ 0 for all a • A. It 
follows from this discussion that if.{ is any representation corresponding to 
a completely reducible module. then.1O is similar to a representation in block 
diagonal form, where each of the blocks is an irreducible representation. 

Prohlems 

(1.1) Let V be an A-module. Show that V is completely reducible iff the 
intersection of all of the maximal submodules of V is lrivia.L 

Hin.t To prove II if," embed V into a sum of irreducible modules_ Recall 
that our definition of"module l

' re:quires finite dimensionality, 

Note This problem is "dual" to Theorom 1.10 which implies that V 
is completely reducible iff it is the sum of its minimal submodules. Theorem 
1.10 is true much more generally than we have proved it. It holds for arbitral'Y 
modules over rings, Problem 1.11 however. is not valid in this gr~ater gener­
ality. A counterexample is the regular module of the ring of integer:;:1... 

(1.2) Let 1 and'll be representations of an F-alsebra. A_ A nonzero matrix 
Pi. said to intertwine land'll if PI(a) ~ 'I)(ll)P for all a • A. Assume 1 and 
'D are irreducible. 

(a) UP intertwines X and 'VI show lhat P is square and nonsingular. 
(b) Assume that F i. algebraically closed and that P and Q both inter­

twine 1 and '!J- Show that Q - )'P for some ;, ~ F. 

(1.3) Show thal an algebra A is semisimple in' every A-module is completely 
reducible. 

(1.4) Let A be an algebra. For A-module V. let ",,(V) ~ (a E A I Va ~ 0). 
Let J(A) ... nM""«{AI~Qf(M), where A(A) is a representative set of irreducible 
A-modules. Show 

(a) ",,(V) is an ideal of A for all V. 
(b) V J(A) < V for every nonzero A-module V. 
(0) J(A)' - 0 for some integer n. 
(d) If I i •• right ideal of A and I" m 0 for some m, then J 0;; J(A). 

Note The ideal J(A) is called the Jacohson radical of A; ""(V) is the 
annihilator of V and a right ideal J with r ;;:: 0 is said to be nilpotem. 
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(1.5) Prove that the following are equivalent for the algebra A. 

(a) J(A) ~ O. 
(b) A has no nonzero nilpotent right ideal .. 
(c) A has no nonzero nilpotent ideal,. 
(d) A is semi,imple. 

Chapter 1 

Hint If V is irreducible, then "'(V) is an intersection of maximal rig\lt 
ideals. of A. 

(1.6) Let A be an algebra and Va completel¥ <educible A.modul •. .sh"w that 
the' a1gebt:a Av is semisirnple, 

Note A consequence of Problem 1.6 is thot th .. h\ypothesi., that Ai i. 
semi.imple in the Double CentralizerTheOrcm 1:.II6, ..... y ""'<lroPJ""lI.inoelhi~ 
th""rem is really aboll! AM for an irreducible modu.)l:· Ml .. 

(1.7) Let A be an algebra and V an irreducible A-module. Show that 
1..H(Avli s I. 

(1.8) Let G be a group, H .:: G a subgroup and F a field with characteristic 
prime to IG: HI· Let V be an F[G}module with submodule W. Suppose that 
there .. ists Uo <; V. an F[H}submodule such that )Y' ~ W + Uo. Shoo. 
that there exists an F[G]-submodule U <; V witb· I>' ~ W + U. 

Note This generalization of Maschke's Thoorem. t.9 i. due I". Do. G. 
Higman. 

(1.9) Let G be a group and F a field of ch""""",i.,ic· p, Suppo,e pll'''1 and, 
,how that F[G] i. not semi.imple. 

Hint (L.o9)' ~ O. 

(1.10) Let M be an A-modulc. Show that M is completely rc<lllcibic iff 
MJ(A) ~ o. 

:" I'; Hint A/J(A) is semisimple. 
,.' , i! .,,! ~'I' ,;" ; 

I'I! 

2 Grou.p representations and characters 

'it 0·: 

,~ , ' \, 

';'. 

j:"'.7: • ! ' !';!,' 

.: Let G.be. finite.group and let F be a field. Suppooc X i. a representation 
or F[G] with degree" •. Since X i. an algehra homomorphism,X(I) '" l,tbe 
identity malrixdVfolloWll·Cot 9 <i'IG.tbat l(g»)' nonsingu"'r and l(g)"'­
llt-:l).lf w<.(attict tbe,fun<lion. l, to G .. F[G], we obtain a group homO' 
motpbiomTrom G d1l0 tbe /10_," Iinom' /lroup ..oLIn, F), that is, t~e multipJi.­
cative group oC non,ingular n >.< "matrices over F. 

(2:1) OI!FINlTtON Lei F be'; ficld and G. group. Then an F-rep"sentallon 
or G i. a homomorphism .1; G ... GL(n, F) for sOme intcgcr •. 

"'Wc have ... n Ib.t are-preSenlillion or F[G] detennin .. an F-re-p.....nt •• 
tion'oC G by reatrlction; Conv ..... ly, an F'''pl'eoentation Xo of G determi .... a 
ttpt .... nt.tion:f;"r.F[G] by ·Ii';';;';'eiiiiiliion. That is, . 
I;',.,~",;",i" ~I' .... ,~,~,(:j )i1. ; -I::, '.i,'il~rJ ;i:~\tf..I 1.,';:·\ l:" . \.\ .. ' 

""II:I~~,~' .', I;n, ;~.!tt:fJ\('I;'I;.'h .!~,a,.g), "'L.d;7.JJJ).. '" 
~:'.1·· ~1,,:' ',I' :·<~"·I·, .• l .,,~,.; ':"~I ... ',0":1:':'<0'" "~'\o'''1 ! .. , ',':' ,:" 

W"iihall uluatly'u" the lime. syPllioJ:to 'dmole botb an F-re-preoontaUOD 
oro and tbe·oorTe.lponding.re-presentation of F[G]. Also, the adj..:tl~ 
"similar" and."irreducible". will be,applied .to F-r.p .... ntations of G as if 
they .wcrc thi 'cofrcsPOnding re-p..o.,.tations of F[G). Some caution i • 
..-...ry hor. siDcc ifF SO £,a ..... aa: field, and I is an F-reprcscntation of G, 
tben.1 is automatically an E-representation. It is entirely possible, however. 
that .1 i. irreducible as an F:re-p .... ntation; and yct is reducible as an 
·E·represcntation. We will explore this situ.tion in somc depth in Chaptcr 9 . 

• "_ I One rurther triviality which should be mentioned now 1s the rollowing. 
If N <l G and I is an F-represcntation of G with N >;; ker .1, thcn there is. 
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unique P"representation I of GIN defined by liNg) = :1:(0). This larmul. can 
also be used to define the representation l il I is given. Note that i£ is 
irreducible iff! is. We shall olten lail to distinguish between I and :t. 

The trouble with representations is that they contain too much informa­
tion. If l i. an F -representation of G of degree II. then for each element 01 G 
we have II' ent";e. in l(g). Some of this data is clearly redundant because it 
distinguishes between similar representations. The idea behind character 
theory is to throwaway most of the information and to ~veJust ~nough t? be 
useful. Thi. is done by calculating the traoes (that is. the sums of the'diagonal 
entries) olthe matrices in question. Recall that if A and 8 are any two n )( n 
matrioes over a field. then tr(AB) s triBAl. 

(2,2) oaJ'INI'I'ION Let I be an F-reprc,entation of G. Then the P-e/,aracter 
X of a qfforded by X is the function given by X(g) - tr X(g), 

As is the case wilh F-representations 01 G. we may view F-characlers as 
lunctions on all of F[G). Notelhat if the characteristic char(F) .. 0, then th. 
constant funclion 0 is an F-eharacter. On the olher hand, if chariF) ~ 0, 
lhen 0 is definitely nol an F-character because x(1) ~ deg I, where I is an 
F-represenlalion 01 G which alfords X. In lhis case, We say lhal X(I) is lh. 
deyreeofx· "'. ...' .... 

Most P·characlers of a group G are not homomorphisms of any kind. 
However, if Jl is a homomorphism from G into the multiplicative group of F, 
then I(g) m ().(o») is an F-representation of G of des",e l' which alfords.l. 
as its character, Characters of degree I are called linear character". In 
particular, the functi.on 1(:; with constant value 1 on G is a linear F.charactc,r~ 
It is calle<! the principal F ,charactor. 

(2.3) LEMMA (a) Similar F-roprcscnlaliollll of a .fford equal characters. 
(b) Characters arc conSlanl on lh. conjugacy cl • ...,. of. group, 

Proo/ If Pis nonsingularlhen triP" I A. P) .. tr(P, p" J A) ~ triA). Both 
(a) and (b) lollow Irom this observation. To see (b), observe that :£(h-Igh)­
I(W I X(glI(h) if X i. a representation of a'land, he,~,c~U~I.(h-lgh»,~ 
tr(X(o». I ",,,,,'!,,,, ",.' ",'; ',; 

"'~I '"' \, Ii: I' ': ' ., 0; 1 ' , , ' ' '" ! " • 

We make one further general observation, If;l,and '~t'~rc F-representlff . ra h ' :.,1"".(l1""1",,,'"1':'1:""! ,'.. , .• '" 
11on50 ,t cn , ,,' ,<;:~.:~ ,")~" I, ,'" 

, [l(o); '0' ] " 
3(0) - 0 '!ltD) . . 

, :.:" ! 

"I. 

i. al.o on F-roprosc:nUllion. Sine<: tt 3(0) ;. tt "'(0) + tr '0(0). it follows that 
the sc:t of F -<;haracter. of G i. dosed undeJ'ilddition. 
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We now restrict our attention to the speCial case that the field F = C, 
the complex numbers. We emphasize. however, Ihat the subflcld consisting 
of tho algebraic c1emenlS in C would work .xlIclly as well. and in fact wilh 
only minor modifiClllions. mosl of what follows works for any ltlgcbraically 
closed field of ch"'aCloristie not dividing 1 G I. 

Let us establish ~(,:'Irne notation. Fix a flnitt: group G rmd choose l:t repre­
sentalive set. 01 irreducible C[GJ.modules •• H(C[G]) = (M , ..... Md. 
Choose a basIS In each M, and lei .~, be lhe reSUlting represenlation of 
CCG). Let X, be the character afforded by :<,. It follows lhat the Set Irl'(G) = 
iXI' , ••• X.) i. the sel of all irreducible C-eharaCI." of a (that is, eharact.rs 
alforde<! by irreducible representations). Henceforth. Ihe word "character" 
will mean C·character unless otherwise .lated. 

Since 'ums 01 characters arc chartlClefS. it follow. that X = D-I II,X, i. a 
chara.cter whenever the IIJ are nonnegative integers which ;,uc not all Zero, 
Conversely. il X is any character of G afrorded by a represenlation X Cor­
respondingtoamodule V. we can decompo.e V inlo a directsl,m ofi"'educiblc 
modules. It follows that X is the Sum of the corresponding irreducible 
characters. We have. in facl. X ~ L nM,( V)X,. 

. Corollary I. I 7(d) asserts thaI dim(C[G)) ~ D.,(dim M,l'. Since 
d,m C[G] 101 and dim M, ~ deg 3', ~ xli), we obtain the fundamcntal 
formula 

• 
101 LX,(I)'. ,., 

It seems nalural at this point to ask how we can determine the inleger k 
purely group theoretically. wilhout looking at represcnt.tions. By Corollary 
1.17(e). we have k ~ 1"AI(C[a])1 ~ dim Z(C[G]l. 

(2.4) THIlOREM Let % J • .If', .... '. %, be the conjugacy classes of. group 
O. Let K, - L . .-, " e C[O]. Then lhe 1(, lorm a basis for Z(C[OJ) and if 
!"K j ~ La'J,K .. then the multiplication constants al). are nonnegatiVe 
toteS·n. 

'. Proof It is clear thaI Ihe K., lie in Z(C[G]). Moreover, they are linearly 
Independent ~calJse they ~rc sums of dlsJoinl sets of clement.s. If z c 

L a,g E Z(C[G]) Jilld hE G. we have z ~ ,,-Izh ~ L a,l/. Comparing the 
coefficients of (III on both sidos, we obtain ",,, !!:II art, In other words, the 
coefficients ", have the const"nl value '" for all @"%,. It follows that z ~ 
:t (I,K,and thus lhe K, span Z(C[G]). 

To fi~~ al) .. pick g. e %.: Th~n 0,» is Ihc coefficient of yin K,K j • I'rom 
Ih. definlllOn of lnuillphcal10n ,n a group algebra, lhis is 1 «x, y)lx E %" 
Y E %j. xy = g) I, Since al). is Ih. cardinality of a sel, it is a nonnegative 
integer: I 

II 
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(2.5) COROLLARY The number k of similarity classes of irreducible repre­
sentations of a is cQualto the number of conjugacy cia .. "" of O. 

(2.6) COROLLARY The group a is abelian iff every irreducible character 
is Jinear. ' 

Proof Let k be the number of "lasses of O. Then k - I G I iff G is abelian. 
Now 101 ~ D., x.(I)' and x.(I);: I for all i. It follow. that k ~ IOI·iff 
x,(1) = I for all i. The proof is complete. I 

W. have not yet proved that the x, are distinct. To see this. we introduce 
a little morc notation. From the results of Chapter I we have the direct sum 

, 
qO] = L ·M.(C[G]). ,., 

Let 1 = L" with 0, E M,(C[G]). Since M jC[G]) annihilates the module 
M, if i # j, we have X,(eJ) = 0 in this case. It follows that l,(e,) - Xm .. 1. 
Therefore, xle}) ~ 0 iU "j and x,(e,) = x,(l) .,. 0 and we conclude thatthe.x, 
are distinct as functions on C[O). Thu. the X, are also distinct as functions 
~~ .. ' 

We may now restate two of the earlier results in a slightly morc convenient 
form. 

(2.7) COROLLARY Let 0 be a group. Then I Irt(O) I eQuals the number of 
conjugacy classes of 0 and 

I: x(l)' 101. 
;''' 111'(0) 

For cert.in very small groups. the information contained in Corollary 2.7 
i. sullieient to determine the irreducible character degrees. For instance. if 
G ~ 1:,. the .ymmetric group on three symbols, then G has e~actly three 
conjugacy classes and I GI ~ 6. It follows that the X~I) arc 1.1, and 2. 

Actually. the preceding argument with the .is yields more than the fact 
that the X,'s are di'tinct. A cla •• fimctio" on a group G is a fUllction. '1': G- C 
which is constant on conjugacy clas.es. All characters are class function •• 

(2.8) THEOREM Every class fUllction 'I' of 0 can be uniquely e~pressed in 
thc form 

'P ~ L -,X, 
l( ollff(G) 

Wh(;:Tt; ilx ~ C. Furthermore. (p is a charactc;r jff.all or the u;( are nonnc:,gativ~ 
integers and I{I .;, O. 

/ 

It 

hoof'Tbe lle\of class functions of G forms a 1Ieetor space over C whose 
. dimension isthe number ofcla_ ofG. We claim Ihat Irt(O) in basis ror lhill 
'!)?Ace. Since 'IIrt(O)1 ,.; bio 'nomber of .18-, itlUfII<:es to show that ll' 
.2;: a,x, .. G.'lhen eaM Ii, .. ,0. Thil i. immediate by evaluation ale,. 

The ."c')Dd .tatement h •• already been proved. I 
.:::·If X .. n~,~;x, 'is ~ charaeiti', then thoilt x, with ", > 0 are ca1lcd the 
irreducible COMlit.tnt. or x. In general, if '" is a character such that X - '" 
i8 alllO a characler or ill :zero. then '" i. called a con.<tlt.,nt of X. An important 
conSeQuence'ofTheorem 2.8 is the following. 

.' 
(2.9) COROLLAll:Y Let X and" be C.rep ...... ntation. of a group O. Then 

: E'and 'II are olmilar iff they all'ord eQual characters. 
I ,ll' , , , . 

'. Proof ~~"alr~dyknow that similar representation, afford eQual 
characters. . . . ..' 

Let V and W be teG]-modules corresponding to I and'll respectively. 
Then :Ii affords the character L n",(V)x, and 'II afford~ L n",(I:I')x" If th_ 
characters are. eQual, it follows that "",(V) a II",(W) for all i. Therefore. 
y'andWarii' i~omorPhic:tojdentiCaI direct sums of irreducible C[G} 
m«tules and thus are isomorphic and I and ~) are similar as reQuired. I 

·,'\','1 

, In this table, the classes are denoted by writing a representative: element 
g'in its cyclic notation. (The reader i. reminded th.t in a symmetriC group, 
two elements areconjupte ill' they h.ve the same cycle structure.) The sizes 
of the centralizer C(g) and Qr the corresponding conjugacy class CJ(g) are 
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given for convenience. although they are not, properly speaking, a part of 
the table. Further character tables are given in the Appendix (page 287)., 
It i. rather difficult to describe the process by which these ,tables .. e con< 
suuctcd. USW:l.lly~ various combinations of ad hoc arguments. and general, 
theorems are necessary_ As the student learns some of these theorems, he j;" , 
urged to try to construct some character tables on his own. The important 
point is that it is very much easier to construct a character table than it is to 
construct representations. 

Theorem 2.8 tells us that every class function is a linear' combination of 
irreducible characters. For example, if G ~ 1:. and <PIi!) is defined to be the 
number of points moved by g "G. then rp i. a cia •• function,and i. a linear, 
combination of X,. x, ..... x,. Thus the row (0. 2. 4. 4.3) is a linearcombina' 
tion of the five rows of the given table. It turns out that there is an easy method 
for computing the coefficients, practically by inspection from the table. 
This is don!: by lIsing thl! so call1!d "orthogonality relations/~ which we are 
about. to dl!rive. Thl!se relations are also extremely useful in the cO,nstruction 
of character tabll!s. I. "'.": , "', 

Before we leave 1:4 we should COmment. on the fact that all ofthe characte~ 
values, which a priori are only KnOwn to bt: complex numbers, inJa,cl turn out 
to be integers. (Of Course the X,{l), being the degrees of rcp~~tations! ·arei'. 
always pOsitive intcgers.) It is not always true that all character values are, 
ordinary integers, although frequently a large fraction of them are. It is tru~' 
however, for all symmetric groups. All of'this should become clear later. 

The key to the orthogonality relations is to compute explicitly the 
coc:Hicicnts of the group clements in the e/s in terms of the characters. To 
do this we use the character p of G afforded by a .. epresentation corresponding 
to the regular module C[ Gr. This regular character p will be computed 
in two ways. 

(2.10) LEMMA rfgeGandg;ll.thenp(g)=O,Alsop(I)=IGI, 

Proof We must choose a basis for C[Gr to obtain a corresponding 
. representation. We simply ta~e G. in some ordering, as the basi. and let 91 be 

the corresponding reprc:sentation.lf91(g) iJq (alJ)~ thc;:n.aj} ~ 0 unless 919 :;:= (Jj~ 

in which c.se a'i - I. Since p(g) i. the number of 9, satisfying g,g - g" the 
lemma follows. I ','" 

,.,., Si~ce'p is a char~ctcr of G'.It ~y. ~w~xl?~~~"a~"~I"Il~in~e8er li~~ 
~~blnat1on of the: XI' We do thiS eXPhqltlY:·:"~~L~""·::' '., . ~ ,~I .. ,;1 '.' " ~:. 

(2,II)L"""'" p - D., xI1)x,. '.: :" ' .. 
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. Proof If r is any C[ G)-module, il may be docomposed 'IS a direct sum of 
~rreduclbles. fhe character afforded by a corresponding representation 
",LlfM,(V)X,' Now by Corollary 1.17(c) we know that IfU,(C[G]") = 
dIm M, = X,( 1). The result follows. I 

It is suggested that the reader use Lc:mma 2.11 nnd the character table of 
l:4 to compute p explicitly for this group, and check the result against 
Lemma 2.10. 

(2.12) THEOREM e, ~ (l/IG!) L<G x,(I)X,(g-I)y. 

Pro~l Write eJ = Lai'g. Hy Lemma 2.10, we have p(eJg-I) = alGI 
Lemma 2.11 thus yields ' . 

a,IGI = L xjl)xi"'Y- '). 
I 

Since 

1.je,g- ') = 1.je,)1.jg-l) = {O _, if j,. j, 
.{,(g) if j = j. 

we have x,{e,g-') = X,(g-l)1il)' where the Kroneckor 01) isOor I depending On 

whether tandj are unequal or equal. We now have 

and the result follows. I 

(2.13) THEOREM (Generalized Ortllogo""lity Relation) The following 
holds for every II e G. 

" (gl) (-I) < X,(II) 
I G 1 ,;-0 x. 'X"g = "Ii x,(1 r 

Proof The e, lie in trivially intersecting ideal, ofC[G] and thus e e ~ ° 
if.i '# j. Since 1 == L ej , multiplication by ej yields e/- ;;;;;; rJ. We no~j sub~ 
sutute the:: form,ula of Theorem 2.12 into the equation ejej ~ olje j and com~ 
pare the coeffiCients of the group clcments On both sides . 
. The coefficient of a fixed" E. G on the right hand sid< is (bull G I )x,(1)X,(h - 1) 

and that on the left-hand SIde IS 

_, The res.ult now follows by equating these expressions and substituting h 
forh- I , I 
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By taking h ~ I in Theorem 2.13 we obtain 

(2.14) COkO~I""RY (First Orthogonality Relation) 

1 
-IGI r x,(g)xlg") ~ ~I}' 

,,IIG 

\, 

Sinee tbe expression X(g-') has come up several times, we dig ..... for a . 
while to discuss its connection with X(~) and some related qu .. tion,. 

(2. IS) Lf.r.<r.<A Let i( be a representation ora affording the character X and 
let g" G. l.et n s o(g). the order of g. Then 

(a) 3:(g) i. similar to a diagonal matrix diag(e" ... , e,); 
(b) r.," ~ 1; 
(e) X(g) ~ r r., and lx(g)1 s X(t); 
(d) x(g·')~Xliil. 

Proof The restriction of:lt to the cyclic group (g) is a repr.,entation·or 
(g) and hence it is no loss to as,ume G - (g). By Maschke's theorem and. 
other results of Chapter 1. it follows that iii is similar to a rep .... entation in 
block diagonal form, with irreducible repre,entation. of G appearing as the 
diagonal blocks. Since G ~ (g) is abelian, Corollary 2.6 a ... rts that' its 
irreducible representations have degree 1, and thus l is similar to a diagonal 
representation. Now (a) follows, and we may a"ume that l is diagonal. We 
have I ~ !((/') ~ X(g)' diag(r.,', ... , ,,/'). Therefore (b) is proved. It 'follows 
that Is,l ~ 1 and 12; ed :;; r ltd / ~ xU). It is clear that x(g) .. L 6, ~o 
Ihat (cl follow,. Now 1:(0-')= iE(g)-' = diag(" , .',,,.,,,{ ') so that 
X(g-') ~ Ie, '. Since le,1 = I, We have ",-' = i!j and x(g- ) g X1iij. Th. 
proof i. complete. I 

Combining Corollary 2.14 and Lemma 2.IS(d). we obtain 

I 
-IGI L X~g)x:;lg) ~ ~'I' 

(ll'G 

This suggests the following definition. 

(2.16) OI!l'INITION Let 'P. and a be class functions on a group'G. Then 
I ~ _ 

[rp, 9J ~ iGi .:--a rp(g).9I,g) 

is the inlier product of rp and a. 
Some of the obvious properties of this" inner product" are 

(a) [rp •• 9) = w.;p:j; 
(b) [rp. rp] > 0 unlcss rp = 0; 

" ,', 

. 
, )' 

.. 

(c) [c,~, + c,rp, • • 9] a o,[rp, •• 9] + o,[rp,. 9]; 
(d) (rp, c,a, + <,al ] = Cj['I'. 9,] + 0,['1'. 9,]. 

~l 

Therefore, ( , ] has all ofthe propcnies usually used to deAne: .. n innc::r product 
in linear. algebra Hnd analysis. (In fact. this makes the space of cl .... funelions 
into a finite dimen.ional Hilbert space.) 

. We know that Irr(G) isa basis' for the space of class functions .nd it is 
the content of the orthogonality relation that it is. in fact. an orthonormal 
basis. that is. 

[X,. XI] ~ hI}. 

This yields the promi.ed method for expressing an arbitrary cia .. function in 
terms of the irreducible characters: for if ['I'. X,] = ",. then 1{1 ~ r ''X,· 

Another application of the inner product i. to determine instantaneously 
whether or not a given charneler i. irreducible. 

(2.17)' .·CO~OLLAII.Y Let X andt/!o be (not necessarily irreducible) characters 
of G,·:rben [X, 1/1] - {t/I, xl is a.nonnegative integer. Also X is.!rreducibl~ iff) 
ex. xl- L ~ IiY\:ld.tl~ 18./ p l 

....... ,j'f;'f.r '1" 

'. Pr,<>Of. We haVe X m L .,x/ .and t/I ~ L: mIX" with all ., and "" non­
negative integers. Theo [X. t/lJ & ! ./m/ * [t/I, xJ and [X, xJ ~ r 0,'. Th. 
result IS now immediate. 'ince X is irreducible exactly when one ., ~ I and 
all other ., ~ O. I 

fh~ following "second orthotl~nality relation" i. derived from the first 
and. $0 imposes no new necesoary condition for an array of complex number. 
to be a charaCler tabl •. Nevertheless. it i. often extremely uscful in the con­
struction of character table. and in the extraction of information from them. 

(2.18). THEOREM (Second Ort/ll)gooolity Relation) Let g. h e G. Then 

',':)., 

if {is not conjugate to hin G.O;~eiwi~. the sum i. equal to I C(g) I. ".',' . . . 
P~()()f Let g" g" ... , g. be representatives of the conjugacy classes of 

G. Let X be the k X k matrix whose (I,]) entry is X,(oJ1, (In other word •• X is 
the character table, viewed as a matri~.) Let D be the diagonal matrix.with 
entries d'il X',I where X'I is the conjugacy claSS CI(O,)' The first ort.hogonalily 
relation asserts that . 

• • 
IGlal} ~ rX,(o)XM) = L: IX·,lx,(g,)Xjij. 

,~G v_I 



This system of k' equations may be replaced by th. single matrix equation 

IGI/ .. XDXr, 
where I is the identity m.tri~ and the super..:ript denotes trall8pollC. 

Since a right inverse for a square matrix is necessarily also a left inverse, 
this yields . 

IGII ~ DX'X. 
We now write this as a system of equations and obtain 

IGliilJ = ~ If,limx.(gJ)· 

Sin"" IGI/IX'd ~ IC(g,)I, this yields 

z: xwiifii:J ~ IC(g,)16'J' 
~.br(G) 

which is Ihe de.ired result. I 

\ , .. 

In the character table for :£. that was given earlier, tbe size of ca"hcon. 
jugacy class was given. We see now that this information is derivable from the 
OOdy oithe table. It was siven only for _ of computation oCinner products. 

As a check On our results so far. observe what happens if we take h m 1, in 
the second orthogonality relation. The reader should recognize what results 
as a combination of Lemmas 2.10 and 2.11. . 

• 'f ,~, : 

Let E Ii C be the field of algebraic numbers. By Lemma 2.15, all of the 
character values x(g) e Ii'. for X e IrI(G) and 9 e G. How is lrr(G), which is a sct 
of functions G .... e related to the set of irreducible E-charact .... of G, which 
we denote by Irr.,(0)1 In fact these set. arc equal. 

SuPPOse I inn irreducible E.reprcscntation ora which affords X e Irr,,(G). 
Now.t may be viowed as a C.rcpr.sootation and thus X is a char.cter (that is, 
a C""haracter) of G. Since the entire development of character theory up to 
this point would have been the same over E as over C and since X E Irr,,(O), it 
follows that [X. xl = t. However X is a Ccharacter of G and it follow. frOIIl 
Corollary 2.17 that X e IrI(G). Thua br,.(G) iii lrt{G~. . 

We also have that both Irr,.(G) a.u4 lrr(G) have.,t..bc:_ cardiulilY-. 
namely that of the set of conjugacy clas~ of G. Therefore Irr,,(G) ~ lrI(G). 

The point of this digression is to SUJIFfl\ that there is something "a~ 
solute" about a character table. It i. nol entirely iw tlnifacl of our Chowe,of 
the partiCular field C. , ....... . . .. : .. 

Another conocquence of this argument which i..·somelm.e. ullef,,1 i~'i,hai 
if X E IrI(G). then X i •• !forded by an e·repreocntatlon of Q. Thi. type of 000' 

sideralion will be discussed much more fully in Chapter 9. Until then, wc 
ccsudlC oU.r convention that "character"' means, ~C..character." 

Group representations and. charact~r$ 

A great deal of information .bout a group can be recovcred from its 
character table. In particular, all of the normal subgroups ofG can be found. 
A normal subgroup is • uniM of conjugacy classes and the word "found" 
in Ihe preceding scntence means that those sel' of conjugacy classes who.e 
unions form subgroups can be listed. In pal·tieular. the ordcrs of all normal 
subgroups and the inclusion relations among them can be determined. 

(2.19) LEMMA Let I be a C·roprosentation of G which alfords the char­
acter X, Then 9 e kcr I iff x(g) = x(I). 

Prool If g" ker I, then I(g) ~ I = I(I) and X(g) ~ x(l). Conversely. by 
Lemma 2.15. X(u) ="1 + ... + c" where., is a root of unity andl M X(I). 
Sincele,l = 1, thccquation x(u) ~ I foro.so, m 1 fot all i. Now l(q) is similar 
to dias(e" ... , e,) ~ I and therefore £(g) ~ I and the proof is complete. I 

DEFINITION Let X be a character of G. Then ker X (g E G I X(u) = 

leMM,< Let X be a character of G with X = L rI,x, for Xi" Irr(G). 
,,··.·'· •• n ker X s n(ker x,ln, > a}. Also n(ker xII 1 :;; i :;; k} = I. 
'. Prool Since I xoiu) I :;; x.(l) by Lemma 2.15. X(g) = x(1) forces X,(g) 

".,. X~I) whenevor n, ~ O. The reverse inclusion is trivial and the Ii"t assertion 
,:: follows. 

'ro prOVe the second statement, consider the regular character p. By 
Lemma 2.10. ker p ~ 1 and the result follows. I 

. The normal subgroups N, = kcr X, can be found by illspection from the 
character table of a group G. We claim that every normal subgroup i. the 
intersection or some of the N"s and thus can be found from the character 

To sec Ihis. let N <I 0 and let \II be th. regular repr.sentation of the 
GIN.o that ker \Il = NIN. Now vi.w 91 as a representation of 0 with 
Nand I.t X be the corresponding character of G. Then N = ker ~l = 

n{N.I [x. X.J " 0), 
a normal subgroup N ofG (where "given" meanS listing the classes 

,\,.W,,·wlllcn it contains), wc may calculatolNI from the character tabl. u.ing . - r (iXoIlf, iii N). (Recall that ICI(g)! R IG:C(g)1 and IC(g)! = 
;;);,,",,._.'.'0' Ix(g)I' sO that IXd is determined from the character table.) 

from this di.cu.sion that (; is simpl. ilf ker X ~ 1 for all nOn. 
~':;;~;~:'~~,~X E Irr(G) and therofore Simplicity of a group can be easily deter. 
:fe' its character labl •. 
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The group G is solvable ifrit ha$ a chain of normal subgroups, I !i!:! MOb 
M, s· .. ;: M, = G such th'IIIM" M,_, I is a prime power for all i. I ~ 
i ~ 11. Since the M I can be located and their orders detcrmit'led from the 
character la ble of G. il follows th.1 the table determines solvability or non­
solvabilily of a. 

This may be a good pia"" 10 remark that the charaetenable ofa docs not 
detcrmir'lI: G up to isomorphism. In fact ir p is any prime. there 3re two non­
/:<:;omorphic nonabclian groups or order pl, The..'\c two group:'li have identical 
charaeler table •. 

Let N .., a, It seems natur.IIO ask whether the ehar,,'!er table. of Nand 
afOIN can be c.lculaled from thaI ofG, The answer is "no" for N but "yes" 
for aiN. 

We have .Iready ob.erved that Ihere is a one-to-one correspondence 
between representations of GIN and representations of G with kernel con­
taining N. FUt'thermore. under this correspondence, irrcducihle represent­
ations correspond 10 irreducible repre,entalions, This situation may be 
interpreted in terms of characters as follows, 

(2,22) "EMMA Let N "" G, 

(a) If X isa characte, of G and N 5;; kcr X, Ihen X is const~nt on cosets of 
N in G and the function ~ on GIN defined by ~(Ng) ~ X(g) is. character of 
GIN, , 

(b) If ~ is" character of (iIN, then the function X defined byX(g) - 21Ng) 
is a 4;haractcr of G. 

(e) In both (a) and (b), X 6Irr(G) iO' ~ 6Irr(GIN), 

Usually. we shall identify X and i, Under this identificatiM, we have 
Irr(aIN) = {x .lrr(G)IN S;; ker x}. 1'0 demonstrate what is happening here, 
let u' consider the example a m 1:. and N the normal subgroup or order 4, 
The clllsses of a which are contained in N are the Identity and CI«I 2)(34)), 
Referring to the character table on p, 17, we see that the irreducible characters 
X, ora with N s;; ker X, are XI' X" and X, and so under above identification, we 
have IrrIGIN) = {X" X" X,}, 

In order t(,' write the chftractcl' table for GIN we need to know its I;Ol'l­
jugacy cia""s, If.:t" isa class of G, then.i', its image in GIN, is a class of GIN, 
However, distinct classes of G may have equal images in GIN, This poses no 
problem since if g, h e G, then !iand II are conjugate in 1i ~ GIN iffX(ff) ~ rllil 
for all xe lrr(aIN), (The second orthogoriality ~elation, applied 10 GIN 
pmv .. this.) 

The part of the character table of G = 1:. corresponding 10 the characters 
of GIN is 

Group I'~presenlaljons and characters 

,)f', 

X, ; 1 
X,: I 
X,; 2 

,)f', .t",\ 

I 
-I 1 

0 2 

I I 
I -I I 
2 0-1 

ror GIN, (In this case GIN;;,; I,.) 

25 

,*,'4 .)f', 

I 
-I I 

0 -I 

The preceding discussiM provides a second method for computing I N I 
from the character table of G. Namely, by using the fact that 

I a: N I m l: {r.(I)'1 x E Irr(GIN)l 

l:(x(1)'IX"lrr(G) and Nskerr,l, 

, By Corollary 2.7, n group is abelian iff all of its irreducible characters are 
linear. It follows that given N <I G, the character tahle of G determines 
whether or not GIN is abelian, There is no known way to d.t.,mine from the 
lable whether or not N i<abelian, ' ;' 

(2.23) CO~OLLAIlV ,i.et a be a group with commutator subgroup G', Then 
~, d·. 

1:'-' (a)' G' - n{ker.< IAE IrrIG~ ).(1) - I}: 
(b) 10: G'I ~ the number of linear char.cters of G, 

" Prool If 'i is a linear' cha~acter of G, then .< is a homomorphism 
into the abelian multi~licathl", group ,of C, It follows that G' !;i ker A. 
Since GIG' i. abelian, all X e Irr(GIG') are linear and thus Irr(GIG') = 
p, G Irr(G)I,,(I) m 1), (This' equality, of course, depends on the identifica­
tion of characters of GIG' with characters of G,) Finally, for any N .." G, 
we have N - n{ker xlxe Irr(G) and N s; ker xl and hence la) ["lIows, 

,The number of linear character. of a is equal to the total numb\., of 
irreducible characte," of the abelian group GIG' and hence equals lalG'I, 
The proori8 now complete, I : 

, .- . 
,,:'<>rhe information ill Corollary :i.23(b) i. useful for finding the set of 

'charactor degrees of a group G. For instance. if G is a nonabellan group· of 
order 27. then IG, G'I F 9 and G has exactly II conjugacy cl ..... , 8y the 
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preceding. G has exactly nine linear characters and two nonlinear irreducible 
characters X and .p. We have 

27 = IGI = 9 + X(I)' + .p(l)'. 
Since the only way that 27 - 9 = 18 can be written as a sum of two squares is 
3' + 3'. it follow. that X(I) - 3 = .p(l). 

Before leaving the discussion of character tables and factor groups, we 
mention an amusing result. The following could be proved withoUI char­
acters but it is somewhaltricky 10 do so. 

(2.2A) roo.oLLAJl.Y u=t 9 e G and N <I G. Then IC.,,.(N9ll :s IC.(g)I. 

Proof From tbe second orlhogonality relation, we have 

I CG/N(Ng) I ~ L I~Ng)l' = L (I~)I'lx"lrr(G). N Ii ker X} 
,l.lrr(GINI I 

,;; L l~lI' - IC.(g)I. I ',I.",', .. '.,,· ':.I.!'!I 

x Q Iff(Ci) 

We now discuss the connections between characters and the center of a 
group. 

(2.25) LEMMA Let X be an irreducible C-repro5c:nlation of G of degree •. 
Suppose A is an n X n matrix over C which commute. with X(g) for all 9 e-G. 
Then A :;;:>; rxl for some IX e C. ;0' 

Proof u=t M be Ihe n-dimen,ional row .pace over C 00 lhat M i$ in 
irreducible C[G]-module via m' a - mX(a) for mE M and" E C[G). Let 
9: M ~ M be defined by m9 .. rnA. Tben 

geEq .IM) .. C·1 

and 9 - « . I for some « e C. The reoult follow.: I 
(2.26) DEFlNl110N u=t X be a characler of G. Then Z(x) ;. (g" G H x(g)1 .;; 
,rtl)j. 

If H s; G and l is Q. rcprl;Mntation or G, then its restriction to H, denoted 
XH • is • rep'coentation of H. Similarly. tb. reotriction"xii <if a characler X'of G 
to H is a character of H and we can write . 

XH m L n • .p 
+ III IfI'(H) 

for .uilable integers n •. Note that if XII e 1rr(H), !hen X" Irr(G). or cour ... ,the 
converse of this statement is: false. !,~l' l 

Oroup representations &nct charaators 27 

(2.27) LEMMA Let X be a character of G and let Z = Z(X) and f ~ X( I). u=t 
I be a representation of G whi.ch affords X. Then 

(a) Z ~ (g E GIX(g) ~ "f for some e E <C}; 
(b) Z is a subgroup of G; 
(c) X, - j'). for SOme linear character I. or Z: 
(d) Z/ker X i, cyclic; 
(e) Z/ker X £ Z(G/ker X). 

Furthermore. if X E Irr(G), then 

(f) Z/ker X m Z(G/ker X)· 

ProQ( By Lemma 2.15. X(g) is similar to diag(e, •...• ef ), with 16,1 = I, 
I ,;; i ,;; f Since X(g) = L ',. it followsthat IX(9)1 = f iffall OJ ar«qual. Since 
the only matrix similar to d is hi it~e1r. conclusion (a) follows. 

, Define th. function .l: Z -+ C by X(g) ~ 1.(g)I for g" Z. It follows for 
g. he Zlhat X(gh) m .l(g).l(h)I and hence Z is a subgroup and.l is a homomor­
phism (linea. character) of Z. We have thaI X(g) = j').(g) for 9 e Z and (b) and 
(e) have been proved. 

Clearly. ker X ~ kef .< and thu, Z/ker X i, isomorphic to the image of ,\, 
a finite multiplicative subgroup of the field c. This subgroup is necessarily 
cyclic and (d) follows. Also. ker X = ker ! and X(Z) £ Z();(G)) and (e) is an 
immediate consequence. 

Finally. if g(ko, X)" Z(G/kcr X). then X(g) e Z(.{(G)). If X E Irr(G). then by 
Lemma 2.25. we conclude !hat.~(g) ~ e/ for some e E C. Now (Ofollows from 
_ (a) and the proof is complete. I 

(2.28) COROLLARY leI G be a group. Then 

Z(G) ~ n{Z(x)lxelrr(G)). 

P'Of!f Since (Z(G) ker X)/kcr X s;: Z(G/kcr X). it follows from Lemma 
2.27(f) that Z(G) £ Z(X). Conversely. suppose g" Z(x) for every X" Irr(G). 
II follows that g(ker(x))" Z(G/ker X) and thus for any X E G. the commutator 

[g. x] = g-'X-'gxEker X. 

Thus [g. x] ~ n{ker xix E Irr(G)) ~ J and 9 commutes with x. Since X E G 
was arbilrary. we have g e Z(G). I 

It is apparent from Corollary 2.28 thaI Z(G) can be located from the 
character table of G. It follows that it can be determined from the table 
whether or not G is nilpotent. This is done by finding Z(G). then finding the 
character table of GjZ(G). and iterating this process. The sequence of sub­
groups of G which results is the upper central series and G is nilpotent iff this 
sequence reaches G. 
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Some information about charader degrees can be obtained using 
Lcmmt\ 2.27(c). We need a lemma first 

(2.29) LEMMA Let 1.1 ~ G and let X be a character of G. The~ 

[x".XIIJ :;: IG: fli [X. xJ 
with equality iff x(a) 0 for all g € G fl. 

Proof We have 

IHI[xlI.x"J = Llx(l')I':;: '[lx(,llI' IGI[x.x] 
II .. ,., Il' G 

,ince Ix(g)!' ;,: 0 for fl E G - H. Equality thus holds iff x(g) ~ 0 for all 
(J fi D - H. The resull follow:I\, I 

(2.30) COROLLARY Let X G I,,(G). Then X(l)' ,,; IG: Z(x)l. Equality occurs 
iff X vani,hes on G - Z(x). 

['roof By Lemma 2.27(c). we have h,,, ~ X(I)'< and thus [Xz",. Xzr,,] ~ 
1.(l)'['<.;t] ~ X(I)'. Therefore 

X(I)' ,,; IG: Z(x)i[x. X] ~ IG: Z(x) I 

with equality iff X vanishes on G - Z(x). I 

We already knew. of courSe. that x(l)' " I G I for X e Irr(G). We now have 
the slight improvement that X(I)' ,,; I G: Z(G)I. Equality can occlIr here. and 
when it does. Z(X) ~ Z(G) and X vanishes 011 G - Z(G). It has been con­
jectured that only in a solvttble group is it po,"ihle to have x(l)' ~ 1 G: Z(G)I 
with X E lrl1G). As of this writing. the question is still open. Observe that the 
l1on.belian groups of order 27 which were discussed earlier give examples 
where equ.lity occurs. 

(2.31) THEOREM Suppose that x€ (rr(G) and that CIZ(x) is abelian. Then 
IG:Z(x)1 xU)'. 

Proof It .umees to prove that X vanishes on G - Z(x). Let 9 t; G - Z(x). 
Then by Lemma 2.27(f), we have that there exists I, E G with 9 - 'II -, gil, ker X. 
However. since G/Z(X) i. abelian. we have q- 'h- 'III. ~ F. Z(x). Now. if'" i • 
• representation of G which affords X. then .l;(z) = M and r. .. I since z ~ ker iE. 
We h.v. "'(y:) ~ iE(g)1I:(,) = •. «g) and thus X(gz) = exigI. However. gz s 

Ir- 'f/I. and so X(gz) = X(g). Since <x(o) = X(g) and r. .. I. we have ):(g) ~ 0 a. 
desired. I 

A character X of G is said to be faitl!{I,/ if ker X - 1. Every group has a 
faithful charflclr:r. namely its regular character Ii; but not every group has a 
f.ithful irreducihle character. 

Proolerrui 

(2.32) THEOREM (a) Jf G has a faithful irreducible character. then Z(G) is 
cyclic. 

(b) If G is a p-group and ZIG) is cyclic. Ihen G has a faithful irreducible 
char.cler. 

Proof (a) Let X e Irr(G) be failhful. By Lemma 2.21(f). Z(G) 7,.(X) 
and by part (d) of that lemma, Z(x) is cyclic. 

(b) Since G is a P"scouP. il follow$ Ihat if I '" N <J G. then N '"' Z(G) 
... 1. Now let Z be the unique subgroup of order p in the cyclic grollp Z(G), 
so that Z" N for every nontrivial normal subgroup N of G. Since 
n{ker xl X E I,,(G)) ~ I. it follows that Z 1- ker X for some X G (rnG). W. 
conclud~ that ker X.M 1 and the proof is complete. I 

Problem 2.19 provides an example to show that the full converse of 
Theorem 2.32(a) is not true. 

1'",61.",. 

1\ 
(2.1) (a) Let 1 be an irreducible F-represenlalion of G over an arbitrary 
field. Show that L..G 1(g) ~ 0 unless 1 is the principal represent.tion. 

(b) Let fI ~ G and 9 E G be such that all elements of the coset fig are 
conjugttle in C. Let X be a C-character of 0 such that [X". til) ~ O. Show 
thatx(g) m O. 

flint (b) C~mpute Ih. trace ofL..1I I(hg). where.l: alfords x· 
I 

In .Ihe following; alleharactonr are over C. 

(2.2) . (a) Let x~ ~'chatacler'"Qf:G:Stiow Ihal X i. afforded by· a represen­
tation .l: such that all entries of :E(g!. for all 9 e G lie in some field F Si C with 
IF:QI -< 00. .. 

(b) Leu" ."!", whe ... n .. IG 1 and let X be a character orG. (Note thaI 
x(g)eQ[c] for alt'g·~G by Lemma·2.1S.) Let(J be an automorphism of Ihe 
field Cl[o) and define 'i': G ... C by X'(g) a x(gr. Show thai x' is a character 
and that X· e Ir~G) iff X G lr~G). 

(2.3) Let X be ~' character of G. Define det to G -. C as follow •. Choose ;It 
affording X and set 

(del X)(g) - d.t ;It((I). 

Show Ihat det X is a uniquely defined linear character of G. 

(2.4) (a) Lei G be a nonabelian group of order 8. Show that G has a unique 
·nonlinear irreducible character X. Show th.t X(I) ~ 2. xl:) ~ -2. and 
x(x)" O. where z e G' - {t} and XG G - G'. 
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(b) If G .. D" .how that det X'" I •. 
(c) If G :;;; Q,. ,how that dct X ~ I •. 

Chopt.r 2 

Hi., Show that ktr{det X) contains all elementoof ofder4.'U.c. I:emma 
2.15. 

Note Although D, and' Q, ~ve identical' ~.;;.ract.~:·tabi'ai. tli. 'map 
dec Irr{G) ->lrr{G) is notthe same for botbgroups, .. '. ':,' e,:',;:: ' 
(2.5) (a) Find a real representation of,D,which affords the,eharacter X of 
Problem 2.4(a). ..' .. 

(b) Show that thi, cannot be doneforlthe group Q,:' 

(2.6) Let X. '" be characters of G. Define Xt/!:'G - C by (xt/l)(g) ~x(g»/J(g). 
" •. ;I.lj!I,'. I : 1'1'.1,:, 

(a) If "'(1) ~ I. show thall'" i •• character. .. ' : 
(h) If "'(t) - I •• how that X'" Elrr(G) Iff X E Iii(G)." '" ''''" 
(e) If", - X (that is. "'(g) ~ il9) and 1ft) > I. show that,:xo/I ¢ lrr{G). 

• ., :,' . ' , ~ .. ".,. ;\:',! ,i 
No.. In Chapter 4 we will show.that xl/l.s always a character: ' 

(2.7) Let G be a~lian and write'C -llrr{G). 
, ,,', !. I; ,..',. '.. ! r ~ , 

(a) Show that C i. an abeli..ngroup WIder, the' multiplication of 
, '" .','. ',I .' \. :,. ".' 

Problem 2.6. 
'(b) If H <;; G. let W ~ (..l E CIH <;; ker .l). Show that .L is a bijection 

from the set of subgroup. of G onto the sct,of subgroups of C. 
(e) Show that G ~ C. 
Hints There is a natural isomorphism of G onto ~. Usc this for (b). 

For (e). use the fundamental theorem of abelian g.~ups, 

(2.8) Let X be a faithful character of G. Show that H, s;; G i.abelian iff ."cry 
irreducible constituent of 'lit 'is linear. 

(2.9) (a) Let X be • ch.r.<ter. of an abelian ifOUp A., Sho~, , , ' 

:2: I?:(x) I' <: IAIx(I~ ..... 
(b) Let A <;; G with A • .,belian and I G: A I - n. Show that x(1) :S: • for 

all X" Irr(G). 

(2.10) 'Suppose G ~ U'.' )I,.,where the A, ar.abelian subgroups ofG and 
Aj~AJ Ill!! I if; #j. 

(a) Let X" Irr(G). Show'tbat if X( I) > I. then X(I) <: I G 1/(. - 1). 
(b) IfG is nonabeliaol!hen I Ad ,. n - I fo .. aeh i and. ,- I <: (l01l"'. 
Hi." For (a~ bouoU:l:L.G lx(y)I' using Problem'2.9(a). For (b). usc 

Problem 2.9(b). 
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(2.11) Let 9 E G. Show that 9 is conjugate to B- 1 in G iff X(g) is fOal for all 
characters X of G. 
! i 1 

Note An element of a group which is conjugate to its inverse is called a 
": i',:'" real clement. If G has any real elements other than 1. then G must necessarily 

.,',-n.,," even order. 

1", (2.12) Let IGI ~ • and let 9 e G. Show that X(g) i. rational for every char­
',acter X of G iff 9 is conjugate to gm for every integer m with (m. nj = 1. 

Hints Let e be a primitive nth root of I in C and let E = 0[6]. Let .;; be 
the Galois group of E over Q. Given (m, n) = 1, show that there exists (J E t§ 

with X(g') ~ X(g)' for all g" G and all characlers X. Conversely. for ev<ry 
11 e '§. there is an m such that this formula holds. I 

(2.13) Let I G' I ~ P. a prime. Assume that G' <;; ZIG). Show that 

x(1)' = IG:Z(G)I 

for every nonlincar X" Irr( G). 

(2.14) Let H 0;;: G' (') Z(G) be cyclic of order. and let m be the maximum of 
the orders of the eh:ments of G/ H. Assume that" is a prime power and show 
that IGI <: n'm. 

Hints Choo.e X E Irr{G) with H (') kcr X = 1. Let .l = det X (as in 
Problem 2.3). We have x~ = X(I)/I with /I E Irr(H), Using.l and 1', show that 
x(1) <: •. Finish the proof using Problem 2.9(b)_ 

Note The assumption on • can be removed using Corollary 5.4. 

(2.15) Let X E lrr(G) be faithful and suppose II <;; G and XH ~ Jrr(H). Show 
that T .... O_X' ~t-CJ'(H) -~!L1J(~I,L)(:"'IJ':'1.. '.-J [D("j1),J)(,.)),,! =)[;(-!(~';,..) 

l, (_ 1-+ ~d........ ... ~ (~ • 

CG(ll) w Z( G), 

(2.16) Let H s G and let X be a (possibly reducible) character of G which 
vanishes on G - H. Assumc cither that II w I or that G is abelian. Show 
that I G ; H I divides X(I). 

llim Let.{ be an irreducible constituent of XH. Under either hypothesis, 
find 1''' lrr{G) with I'H ~ .l. Compute [x./I] and conclude IG: /J Ii [XH' .l]. 

Note A natural COmmon generalization of the situations H ~ .I and G 
is abeli.n is H s;; 1,,(G). Is thc result true under the hypothesis H <;; ZIG)? 

(2.17) Let A '" G be abelian and aSSUme there exists X E lre(G) with X(I) ~ 
; A I. Show lhat G has a nontrivial normal abelian subgroup. 

Hint Show that X vanishes on G - A. 

G ,,,,,~'cl,,,"h",,,""c.., X ......,,,'" .£: ..... I..,.~"'- ~I Xr::
2 

4: Ir .. {(....~,) 
~_>,J •. l)\:"":.-. J, x • -, r~J((h ~-' C::. ({" ).:....-T(c, I ~ 11 (( .. ') 

G ,~. i."I.( .. ..{.'1 ....... .., L;.\ 
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(2.18) Let A..", C ancl suppo.e A ~ Cr,(a) for every a oF I. a" A. Assume 
furlher that CIA i. abelian. Show that 0 has exactly (IAI-l)/IG:AI 
nonlinear irreducible character. and that thes" all have degree equal to 
IG: AI and vanish on 0 - A. 

Hi"I. Let k ~ 11r,(O)l. By counting classe., show that 

k,;; I + (IAI- 1)fIG:AI + (IOI-IAIl/IAI. 

Using characters. show that 

k:?: 10: AI + (IGI-IO: AI)/IG:AI'. 

U.e Problem 2.9(b). 

Nol.'; The group 0 of Problem 2.18 is a special ca<e of a Frobenius 
group. The eharacler theory of such group. will be discussed more fully later. 
Observe that although the hypothe.e< of 2.18 are very special, this situation 
does arise frequently. Some examples arc A. and nonabelian groups of order 
pq where I' and 'I are primes wilh pl(q - I). 

(2.19) Let E <x" x" x,, x.) be an elementary abelian group of order 16. 
Let P ~ <.v> be cyclic of order 3. Let P act on E by 

XI Y X2. xl XIX::!. xl X 41 xl;;;; X3 X 4' 

Let G be lhe scmidirect product E ~ 1'. Show that Z(O) ~ I but that 0 does 
not have a faithful irreducible character. 

Hint The smallest possible degree for a faithful character of e is 4. 

(2.20) Let l and ~) be irreducible C.repre'entations of 0 and define the 
functions (',j,g) and b,/g) by :t(g) = (,,1/.11» and ~)(g) ~ (b,j,g». Write 

8
"
,,, = L ",,(g)b,,(y-'). 

~I!!:G 

Show that 8M " = 0 if l and ~) are not 'imilar. If l - \D, show that S"" = 0 
unles, p = sand q 5 r in which ea.e 8" .. = IGl/deg "'. 

Hint let 1'" = L,,,.J X(y)/;" '1)(y-') where fi." is the (deg 3') X (deg '!l) 
matrix with all entries zero except the (q, r) entry which equals on •. Note that 
IP" = P" 'D. Usc Schur's lemma. For the last statement usc Lemma 2.25 
and compute tr(l',,). 

Note The results of this problem are called the Schur relations. They 
Can be USed to give another proof of the orthogonality relations. 

, .\' 

"I,'! ' , 

Characters and integrality 

· : ", One Of the most celebrated'ap;':lieations of character theory to pure group 
· theory is Burnside's theorem which as~rts that a group with order di'lisible 

'.:' : b~ at most two primesissol'lable, The proof of this theorem (and much oHhe 
relit of character theory) depends on properties of algebraic integers. We begin 
by establishing some of the most basic of these properties. .' 

(3.1) OeFlNITION An algebraic Inreger is a complex number which is. root 
of a polynomial of Ihe form 

.x" + a,,_tX,,"1 + '" + "0. 
where a, e Z for 0 :S:i ,;; /I - 1. 

(3.2) LEMMA The rational algebraic integers are precisely the elements 
ofZ. 

· Proof If a e Z, then a is a root of the polynomial x - a and thus is an 
· algebraic integer, Conversely,let ./s be an algebraic integer with ',.<" Z. We 
· ~y assume that (r, $) ~ I. We have 

(rl.r + a._,(rl.r- I + ... + a. ~ O. 

multiply by ;I' and rearrange terms to obtain 

r" ~ -s(a._,r"-' + ••• ,.".'-1 + ... + •• ;1'-'). 

",: .,:W. conclude th.t .Ir". However, since (r, s) ~ I, this yields. = ± 1 and 
. rls e Z as desired, I 
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Frequently. the word "integer" is used to mean an algebraic integer, and 
the elements of Z are rererred to as "'rational integers." One of the most im .. 
portant properties of the set of algebraic: integers is that it is a ring. In other 
words, sums and products of integers are intclcu. This fact seems surprising 
from the definition, but it is not bard to prove indirc.ctly. This we proceed 

to do. 

(3.3) l.IlMMA Let X ~ (<<, ••.•• «.l be: a finite set of algebraic integers. 

Then there exists a ring S satis~~~,(:":I": j ~i ;.' ,'':,i.-/~ l,:,;,j', ,·:"~:.l: J £:~" " .. , 
(a) Z .. SIOC: ....•.............. --•. 

(b) X .. S; 
(c) there exist. a finite subset. Y of S such that every element of S i. a 

Z-tinear combination of clements of Y. 

Proof The integer Ct, satisfies an equation ~f the form 

«1' - f~«,). 

where J. is a pOlynomial of degr .. 0, - I with coefficient. in Z. Let Y ~ 
(",'<t,' ... ",'10',,; r, ";. n, - 1) and let S be: the set of all Z-linear combin-
ations ofclcrncnts or Y. .' :. '.! I, .1. ' ", ~ ',,1:" 

Using th~ equation t:C;j - f~fliJ~ anypOwer Of'llj rnaYbe" 'wriucn las"'a Z) 
linear combination'ort. «,. «? .. ;','«1'- ','It followirromthi'that theprodUi:1 
of any two elements of Y lies in S and bOn"" S is Ii ring. All of ilie properil .. 
claimed for S arc now clear. ..• '.:. :,' .. , ,,' i::~!.~j. <1'1,,:.' nl 

Condition (c) of the above lemma may be: paraphr"-"'<l by "yingthat S i. 
finitely generated as a Z-modulo. We now prove a strong converse to Lemrna' 
3.3. 

(3.4) THI!ORl!M Let S be: a ring with Z ~ S 50 C. Suppose thatS is finil~ly 
generated as a Z-module. Then every element of S is an aigebraic integer. 

, '. 1 : ,.::., f ~·I 
Proof Let s E S and let Y g {y, •...• y.} 10 S have tho property that 

every element of S is a Z-linear combination of elements of Y. We then have 

SYI IdIIII L aj/YJ .:'.' \" \'" " 
J 'I· . :'.~\' ,1·'.:.1.111 

for all i. with iJlj£Z, Let A be the matrix (a'J) and let v~bC:the column: 
colly , •...• y.). Then 

Av:::sc sv 

and thus s is a root of the polynomial 

fIx) ~ det(xl - A). 
"II."." 

It follows that ,0; is an algebraic integer and the proof is ~mplete. I ~ . \ 

Characters and inlegr~lity 

p.S) COROLLARY Sums and products of algebraic integers are algebraic 
mtegers. 

. Proof Let ~ and fJ be: algebraic illtegers. By Lemma 3.3. there exists a 
nng S with Z ,. S ,. C such that " fJ E Sand S is finitely generated as • 
'Z-module. Since« + fJ and .fJ E S. it follows from Theorem 3.4 that they are 
algebraic integers. I 

( .. ,j • 

(3.6) COROLLARY Let X be a character of a group G. Then X(g) is an al­
,gebraic integer for all a E G. 

.., .. " . Proof By Lemma 2.15. we know that x(a) ~ " + ... + '/. where the 
~j,8re roots of a polynomial of the form x" - I, and therefore are algebraic 
Inleaers. The result now follows. I .. , 

We can now see the reason for the assertion made in Chapter 2 that all of 
the ent.ries in the character table of the symmetric group:!:. lie in Z. If 9 E:!:, 
,and m IS relatively prime to 0(0). then gt" and 9 have identical cycle structures 
and therefore these elements are conjugate: in .:Ell' It follows from Problem 2.12 
,that liD) is ~.tional for all X e Irr(:!:,), Since X(u) is an algeb,·aic integer, 
Lemma 3.2 y,eld, that X(u) e Z as claimed. 

Let G be. group and X" Irr(G), We wish to dc/inc a function w dep<ndi~g 
X. from tho centor of the group algebra C[ G] into C. Let X be any re­

presentation which affords x. If Z E Z(C[G]). then we may conclude from 
Lem?," .2.25 that X(z) ':" 81 for SOme r. E C. Observe that since the only 
maUlx sundar to eI I. <llt.elf. the complex number 6 does not depend on the 
cho,ce of the particul.r representation affording x. We nOw define w by 
.sening w(z) = 8. In other words 

X(z) ~ w(z)f 

for all z" Z(C[G). We shall often write w ~ w, in order to emphasize the 
dependence of w on x. 

Since l is an algebra homomorphism, it is easy to see that (jJ is also a 
homomorphism, In particular, ro is C-Iinear and hence to determine (J) on 
Z(C[G]), it suffices to calculate its values on a basis. Such a basis is given by 
,the class sums for the conjugacy classes of G. Let :f be a class with sum 
~ E C[G] and let 9 ~ Jf". C.lculation of trace, in tho equation X(K) ~ w(K)1 
y,elds 

X(l)w(K) ~ X(K) ~ I xC<) a Iflx(y) 
xoe<" 
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and thus 

w,(K) 
x(g) I.:>f I 

x(l) , 

Chapt~r 3 

Note that it follows from this form,lin that the funotion. "', are determined by 
the character table of G, 

(3,7) THEOREM Let X c1rr(G) and let K be a class sum in C[O]. Then 
w,(K) is an algebraic integer, 

Proof Let f \ ... ,. %/,: be thl.i clajiOscs of G. with corresponding cl~ss. 
Sllm~ KI.,,".K~. By TheQI'cm 2.4. we have KIKJ~E~a'JvK~ where 
(11)~ ~"Z!.. Since OJ = (j)1. is. an algebra homomorphism from Z(C[G]) to C, we 

have 

w(K,)o,>(K,l ~ Z:a",<v(K,). 

Let S be lhe set of alll-linear combinations of the w(K,), It follows that S is 
closed under multiplication, Since m(l) = I. it follows that l s; S ,;; C and 
Theorem 3.4 applies, All of the clements of S arc therefore algebraic integers 
and the proof is complete. I I, 

It should be emphasized that the fact lhat x(g)ICI(O)l/x(l) is an algebraic 
integer does not follow from the fact that X(g} i. integral since division of 
an integer by an inleger does not usually result in an integer. 

We proceed now toward Burnside's solvability theorem. The essence of 
the argument is contained in the neXl result. 

(3.8) THEO~I;M (Burnside) Let X E lrr(G} and let :if' be a conjugacy class 
of 0 with 9 E:if'. Suppo,", that (x(l), I:if' I} ~ 1. Then either 9 E Z(x} or else 
X(g) ~ O. 

Proof We know that x<n)I.:>fl/x(l) i. an algebraic inteser. Since (X(l). 
IX'IJ ~ I. We may choose rational intege" u andvso thatux(l) ... vl.:t"1 ~ t. 
Thus 

X(g)(1 - "Xli}) x(o)I.:t"1 
------~v 

x(l) x(1) 

is an algebraic integer. Since UX(g) is also integral, it follows that ~ ~ x(g)/x(1) 
is an algebraic integer. Suppose that g~ Z(x). So thaI I X(g} I <: x(1) and 
I_I <: 1. .. . 

Now let n = Q(g) and Jet E be the splitting field for the polynomial ,,' - 1 
over 0 in C so that ~ E E. Let'l be the Galois group of E over O. Since x(g) isa 
sum of x(l) roots of unity, so is X(g)' for each u e \J; It follows that Ix(g)"l :s: x(1) 
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and 1~'I:s: 1 forI1E'l, We have then 

In.nl<1. ... 
For each.,. E 'I, .' satisfies the Same rational polynomials that. satisfie1l 

and hence is integral. Therefore II n ~. is an algebraic integer. However. Ii 
is clearly fixed by ali (f € '!I and therefore fJ E 0 by elementary Galois theory. 
'tfollows from Lemma 3.2 that II E Z. Since I Ii I < 1. we have fI = 0 and hence 
a' 0 for some (T. Therefore 0 a • ~ x(y)/x(l) and x(gl 0, The proof is 
complete. I 
(3,9) THEOREM Let G be a nonabelinn simple group, Then (I} is the only 
conjugacy class of G which has prime power size. 

Proof Suppose geO. ICI(g)I- P'. and g.;. I. leI lEirr(G), X * lG' 
Then ker X ~ I since 0 is simple and Z(x) ~ Z(G) = I since G is nonabelian. 
Thus if p,tx(I). then x(g) .. 0 by Theorem 3.8. Now 

0;" p(g)", L:x(I}x(g) ~ 1 + I x(1)X(g)· 
xllllr-1G) 1.: I!Iltr(t;); pix") 

We have -1 .... p«., .where,. 

~;'L X(I) x(g). 
p 

the sum being taken over;( ~ Irr(G) where rlx(I}. It follows that a = -lip i. 
IIJ\ algebraic integer and this ~iolates Lemma 3.2. I 
(3.10) THEOREM 'Let 101 -t!'q'. where p and q are primes, Then 0 is 
solvable. 

" Proof Use induction on 101. We may .ssume I G I ,. 1 and choose a 
maximal proper normal subgroup N. If N > I, then by the inductive hy­
pothesis. N and GIN a.re solvable and thus 0 iuolv.ble and the result follows. 

SUPpolle then,N,,," I, so,that G is simple. Let P * I be. Sylow subgroup 
of O. We may choose. gEZ(P),.g" I, .Then ICI(g)1 p IG:C(g)1 divide1l 
IG: PI. which i •• prime power. It nOW follows from Theorem 3.9 that the 
simple group 0 is abelian and the proof i. complete, I 

We now obtain'somc strollg l1:Sults about the degrees of the irreducible 
charactel'1l ofa group G. The fact is thal x(1)IIG; Z(x)1 for X e Irr(G). We shall 
first prove the ,,!eai<erstatCtrICIIl that the irreducible character degrees divide 
the group Qrd",:',Thispi'oorl1l'much letlS complicated and ",rv .. to motivate 
the stronger prQof:' ... " , , 
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(3.11) THI!OIUlM LetxElrr(O).Then:c(ll.II.GJ,i ',"1/ ,,' 

Proof From the first orthogonality.relalion we have 
I .: 0", t'; ; 

101- 1:xIg)xIg-I). ,.G 
We wish to rewrite this equation in terms ofwx' Let f I~ .x\ ... . :, $'" be the 
cI ...... of 0, with class sums K, and representative clements g,. W. ha.ethen 

, ~ • • I I !, ' • , '. , , " ; 

/I ," I ' :' 

IGI g 1:lf.lmi,)i(g,-I) - I:x(I}<Il(KJxl9j-');" "" .. , 
. j-J :1,'" '.'1.11. 11".'1.,,-1 '>'1 ~,~I~": ';,j' .1. 

where w _ w
X

' This yields 'hl "II !I,,'l';' 

1011x(l) ~ ~:a>(K,)x(iih ',' "t"" ,Y~I.:; 
-,il,,"r:\ ;·j,d It ,',"I ,/ .J 1,.1 ~~I;1.I:'" '. "!;"II~tj:J~' 

which is an algebraic integer. Since 101/x(1) is rational, it lies in Z and the 
resull follows. I " '" "", 

• ~ , • ~ i' I : . ~ .. '.'.~' r:.' I \""', ' ' • ',; 1 
(3.12) THEORilId Let X E Irr(G). Then X(1l.11 G,:,Z(;().I, ,( ",i ,.i", " ',' 

Proof Sina: X may be viewed as a ~h","':ter of Gf1\et,x,it is 00 10.0 \0 
assume that I<er X = I. Under this assumption"Z(G) - Z(x). , 

For ", y e G, define" " y if there e~i.t. ze Z ": '1.(0) .~ch that ,;x i. 
conjugate to y::. It is easy to check that. is an cquivalcnc:e1l'elation and thus 
partitions G into equivalence <:I .... s. W. claim that 1x(;x)1 !,constant as;x ruOl" 
over one of these classes. To see this. observe that 1% - xll}l, where 1 is .' 
faithful linear character of Z, and that x(y:) -, .l(:)x(y) for z eZ and y e G. If 
;x ,. y, then;xl = yz forsome z and ~(x) - .«z)x(y). Sin'7I.t(z)i7'- I, the clai~ 
folloWS. 

Let ~" ~, .... , 'G, be those (=)-classeo on which X does not vanish. W. 
have then 

IGI ~ L 1~(gJl' ~ I: 1~,lIx(o,W,"": 
!IlliG I-I • II!':' ,:i 

where the g, are representati.es for th.'~/;'W.claim 1'#,l'-ICI(o,JlIZI. 
Clearly. every x e<j, is of the form yz where ye CI(O,land'z:e Z. It suffices to 
show that all of these elements yz are distinct. Suppo:!lei'that Yi%l ... Y1Z:h 

Yl~Y:r.ECI(nj).andzl'Z2~Z.Then /1'·1;' I, ,. 

I:,., ,i ·."1,'·;\1 .!" 
X(y,).l(z,) = x(y,).l(z,) 

and X(Y,) = ro,) ~ xIg,) '" O. Thus .l(z,) - .l(z,) and hena:'1 = z, sina:). 
is faithful 01\ Z. Thus Yi 11m Yl and the claim is established. 

We have nOW 

101 = 1: I'G,Ilx(g,)I' = 1: ICI(gJlxIg,)x(o,-')IZI 
= t X(I)w(K,)X(o,-')I Z1" 

, 
IG:ZI/x(l) = tw(K,)X(g,-'). ,-, 

an algebraic integer which is a rational numoor. The result now follows. I 

As • combined .pplication of Theorems 3.8 and 112. we prove the 
following. 

", (3.13) THEOREM Let G have a faithful irreducible character of degree P'. 
where p i. a prime and suppose that a Sylow p-subgroup of 0 is abelian. Thcn 

i. the euet power of p dividing 10: Z(G) I. 

hoof Let X be the given faithful character of G. By Theorem 3.12, 
p' - X(I)divide'IG:Z(G)I· 

Let P e Syl,.(O) .nd let x E P. Thu; P >;; C(x) and hence (X( 1).1 O(;x) I) = I, 
By Theorem 3.8: xl;x) = 0 if x j Z(x) = Z(O). Let Z = P !'\ Z(G) so that X 
vanishes on P - Z, Now by Problem 2.16, we conclude that I P: Z II p". 
Since P/Z ;;;; PZ(G)/Z(G). which is a Sylow subgroup of GjZ(G), the «sull 
follows. I 

The above r.sult is typical of a number of theorems about" complex 
groups,t. that is. groups of nonsingular matrices over C. In these 

theorems. one is given the degree n of a finite linear group G and the object is 
to control the structure of G in terms of n. often under certain additional 

" assumptions such as the irreducibility of G. In Theorem 3,13 we are given a 
group having a faithful representation of known degree. and this is obviously 
equivalent to being given a linear group of that degree. 

If G is a comple" linear group, let S be the subgroup consisting of the 
elemettts of G which are scalar matrices (that is, of the form el). Observe that if 
G ;s irreducible, then S '" Z( GJ. The group GI S is called the colllnealion group 
,associated with G. Frequently. the object of. theorem .bout linear group, of 

. degree is to obtain information about the associated collineation group. 
Theorem 3.13 is of this ""ture. 

The rcaSOn for this situation may be seen from the following, Let G be a 
linear, group of degree ri und let C be a group of n x tl scalar matrices. Let 

- GC and let S· be the scalar subgroup of G·. The linear group C· may be 
,much larger than G but G/S :. GO/So, 

We have already seen several situations in which a character value is 
forced to be ~eI'O, We shall now prove that every nonlinear irreducible 
charac.ter vanishes somewhere. We begin with a preliminary result. 
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(3.14) LEMMA Let a be a ~ydic group and let X be a (possibly reducible) 
character of a. Let S = (g E a I 0 ~ (g)) and assume that xes) oF- 0 for all 
seS. Then 

Llx(s)i' :;: lSI. 
"S 

Proq( Let /I ~ I G I and let E be the splitting field for the polynomial 
x" - lover \) in C. I.et 'd be the Galois group of E over O. If tJ E (" and r, is an 
11th root of I, then c' z ,m for some m 6 Z. (m, II) = l. Now Xes) ~ c, + ... 
+- r.f where I!./, == 1 and hence X{s?' = 81'" + ... + r./H;;;: ids"'). 

The group (1 is abelian and the restriction of comple~ conjugation to E is 
an element of 'd. It follows that it' = (iW for all ~ G E and (J e 'd, and thus 
I~'I' = .'ii' = •••• = (1«1')'. Therefore (I X(s) I'r m Ix(,m)I',where(m, /I) 5 I 
and m depends only on tJ. 

Observe that if S E Sand (m, /I) I, then s· e S. AI,o, the map x .... x· is 
one-to-one on a and therefore effect. a permutation of S. It follows that. 
nus Ix(s)!' is invariant under (f and hence is rational. Since it is an algebraic . 
integer, it must lie in Z, and since X doc. not vanish on S, we have 

n Ix(s)I' :;, l. 
H"~ 

Now we liSe the raet that for any po,itive real numbers rl' r;a' ••.• r,lt. we 
have 

and we conclude that 
I 

lSi .~I xes) I' ;;: I 

and the proof is complete. I 
(3.15) THEOREM (Burnside) Let X E Irr(O) with );(1):> l. Then X(g)- 0 .. 
for some B E a. 

Proof Partition G into equivalence classes by calling two elements of (J 
equivalent if they generate the same cyclic subgroup of G. Assume X(g) ". 0 
for all g .. G. Then by lemma 3.14, we have 

Dx(,)I' «lSI 
uS 

for every equivalence class S. Sum this inequaifty over all equivalence classes 
of non identity elements to obtain 

L Ix(g)I' « lal- 1 
,+I 
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and thus 

IGI m r 1x(g)I' ~ IGI - I + ;«1)'. 
,fla 

This forces x(l) s: I which contradicts the hypothesis. I 

The ne~t topic we shall digeuss docs not, strictly .peaking. depend on 
algebraic integers. Nevertheless it .ecms appropriate to include it here. 

Let a and H be finite groups and suppose C[G) <II C(H). where this is a 
(;oalsebra isotrorphi.m. What can we infer about the relation.hip between a 
and H7 Clearly. IG I ~ I HI and there exists a degree-preserving one-to-one 
correspondence between Irr(a) and Irr(H). We cannot conclude. however, 
that.G and H are isomorphic or even that they have identical character table •. 
Indeed, ifG inbelian, it follows from the results of Chapter I that C[G) is the 
direct .um oflGI copies ofC. Thus ifG and H are abelian and I GI = IH I. then 
qGJ !11 C[H). 

The situation becomes more interesting if we make the weaker assump­
tion that l[GJ ~ Z[H], where Z[a) represents the group ring of Gover l 
and may be identified with the ring of Z-linear combinations of elements 
of Gin C(O]. It is conjectured that if ZeO] ~ Z[H] for finite G and H, 
then a ~ H. Th. best re,ult in this dire<llion that has been proved as of 
this writing i. due to A. Whitcomb. It asserts that if G is metabelian and 
Zeal !If l[H), then G ~ H. 

If Z[O] ali Z[H), then it is clear th.t we may view /{ as a multiplicative 
subgroup of Zeal ~ C[G] and that 11 .pan. C[a] over C. In particular, 
IHI :l: IGI and hence by symmetry IHI ~ IGI and H is a basis for Cea]. 

(3.16) DllFtNlT10N Let H ~'C[G) be .ueh that If i. a multiplicative group 
which i. a basis for C(O]. SuppOse that every element or H is a l-linear 
combination of elements'~f'G,''l'hen H is an integral Br,,"p basis in qa). 

· . .If Hi. an integrallirQu~'~iJin ceOJ, we identify C[al with C[HJ in the 
natural manner. An importllllt telIuit ulled in studying the isomorphism 
problem is due to O. OIaube.rman. Most of the re,t of this chapter is devoted 
to its proof and some consequenc:es. W. uSc the oot.tion tJ( to denote the 
sum of the elements of the conjugacy class J(, computed in thc group 
algebra, '1', i-, 1:',"1{,~1',' ",1, 

'j' " ~' ",':t -:;'1 ",,: "' • 
(3:1 7) TIlEQMM -(GfaUbrirm",i) Let' H be an integral group bas.s In 

C(O), Then there oxistl It one-to-one correspondence betweo:n the set6 ~f 
conjugacy du ... of H'andGsl,lch that if !I' corresponds to J(, then I!I'I = 
I X'rand t!l' ~ ± t;,r .\!~., 
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We need a lemma. 

(3.t8) Lf.ldMA Let «. Ii ~ Z(C[G]) and view the characters of G as being 
defined on all of C[ G]. Define 

(<<. Ii) - r: x(<<)XUfj. 
t.tlltrUn 

Then 

(aj (c,., + c,.,./I) - c,(.,./I) + c,(.,. (i); 
(b) <fl,') - (i11); 
(c) (K,. K I ) _ 0 ifi ,. j; 
(d) (K,. K,) = IGIIX"'!; 

where the.;K'j arc the classes of G and K. ,lII0I l:.%j. ' ... ~. 

Proof SlatemenlS (a) and (b) are immediate .ince charactcril are linear 
functions. To prove (c) and (d), let XE X", and ye .t'"1.Tbeni(Kj) ';.IX"'!x(x) 
and x(K,l- IX"IIX(V). The result isnoiVimmediate fronitlie..cond orth" 
ogonality relation. I I' '.' 

.' . . . ,- '. ~!! ! . I j, , ~ . 

Proof of J:heorem 3.17 Idenlify C[H) wilh 'C[G] 'soo'"hat. k_. 
dim(Z(C[G]» is Ihe common nUlOber of classes of H.and ,G. Let !t!,. !t!" 
... ,!t' .. be the classes of Hand :f ".:f It ........ 11 the classes ~f Q. Wr.ite K, 
g l:X", and L, g l:9',. Since Ihe K, are a basis for Z(C[a]). we may writ. 

L, - r: <'IKI' 
I 

Since L, is a l·linear combination of clements of a, We conclude thaI all 
Cjj e Z. 

The form (.) defined in Lemma 3.18 depends Qnly on the algebra 
C[G] - C[H) and nol on the particular 1I'0ups a,and H. Thi. i. because lhe 
irreducible charaClers. defined on C[G], are limply the traces of the irre­
ducible representatilln. of the algebra. WelheRl'0,e have 

(1) IHII!t!,1 '"' (L"L,) .. r:(o~)'lall.t'"ll. 
, I . , .. 

..1 
Sum (1) Ovc:r i to obtain . . 1. 

(2) IHI' ~ IGlj(f(~")')ti"JI. 
, , 

Since the L, span Z(C[a]) but no proper subset of {Kd, spans this space;· 
it follows that for each j. there exists j wilh 0" .. O. Thul 2J (0")' '" l. Since 
IHI- lal. Equation (2) yields .,' 

IGI- r:(r:(C'I)')I.t'"11 '" r:lfll';lal " 
I , I 

Characters and integrality 43 

and :thus we have equality and L/ (cIJ)2 = 1 for all j. Therefore, for each j 
there is a unique i with c'l .. O. This de/ines a map{X"I) --> {.'I',}. Since for 
each i there exists j with cjj #0 O~' this map is onto and hence is one-to-one. 
Because all non~ero tlJ!;:c ± I, we have L/ = ±K] when:f./ and .:;t-] coree­
spond.Finally.Equ.tion(l)yicldsIHII.'I'd = IGIIX"Jlandthusl2',I-IX"jl 
and the proof is complete. I 

(3.19) COROCt.ARY Let H be an integral group basis in ceG]. Then there 
exists an integral group basis H* in C[G] such that H ~ H* and the class 
sums of H· equal the class sums of G. 

Proof Let J be the linear extension of Ihe principsl character of G to 
C[G]. (This is usually called Ihe augmentation map.) Note thaI J(L a,y) _ 
r: a, and J is an algebra homomorphism C[G] --> C. / 

IfheH,thenJ(h)elandsince,\(h)J(h-') = ,\(1) ~ 1,wehave,\(h) = ±t. 
Let h· - J(h)h e cea] for h ~ Hand nole thaI 6(h·) - J(h)' ~ I. Put 

on· - .{h··lh E H} and not. thaI H' is a group and Ihe map h ..... h· is an 
isomorphism. Clearly. H· is an integral group basis in cea]. 

Let !t!:be a class of H· so that E2' ~ ± EJt' for SOme class X" of G by 
Theorem .3.17. Since J(h·) ~ 1 for h· e H·. we have J(E!t!) - 1!t!1. Since 
h(l:Jt') - IX"I, the ambiguous sign above must be positive and Ihe proofis 
complete. I 

(3.20) OOROLLARY Let H be an integral group basis in C[G]. Then G and 
H haveidentical charaCler tables. 

PrQof By Corollary 3.1 9. we may assume thaI Ihere exists a one-to-one 
correspondence bet w~n the classes of H and the classes of G such that if :l' 
and X" correspond. then E..\f = EX" and 12'1 - IX"I. Let X be the trace of 
an irreducible representation 01 C[H] - ceG]. Let 2' and X" correspond 
and let h ~ 2' and g E.Jf'. It suffices to show Ihat X(h) - X(g). However 

x(h)I!t!1 - X(,,;!t!) ~ X(!Jt') = x(g)IX"1 

since I!t! I = I X" I. the result follows. I 

We have seenlhal·if l[G] '" Z[H]. then C[G] has an integral group 
. basis. isomorphic to fl. The conVerse is true but is less obvious. 

THEOREM L:t H be an integral group basis in C[G]. Then Z[G] ~ 
"'''~C''" in C[G]. 

Proof Hero, l[H] denotes the ring of l·linear combinations of elements 
(l t is isomorphic 10 the abotracl integral group ring.) Since H .. Z[ aJ. 

'![w",hovel[H] .. Z[G]. We .how that a .. l[H). 
Write a - {g.11 SIS n}andH - {hdl SIS nl.wheren -IGI ~ IHI. 



, , I 

! 
\ 
I 
i , 
I 
i , , 

.1 

I 

Cnaptar 3 

We have h/ L.I u,J{/j for 11i} e Z. We shall show that the matrix A :::± (ulj) 

has an inverse with entries in Z and this will complete the proof. Write 11)"'1 :::!:: 

bjj 9; I and n ::1:.: O'u), an inlt:gc:r ttlatl'ix, 
Let p be Ihe character "I' the regular representation of CEO] C[H] '" 

thaI p(II,II/') ~ Ifil li . Now express 1i,1i) -, asa linear combination of elements 
of 0 and observe that the coefficienl of I is :L a"b,). It follows that 

11,5,) p(lI,h) ') n ~::a,.b,) , 
and thus AB ~ 1.lhe idenlilY matrix. The resuit now follows. I 

(3.1) LeI" be an algebraic integer and suppose Ihal n.) ~ O. where 
It")" Q[x] is irreducible and monic. Show Ihal/V) E lEx]' 
(3.2) Let G be (I group.g c G. and let X bt: a charactcrofG. Suppo:::e IZig)1 .... 1. 
Show Ihat X((J) is a root of unity. 

Hilll Let E '= C be the splitting field for x' - lover Q. For integral 
~ c E, wilh 1 ~ 1 = I. let I. c Z[x] be the polynomial of Problem 3.1. Show that 
only finitely many polynomi.1s can arise this way. Do Ihis by bounding the 
degree and the coefficients off,. 

(3.3) Show Ih.t no simple group c.n have an irreducible character of 
degre.2. 

Him Problem 2.3 is relcvanl. 

(3.4) Let G be. simple group and suppose X E Irr(C) with x(l) = p, a prime. 
Show thaI a Sylow p'subgroup of 0 has order p. 

Him If the Sylow p.subgrollp P is nonabelian, then 7..(P) ~ Z(x). 

(3.5) Suppose A S; 0 i$ abelian and 10:A I i$ • prime power. Show that 
G1 < G, 

(3.6) Let 0 be a p-group and suppose X 6Irr(0). Show Ihat X(l )ll \0: Z(x)l. 

(3.7) Let Xe1rr(0) be faithful and suppose x(l) p' for some prime p. 
Let I' E Syl,(O) and suppose thaI Carp) 9i P. Show thaI 0' -< O. 

Hint LeI Q s;; Co(P) be a p'-subgroup, Q ". 1. Show that Q ,.., Z(x) ",I 
and consider det X. / 

(3.8) Let X be a (possibly reducible) character of G ",hieh is const.nt on 
G - {I}. Show that X = ala + h"G, where a, b e Z and p is the regular 
character ofG. Show that if 0 ". ker X, Ihen x(I)", \01 - I. 

Problems 

Him first show that l. = at" + bpG for some a, bE C. 

(3.9) Let ,J!'" " ..• , X, be the conjugacy classes of a group G and let 
K 10 .,' I K_ be the corresponding class SlIms. Choose I'epresentatives (/j E ;Jrj 

and let a,). be Ihe inlegers defined by 

/(, /(, ~ L:a,). /( •. 
Show thaI 

Hint Use t,he mx and the second orthogonality relation. 

Notes This formula shows that the a.j~ can be calculated from the char~ 
acttrtable. Therefore. the character table orG can be used to answer questions 
such as: Is an elementg t::>r" the product oran element of %/ with one of .:k"J'! 

The fact that the Dr)." are nonnegative rational integers ilTIpose~ another 
necessary condition on an array of complex. numbers that the array be a 
character table for ,ome group. 

Sineethe /(, are a basis for Z(C[O]). it follows that the character table of 
G ·determines Z(C[O]) up to algebra isomorphism. 

(3.10) W. write [x, y] f~r the commata/or ['y-' xy ofx and y in a group O. 

(a) Let g E G and fix x E G. Show thaI 9 is conjugate to [XI y J for some 
YliOiff 

t Ix(x)l'Xi9j ~ O. 
Zlrlrr(G) x(1) 

(h) Show that 9 ~ [x. y] for .ome x, yeO iff 

r x(g)". 0 
",,,,G) x(I) . 

Note We already knew that the characler lable ofa group determines the 
commutator subgroup. Problem ),10 says more than Ihi., since the com­
mutator subgroup usually does not consist entirely of commutators. 

(3.11) Let 9 e G be a commutator. Suppose mEl, (m, o(g» _ 1. Show that 
gM is a commutator. ' 

Hinf See the hint to Problem 2.12. 

(3.12) Let X Iii II'I'(G) and g. h e G. Show 

x(t) <:" • 
X(g)X(h) ~ TGi ,-;-0 xigh ). 
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Hi., Lei 1 afford X and Ie' K, and Ki be the class ,uma in C(G) which 
contain 9 and h. Use the facl that l(K,)l(Ki ) .. l(K,Ki)· , : 

(3.13) (Brauer) Let K" ... , K. be the class SUmo in C[G).Suppose tbel'$ 
exist. c e C such that L K, ~ cIT K,. Showq~~.!7~.,__ .. .- ,'", 

Him Let I. '" X e Irr(a). Show that wiK,) .. 0 for tIOme I. 

(3.14) (Brauer) In the notation of the previoWl problem. ,ho~ ,that if 
G _ G', then there C:XiSlS C IS 0 such that L ,K, liliiii en K j • • 

HI., To ,how that two element. a. b e'Z(C[G) ..r.;'cquaI, iuuftioe,'" 
provetha,,,,,(a)-w,.(b)forallxeIrr(G~., ". ,', "'iI,, 

(3.1 S) (Thompson) Let E be • G~loi. exten.ion. ,of 9. ~i\~, g,~ia ~I?u~ . .,~. 
Let«" E be an algebraic integer with the property that <t'}~ , ..... 1 ~,posttt .. : 
for all "e" A theorem or Siegel (Ann. ofMa,h.46 (I94S)p, 303, Theorem III), 

• ,'," ." ·~~\.""'·l'._J'J·p,>,, ". ,'I~ . 

..... rts that if« '" I. then I . Y ."",:!." , 
l'II.r. «' ;,d.: I., 

Use this to show that if X E lrr(G) then x(x) i •• ilber zero, or,a, ~,~tor unity fo . ., 
more than a third of the elements ;x " G. ' ,'" ' 

Hi." Mimic the proof of Theorem 3.15. Use Problem 3.2. 

(3.16) (Burnside) Let I G I be odd and suppose X e lrr(G) i. not principal, 

Show that X '" X. 
Hin' Using orthogonality, show that if X .. loand~ = i,thcnx(l) = 2« 

for some algebraic integer ee. 

(3.17) '(Burnside) Let I a I be odd and .uppose that a has exactly k con­
jugacy c1 ...... Show that 

IGI '" k mod 16. 
_, , .:1 

Him ICnisanoddintcgcr~lhenl'il iilii.lmod.8. 'il." ~·I··'i~ 
, ~.".( 

4 Products of characters 

Let x and i/J be characte" of G. The ract that X + i/J is a character is • 
triviality. We may define a new class function xi/J on a by setting (xi/J)(g) = 
x(g)i/J(g). It is true but somewhat Ie" trivial that xi/J is • character. [If either X 
Or i/J i. linear, this is Problem 2.6(a).] 

Let V and W be C(G]-modules. We shall Construct a new C[G]-modllie 
V 0 W called the tensor product of V and W. Choose bases (v" .... v.J for 

, V .nd {w" ... , w.} ror w. Let V 0 W be the I>space spanned by the mn 
symbols v, 0 Wi' [More precisely, V 0 W is the set of formal sums of the 
form L advi ® wJ)' with al} E;: C,] If P E V and w ~ W, suppose v II!! L (ll PI 

and w - L bjWi' Wedefine 

v I$! W ~ Lu l bjvI0 w)e VI$! W. 

Note that not every element of V I$! W has the form v I$! w for v E V and 
we W (except in the special Ca.e that n or m - I). 

We define an action of G on V 0 W by setting 

(Il, I$! w/!9 - vlg 0 wd 
and extending thiS by linearity to all of V I$! W. The reader should check that 
if v e V, w" W, and 9 e G, then (u 0 w)y = V9 I$! wg. It foliowSihat (xU l)g, c 

, ;t(g,g,) for x e V 0 Wand g," G. 
Next we give V 0 W the strUcture of a C(GJ-modulc by extending the 

action or G by linearity in C[G). In other words, for.<" V 0 W we define 

x(L a,g) ~ r a.(;ty). 

It i. routine to check that thi, really makes V 0 W into a C(G}module. 

·7 
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A few words of caution arc io order here. If (X E C[G), it is not necessarily 
truc that (PI ® Wj)iX = V,(X ® wJI):, It is for this reason that we first defined the 
"etion of G on V ® Wand then extended it to C[G], If A is an arbitrary 
algebra with modules V and W. it is not generally possible to define the 
,U'ucture of an A-module on V ® w. 

We have not yet shown that the C[G}module V ® W is determined (up 
to isomorphism) by Vand W, independently of the choice of bases. This is, 
in fact. not hard to prove for group algebras over any !leld. We shailleav. the 
general situation to the problems. 

(4.1) TJlI'ORtiM Let C[G)-modules V and Wafford characters X and "', 
respectively. Choo« bases in V and W and construct V ® W. Then V ® W 
affords the character XIP and is independent of the choice of bases. 

Pro(~f Let. {tId 1 ~ i ~ n} and {w,ll ~ r ~ m} be bases for V and W. 
respectively, and let (I E G, Write 

" 
IJlg ~ L al]l.lJ 

J= I 

aoct 
m 

wrY = L b'5 W5' .-1 
with (~!J' b,s ~ C. 

Then X(g) = LI', "" and IjJ(g) = B'=, b". Let.'1 be the character afforded 
by V ® w. Since 

we have 
a(g) m L a"h" = t a" L b" ~ x(y)l/!(g). 

I" I 

We now know that the character afforded by V ® W is independent of 
the choice of bases and the result follows by Corollary 2,9. I 
(4.2) COROLI.ARY Products of characters are characters. 

Corollary 4.2 provides another necessary condition for an array of COm­
plex numbers to be a character table, It asserts that ,the inner product of any 
row with the product of any two rows is a nonnegative integer. In this 
connection, the following formula is relevant: 

I 
[X",/, X,] ~ iGi L X,(g)"'(y)X,(gj ~ [X" "'X,]. 

In general. products of irreducible characters are not irreducible. For 
instance, if X E I rr(G), then X E I1'r(G); ncverthele~ •• I. is • constituent of xii 
since . 

(xi'. 10 ] - [r.. X1a] ~ 1. 

Product:'!! of CMrecterl;1 49 

(4.3) n",OR~" (Burnside-Brauer) Let X be a faithful character of (; and 
supposq(y) takes on e~actly m different values for liE G. Then every'" E Irr(G) 
is a constituent of one of the character. (xY for 0 "j < m. 

Note In the special Case X ~ p, the regular character of G. we have 
m ~ 2. The theorem is already known to be true in this Case. 

Proof Let ~,. "z,'.".~ be the distinct value. taken on by x. Let 

G,-(geGlxlg) ~,l. 

Assume., ~ xlI) so that G, = ker X ~ {I}. Fix ",Elrr(G) and let il, m 

I:..G, <jJW)· Now for j :?: 0, we. have 

If t/J is not a constituent of xl for any jl 0 ~.i < m, we have 

L (.,yp, ~ o. O,,;,j < m. , 
The determinant of this system of m equations in the m t. unknowns" P, is the 
so-called "Vandermond. d.tenninant" and is equal to ± 11«/0, - oJ) .. O. 
It follows that all Pt''' O. 

On Ihe other hand. p,'''IjJ(I)" 0 and this eontradiction'proves the 
theorem. I . . 

,.J 
" . 

,. Let g e G and let·." .. > 0 be an integer. We ask how many nth roots g has 
in G. Let ..... . 

. :9,(gl -1(hEGlh" - gll· 
Otnerve that i(IGI; n);' I. we may choose an integer m such that om .. 1 
mod 1 G I. ~us if h" - k', then h - h- - k'M ~ k and we have .9,(g) ,,;. 1 for 
all g e G. Since the map h .... h" is on.-to-one on G. it must be onto tI11d it 
follows that 9,,(gl. "" 1 for all g Ii G. . 

The ~ituati~~ .• ~m .. con.id.r~bly more interesting if we drop the 
aSSUml'~lOn that 0 '8 pnm. to 1 GI. Since 9, is clearly a class function on G, we 
may wflte 

9,:'. L v,.(~)X. 
x.ltt(fi) 

Ivhlire v,(xl i •• ~niquely determined complex number. 

(4.4) LEMMA v"(X) "'(IIIGI) L.G x(g'). 



80 Chapte' 4 

Proof By the ortho80nality relations we hay. 

I '-
v.(X1 - [9 .. xl "1Gi'~Q 9Jg)"I!JJ). 

Since 8Jg)"I!JJ) - r .. G, .... x(h'), we have 

I't"­
v,(X) - iGi .':'ax(h..,. 

Finally, replace h by h- I to obtain the desired ..... ult. I 

'. !. 

I..<:t '" be any class function of G and lilt n be a positi~ integer. W. d.~e 
a new function ",(" by ",("(g) - tp(g'~. Note that ./p«' II a class function. 
Lemma 4.4 asserl. that ."(X) - IX", lal for X E Itr(G). It i. nol, in genera!. 
true that t" is a character for X e ltr(G~ howeVer. it is always a difference of 
two characters (sec problems) and thus v.,(x) e Z. 

I 
(4.5) THEOREM (Frob,tlius-Schur) Let X e Itr(G). Thep 

(a) i" is ~·.diff.rence or characters; 
(b) .,(X) - I, -I. or 0; 
(c) .,(X)" 0 iff X is real valued. .,. . . 

i • .'.,j" ,." 
PrlXl/ Let V be a C[G}module which affords X and let ~ .. V""" v< 

be a hasis for V. I..<:t W _ V ® V and define the linear !I1IIP *; W .... W by 
(v, ® vJ)* ~ vJ ® v •. Let i' .", 

W. _ {we Wlw' M w) and W .. - (we Wlw· ~ -w). 

These subspaccs are called th. symlmllril: and 41111$)lili/iii11* :p.1Irts of W, 
l'CIIpettively. . ' 

If w e W, we have w + w· e W. and:w - w· e. ~A' Since 

',l 

, , ' ", ',i', ' '" ' I ~ , . 
it follows that W - W. + W... .' . . '. 

W. claim that if w e W and 9 e G. then (W9)" - wag. It suffices to check 
tbis as w runs over the basi. v, ® vJ' and thus we need to show that 

(v,9 ® vJg)O -oJg ® v,9' 

In fact. it il true that 
(~® y)O _ Y ®x 

for all x. ye V. This is seen by expa.,di", x and y in terms ~ftheo,. 
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11 now follows that w., and W. are C[G}submodules of Wand we have 

x' ~ X. + X •• 

where x. and x. are the charaetors afforded by W. and W". We compute x. 
usine the basis 

for W •. 
Suppose 0,0 2 L ""V,. We have 

WIJY :;;;;; E (a/raJ. - ajra,,)j,, ® v, = L (ajrQj5 - aJ,alJ)w~~. 

Therefore 

This yields 

2X.(g) 

i',' ,..: J 

Let :'£ be the reprosentation corresponding to the basis (v,) of V, so that 
:'£(g) ~ (al)) ~ M. We have 

2X.(g) - (tr M)' tr(M') - X(y)' x(g') 

since M' = :'£10'). 
... ' This yields X('/(g) '" X(g)' 2X.(u) and thusX'l> ~ X' - 2X •• adilference 
lof characters. as claimed. 

Now .,(x) ~ [l". 10J ~ [X'. 10] - 2(X •• 10]' If X is not real valued. 
then 0 a [X. XJ ~ [X', I GJ and thus (XA. loJ '" 0 since XA is a constituent of 
X'. It follows that "(X) ~ 0 in this cas •. If X isreal valued. then I = [x'. l G] 

thus U:., I<1J a 0 or I and .,(X) '" I or -I. The proof is now complete. I 
(4.6) COl!.OLLAJlY Let (; have exactly t involutions. Then 

• I + t '" L ',(X)X(I). 
lllJrr~GI 

Where "(X) ~ 0 if X 04 i, and ,,(x) ~ ± 1 if X '" i,. 

Proqf 'fhi. is immediate since 8,(1) ~ I + /. I 
If N "" G, we have identified Irr(GIN) with. subset ofJrr(G). The follow· 

ing lemma shows that • .,(x) is well defined under this identification. 

(4.7) LEMMA Let N '"" G and let X~ Irr(G) with N iii ker X. I..<:l ,"(X) be as 
above and let ~,(x) be tho Gorresponding number computed in GIN. Then 
. • .,(x) ~ ~J..x). 
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Proot W" ha vo 

-I G
I 

I I x(g") ~ v,(x)· I 
r ReG 

(4.8) LEMMA LetxeIrr(GjandletAhe.linearcharacterofGwithA' - 'G'. 

Then v,(l,) v,().x). 

Proof Rec.1I that Ax"lrr(G) by Problem 2.6<b). Now 

I . I I 
v,«X) ~ I G I JG «xHg") ~ rGj ~ «g")X(g") ~ iGi I x(g') ~ v,(X) 

since ,!(i/') ~ A(I/)" ~ A"(II) ~ I.. I 
As an application of the Frobenius-Schur theorem. we prove the I 

following. 

(4.9) THF,ORO .. (Alperin"Pelr- Thomp,"n) Let 0 be a 2-group containing 
exactly t involutions. If t ;- 1 mod 4, then either G is cyclic or I G: a I ~ 4. 

Proof If 0 isabeli.n, then it clearly must be cyelic. We suppose G i, nol 
abelian and show that I G: G'I = 4. 

If Z(G) is not cyclic, choose K 5;; Z(O) elementary abelian of order 4. The 
sel {XE Olx' ~ I} is a union of co <cIs of K and hence41(t + I),a contradic­
tion. Therefore, Z(G) is cyclic and G contains the unique minimal subgroup 
2 of order 2. 

Since G' :> I, we have Z ~ C1
, Also G/Z is not eyclic 8it'lce G i$ not 

abelian. If G/2 ,.lbJi., Ih. hypotheses of the theorem, then IG:G'I = 
I(G/2):(G/2)'1 ~ 4 by induction and we are done. We may therefore assume 
that the number of involutions in O/Z is not .. I mod 4, 

We have 
:i: v,(x)x(1) t + 1 '" 2 mod 4 

XoIIlu(G) 

and 
I ",(x)x( I) ;0. mod 4, 

x~lrr(G);1.I:t."l 

where the second ~t.tement follows via Lemma 4.7. We conclude that 

(. ) I v,(x)x(1) " 0 mod 4, 
XII!' Irf\G);Z~ tnT l 

Now 1"1 C be the group of nne.r characters A of G which satisfy A' = 10 , 

For X ~ Irr(G), we have AX" lrr(G) and .ince 2 ;; ker A. we conclude that 
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Z $f. ker X ilf Z $f. ktr{AX). Therefore C permut .. (X e Irr{G)IZ '" ker xl and 
partitions this set into orbits ~,. By Lemma 4.8, v,(l,) is constant on each orbit 
.. i'x(1). 

Since 1~.1 isa power of 2. ~~conclude from Equation (t) that there ex"t, 
X E Irr(G).ueh that . 

(i) Z~kerx:' 
.. (ii) .,(x)'" o. 

(iii) x(l)lt!ll:;;; Z, 
, " .. ' 

where t!I is the orbit containing X. 
. Since Z " ker X, we have ker X ~ 1. Since G is not abelian. x(t) :> I and 

hence x(1) m 2 and 1t!l1-1. Therefore . .lx - X for all ,leG. 
Now let F = <D(G), the FraUini subgroup. If g" G - F. then there exists 

,\ E C for which A(g) to 1 and it follows th.t x(g) = O. By Lemma 2.29. we now 
haVt: 

4 ... x(1)' ;., [X" X,] - 10: Fl. 
....,., 

SillceG is not Cyclic, IG:FI;., 4 and we have equality above. This for.,.. 
X, - 211, where II is a faithful linear character of F. 

Since ',(X) .;. O. we know thati'i •. real valued. Therefore, I' is also, and 110 

IFI s 2. Thus IGI s 8 andhencc G;lli Ds or Q •. In either case, IG: G'I" 4 
as desired. I ' .," .. , 

'on; ~ 

A theorem of O,.Tauesky [Thciorem 111 11.9(a) in Hupperd Mtcrll thai 
the only nonabelian2:lroupeG for Which 10: G'I - 4 are the dihedral. semi­
dihedral, and' generalized quaternion groupe. In each of th_ groups, the 
number of involutii:itu! iiin fact _ 1 mod 4. 

A. another application of Corollary 4.6, we provo 80m. r •• ults of Brauer 
arid Fowler Ihatwett'oriainal1y ohteJniecjln'adilfereo\ way. 

, 1.':1:11',1 :' " f f • I •• 'J \" , ' " """":'","" ~ ," "~, ~ "', ' I ' 

(4JP) U!IoIMA. :Un~a;.<i~;; .. :a;..~'irbi\rary real numben. Then 

,·'i,·~'~; I ' 

'/~"I ' 

, . : .,' I ... .. 
.. ,.,',.,' .. ,' IaI.1,;tii(IaJ1 •. 

Thewell.Irn:~~~ Scbwai:.: htequaiiiy asserts that 
",';1'" ,,, :',', . , 

"'''<1:' a,b,j2's cr: a,')(! b,') 
, 

for rcal a, and b,. The lemma rollows by setting all b, - J. I 
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(4.11) THEOREM Assume IGI 0= 9 is even, and that Geontains exactly't, 
involutions. let Q! om (g - 1)/1. Then ':1.", ,\. 

(a) Thcrccxi.t, x ~ G, x '" I, with IG : «('l')1 ,. «'" 
(b) There exists real X € Irr(G), X '" I., with xli) ,. «', ' 

Proof 8y Corollary 4,6. 

0< (g - 1)/. ~ t,. L X(I). 
x~,s.o 

where 

Y~(x"[rr(G)lx~i and x" I.}. 

[n particular, s _ 1.'1'1 .. O. Now 

I' ,. (~X(!)), ,. s ~ ~G~'~s(g ~;/' 
by Lemma 4,10, It follows that 

; .'1 

and thus 
sa' ;;,; L1(1)', " 

go 

,.~. ' 

'.''{ 

,.'. 

Therefore. x(l) s • for .omc X e .'1', proving (b), " " 
Since s" k - I, where k ~ I [rr(G) I i. the total number of conjugacy 

c:lasscs of G~ we have . f 

,.1/ ~" ". 

and hence some nonidentity class of G has size ,:;;a~. This pr?ve.(a}. I>';' 
Recall that an element x ~ G is said to be real if x i.,conjugatein 0 to x-,\;;, 

It is a fact (which will be proved later) that the number of cla.se. of toal 
elements of G is equal to the number of reaLirreducible character •. 

Assuming this, it i. immediate from, the ,inequalitY' •• ':;;'; g ~ ,1 inth. 
above proof that statement (a) can be strengthened to guarant .. that a real 
XEG exists with x '" landIG:C(x)l ,..'. .. I:,'" n,:, I,,: 

(4_ i2) COROLLARY Let n be a positive integer. There exisi at most finitely 
many simple groups containing an involution with centrali~r of order n. 

Proof Lei G be such a g"oup with I G I ~ g, Then G contains at least gin 
involu~ions a.nd hence a. -:;: n in the notation of Thcorem 4.11. ~ 

8y (0) ofthat theorem,thore exist'" E G with I < I G: c(xll < n', There­
fore, G is isomorphic to a subgroup of the alternating group A,,;!.~ l' The result 
follows, I .-
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(4.13) COROLLARY Let G havcevcn order. 9 > 2, Theil G contains a prop­
er subgroup of order> (g)"'. 

Proof We use induction on IGI, First aSSume Z(G) - Z > l, [fIG:ZI 
'i. even, then there e.iSls H/Z < G/Z with 

IG:UI- I(GjZ);(UjZ) I < IG/LI'" < g'" 
and the resull follows, [f I G; Z I is odd. then G has a central Sylow 2-subgroup 
and thus has a normal 2-complemeo1. by a transfer theorem of Burnside, 
(Or see Theorem 5,6,) It follows that G has a subgroup of index 2 and the 
result follows. 

Now assume 7..(G) = I and let, be as in Theorem 4.11. Then 

I < IG:C(x)1 ",' 

sOme x e G·and we are done if III < g"l/J. Assume. then. that IX ;;: () l/~ and 
, • be an involution in G, Then / 

I < I G: c(.)1 ,. (g - 1)/, < yja ,. g'" 

the resuh follows. I 

We now wish to discuss thc quos!.ion of which real X E [rr(G) satisfy 
v:zCX) HOi + 1. The answer is interesting but does not seern to be very important 
in the applications or the Frobcnius-Schur theorem. The solution to this 

. :": . . problem involves some matrix theory. 
, Let U and V be C[G]-modulcs with base< {u,."., ",} and {v,. _',. vmJ. 
:respectivcly. An clement w IS U <8> V is uniquely of the form 

" w = L Q ,JII 10";I 
1.1 

and this defincnhc" x m matrix (a I)' We write M(w) = (a I)' for y E G, wc 
1'" .. ""mpIJle M( wg). 

" Let l: and 'D be representations of G corresponding to U and V respectiv<­
Iy, 'with respect to the given base:s. Write 

X(g) = (b,,). 'D(y) ~ (c",), 

Then 

(U j 0 v)g .;;;;;[ t~lf) 0 DJY = L hj"Cjil~~ ® IJq), ., , 

wg ~ L bIJ(llJCj,iU'l ® 1\,) 
I,j,~.q 
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and, therefore, 

M(wg) = N.(g)T M(w)'ll(g). 

(4.14) THEOREM Let X e Irr(G) be real valued and let ~ be 8 representation 
wh.ch affords X. Then there .xiots a nonzero matrix M such that 

N.(g)T MX(rl) = M 

for "II 0 e O. Furthermore, for any such matrix. MT = v,(X)M. 

Proq{ Lei V be a C[G}module corresponding to X and write W _ 
V ® v. Let M: W _ M ,(e) be as previously stated so that 

M(wg) = .'E(g)T M(w)N.(g) 

for w. Wand g € G. 
N~w W aff~rds the character X' and ex'. 10 ] = ex, x] = I and hence 

there ,s a, one-dl~cnslonal space of G-fixed poinls, Wo S W. The matrices 
M satlSfymg N.(g) MN.(g) = M are precisely the M(x) for X G Wo. 

In the proof of Theorem 4.5. we had a map": W - Wand we de. 
composed W = Ws + W .. where W. = (WE Wlw" m wI and W = 
(w E.Wlw" -w). Also, the. proof of Theorem 4.5 showed th.t :,(x) 
= J 'ff [X., Jr.J 0, where x. IS the character afforded by W,. 

We must have one cfthe following two situations: 

(i) w.!;;; WA• [XA. I.] m 1 • • ,(X) = -I; 
(iil W.!;;; w.. ex., I.J = O. ',(xl = 1. 

Thus if x € Wo, we have x· = .,(x)>:. 
Now. for we W we clearly have M(w") m M(W)T. Thus for Xe W. we 

have 0 

M(x)t ~ v,(X)M(x) 

and lhe resull follow~. I 

(4,15) CO~OLLARY Suppose X e Irr(O) i. afforded by..a .real representation. 
Then .,(X) ~ + 1. ' 

Proof Let l be an R-representat.ion which affords X and let 

M = L X(k)T l(k). 

••• 
It is clear that MT m M and l(g)T MXCg) = M for all g e O. All that remains is 
10 ,~ow tha\M '" O. For any" x n real matrix X. is it clear that the diagonal 
ontrtes of X X a.o "' 0, and .t least one of them i. > () unless X = O. The 
result now follows. I 

Products Q1 cru..ractara. II'l 

fly Problem 2.5(b), we know that it is po~sible that a real-valued irre­
dudble character X is not afforded by any real representation. Such char­
acters are exactly those for which v,(X) ~ - I. The proof of this seems to 
require some nontriYi~1 matri~ theory. 

If M is a square,' complex matrix, we write M' = NIT. and Slty M is 
unitary if M M" m rand M is normal if M MO = M" M. A standard theorem of 
linear algebra asserts th.t if M is nonnal. then there exists a unitary matrix, 
U, such that U·, MU is diagonal. 

(4.16) LnMMA Let D be • diagonal matrix, Then D ~ e' for some di­
agonal matrix E such that every matrix which commutes with D also com-
mutes with E. . 

,. : Proof Suppose 1l!I' .... IX, .~I)!. distinct complex numbers and fll, .. ·, 
p,'file ~re arbitrary. Then there existS a polynomial!such that!(~.J ~ ~I' 
We may the.dore choo8e! such' lhat !(~)' ~ ~ for every diagonal entry 
IX of D. Then E ~ J(D} has the d.slred properties. I 

, . " , ." t:' I! ,,' 

(4.1 '/) ...- Let X be aC-representation of a group, O. Then I is 
, similar to a repmritaiioD 'I) luch'thilt 'j)(g) is unitary for all 9 e a. 

I'. i'i r, ,'" , ':':. !~', ,',:: .: r'" -; (, 'I"', ~ ;' , 
, ,.!'roo! ,Let M"'&'~ 1(g)·l(g):,Then M" ~ M and M is normal. We 
may choose a unitary matrix U such that U - , M U is diagonal, Since U - I -

U·.weha~ 

(U-'I(g)U)" - U-ll(g)·U , ',', '. 
U-'MU= Ll,(g)"N.,(g), 

illiG ' 
and 

where 11 ~ U~lxu,Ii i. th.tef()~ no loss to assume thai M is diagonal. 
. The diagonal entri .. of l(g)'l(g), are .11 real and nonnegative and .ince 

"'(1) - I, it follows thatthediatpmal .ntrieo of M ore positive. We may there­
fore write M ",P"where f ill a nonllilllllliar _I diagonal matrix. 

"Since 1(g)·Ml(g) a M ro~;ajlli;E;!'<?lw~ have ' 

.:" ", VFn'~ltP.lQ'I(g)p·,) a /, 

Si~ (p!(g)P~ ')" ... I',~ 'X(g)* P,itfollows that'll R Pl,p- I is the desired 
r~tatiQn. I !','II"i"i' .. ,~,~;.,·.:. ii:','" ',' . 

(4;18) 'LI!U~" I \:At , 1"1' -..J 'ud :pT - P for a square matrix P. Then 
1'i I' P,fl~r\eQ- fo~~~~a~~~IQ~i\' "q .. ':'nHi: ," : ',', 

",.:1Proo! ';SiooOl";,1I ,1Iiiiu.I')','1;t,i~"normal aad we may writ. U- I PU -
D '':'1'1>' .wher~ Uij'tinltllry,ID'and'B'afe·'di"()ruI~ and cvcl')"matrix which 
cOilunutcs witli D 'alsocammuteS wilh E, Now DT - D, pT '" p, .nd 
U' _ U·'.Thi$yields" 

D "" D's (V-'PU)' - U·'PU - (J-'UDU-'U. 
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Therefore, U -I a commutes with V and hence also with E. It follows that 
E ~ O-'UEU-IOand .d 

From P'P _ I we obtain 1- V'V -15v and'it'follo"'sthatiho diagonal 
entries of D and hence of E have: absolute value t 'and E ~ E- I, Now let 
Q _ UEU-'. Thcn 

QQ-I ti (DEU-')(UEU-') - (UEU-Il' _ UVU- I -I' 

and the proof is comptete. I 
(4. t 9) THEOREM Lc'X" Irr(G) and suppose v,(x) ~ I. Then X is afforded by 

some real representation of G. 

Proof By Theorem 4.17. X is afforded by a representation I, such that 
l(g) is ~nitary for all g. G. Since X ~i, I and I arc similar :":,,d we may 
choose P ,uch that 1'- 'II' - I. Now . I . 

l(g)TP.{(g) _l{g)-'l(g)p ~ 1'.: 

Since v,(x) _.1, it follows that p T 
- I' by Th.ore"';4.l~· .' 

From the equation l(g)l' - pl~ we obtain p·l(g)· ~ 1-(0)'1'. and 
since 1(g)' m l(g)-'. this yields p.X(g)-1 H :£(0)-11". Thus Xl" = 1'.1' 
and ' .', .. j,.'," ~ ",]': .• ." .• "".:' ~.. .'.. ";:,1',, 

1-1"1' = P'IP - 1"1'1. ' 

By Schur's lemma, it follows that 1"1' - o.J for somo ~: Clearly. ~ i~ real and 
positive and we may therefore replace P by p/(Xi/l and assume p.p = I. 

Now Lemma 4.18 applie, to yield I' = Q((I for some Q and we have 

QQ .I.{ _ IQ'Q-I 

or Q-I.{Q _ Q- I IQ.ln other words. 'D - Q-'XQ is a real representation 
which affordS X and the proof is complete. I 

We may summarize lhe situation as follows for X e Irr(G); 
• .!!~ 

(a) .,(x) ~ 0 iff X i. not real; . '. ",." 
(b) v,(X) ~ I iff X is afforded by a real representallon; 
(c) v,(x) - -I iff X i. real but i. Ilot .•. fforded byany r~r~prcsc:ntation. 

Onefurther remar~ ,hould be made. H X to Irr(G)a:nd'~,(xr';' -I, th~ 
xli) must be even. This may be seen as follows •. The .nonz<Oro .. matrix M in 
Theorem 4.14 i. non.ingular by Scbur'slemma. H· .,(xl - ..., 1 then MT '!" 
-AI and .;.,. '·:;:i 

det(M) = det(M') = det(::-M) ;,,(-:I),(I'dct M.. , .• ;;;;; 

It folio ... that ( - I )'H' ~ I and nl) ia even. 

-- ~---~--------~----~~~ 

Problems S9 

We clost; this chapter with a discussion of the characLers of direct products. 

(4.20) DEFINITION Let G = H x K and let Ip and 9 be class functions on 
Hand K. respectively. Define X - I(> x .9 by X(lik) - l(>(liW(k) for II E II and 
k_K. 

Observe Lhat q:> x .9-is a class function of G. If t.p is a character of II. then 
under the isomorphism H ~ G/K, there is a corresponding character rP of G 
with K s;; ker';' and 'Nhk) ~ <p(Ii). Similarly. if 9 is a character of K. there is a 
corresponding character 9 of G. with .~(hk) = .9(k). It follows that I(> x 9 
.... <i>a is a character of G. 

(4.21) ,HEOREM LctG ~ H x K.Thcnthecharactersl(> x ~fo"pElrr(II) 
and 9- E Irr(K) are t:xactly the irreducible characters of G. 

Proof Let <P. 1(>1" Irr(fI) and 9. ~,_ Irr(K). I-el X - I(> x 9 and X, ~ 
<PI X 9,. Then 

It follows that the I(> x 8 are all distinct and irreducible. 
. Now 

I (I(> x .9)(1)' - LI(>(I)'8(I)' - (L IP(l.)2)(L .9(t)') 
tj! .. lrf(fI);!ol~lrr(K) «>.~ 'f' ~ 

-lflIIKI-IGI. 

and thus the I(> x .9 are all of Irr(G). I 

p,.oblem$ 

(4.1) Lei X and >/J be characters of G. Expr<ss dct(X>/J) in lerms of det X and 

del "'. 
Him It suffices to assume that G is cyclic. 

(Garrj~on) Let:f' be a class of G which is not cont.ained in any 
normal subgroup. Let K be the corresponding class sum in C[G] and 
the number of distinct value. of wiK) for X e Irr(G). Show that every 

i ... olem"nt of G Can be written as a product. of fewer than m clements of f. 

/ 
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~ 
Him Mimic the proof of Theorem 4.3 using the second orthogonality 

! relation. 

I 
'

ii' 'I • (4.3) Let G ~ H x K. Let "'. Irr(H) and .9 e Irr(K) be raithful. Show that 
'" x S i. faithful iff (I Z(H) I. I Z(K) I) = I. 

I ,: (4.4) Suppose G = H K with H 1;;; C(K). .1 
! 
J, 
~Ii 
~' I 
~'I 

! 

(0) Let X 'Irr(G). Show that Xu = 9(1)", and Xr ~ q>(1).9 ror some 
'" E lrr(H) and .9 ~ Irr(K). , . 

(b) Let 'P E Irr(H) and.9" Irr(K) and suppose that "'ffO( and 8."~ have 
a common constituent. Show that there exists a unique X e Irr(G) with 
Xu = 9(1J<p and X. = 1j>(l).9. 

Hint G is a homomorphic image of H X K. 

(4.5) Let G ~ H _~ A where A is abelian and lei rI > 0 with (IHI. n) ~ I. 
Show that X'" e Irr(G) for every X E Irr(G). 

(4.6) Let rI > 0 and assume that X'" e Irr(G) for every X e lrr(G). Show that 
G = H x A, where A isabelian and (I HI. nJ I. 

Hints (aJ Let d 
(IGl/d,n) I. 

(IGI. n). Show that it i. no loss to assume that 

(b) Let A ~ n"',,(Q) ker i'). Show Ihat A = {g ~ Gig's 1} 
IAI =d. 

(c) Let If = n(ker xix E Irr(G), X'" ; 101. Show 10: HI = d. 

and 

(4.7) Let V be a C[G}modulc with basis (v" ... , v,) and let p be a prime. 
Let W = V ® ... ® V(ptimes).ndder.ne~on Wsothat(x, ® ... ® .x,l' ~ 
.<, ® .<, ® ... ® xp ® x, [or all x,e V.I,e"beaprimitivepth root oft in C. 
Let W, = {WE Wlw' ~ 8W}. Show that W, i. a IC(G}.ubmodule of W 
which affords the character X, = (x, - X"')/P, where X i. the character 
afforded by V. Conclude that X'·' is a difference of characters for all m :?: 1. 

Hint' Let 11" = {v" ® . " ® v,. I not all iJ are equal) .. For we 11". let 

W 1:5 W + 1:-IWoll + 1:- 2 w,.2 + ... + ,,-lp-lIw«,-I, 

Now (a) permutes 11" inlo orbits of size p. Let 11"0 be a set ofrepre,entative. 
ofthe.eorbits. Then {liilw E 11"0) isa basis for W,. 

(4.8) Let G be. p-group with Frattioi factor group of order :?:p"-'. Show 
that the number of elements of order p in Gis .. - 1 mod p'. 

Hint Mimic the proof of Theorem 4.9. Use the fact that ',(x) i. an 
integer (Problem 4.7). 
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(4.9) If X E (rr(G), thm 1',(x)1 :!: 1. Show that no ab.olute bound on v,,(X) 
exists for any n > 2. 

'Hint. There: exist groups of prime exponent p If" 2 and of exponent -4 
with irreducible characters of arbitrarily large degree. 

(4.10) Let V. W, V,. and W, be F[G]-modulel1 ror an arbitrary field f. Fb 
a particular F-basis in each of these modules and ,construct V ® IV.and 
VI ® W, 8S was done for C[G).Now SUp~iIC.~ V - V, and P:W - WI.are 

, module homomorphilms~ Show tha~ there exiSts a module homomorphIsm 
y.'V® W .... V,®W;suchlfui,fji(6® w) "lII(v) ® mw)rorve.V a~d we W, 
Conclude that V ® W is det.,...mned up to module ,somorphlsm IOdepend­
ently of the choice (If baSes:' 
(4.11) Let G be simple aild let S "Syl,(O) be elementary abelian of order q. 
Suppose S ~ CG(x) for.lI ". 1 #< "G S. Show that .,(x) = I for all X e lrl'(G) 
and that XIX) = X(I) - q for X l' I. and x • S. 

Hint Fii'jlt show that G conlains exactly IGI/q involutions and thallhe 
remaining elements of G haY<: odd order. T~is is done without char.cte~s 
ushill the fact th.t if x,.v are nonconjugRte ItlVolutlOno, lhen Iz(x, y»)I18 
even', ".,. 

, Note Thisprdblem'i, ~nti~~';fas Problem S.W where it is proved that 
laP .. q(q'.!.;'l)(q 'I- 1). ' .,' 

(4.12) Let x. >/1,.9 E ilr(G). Show'that D:>/I, .9] :r> .9(1). 
" .. 1 __ '. I, , ~'~ A p.; ".«--: '" ~ , 
~ C""'''1'cJ,......:.~ .. '401\. ~ II..n"""v"",~,..:, (, ""'VIt ! I '., I ')1 
(x:l')) b: ('110,;)1,)) -') I':;:: "),)1" (:r,1Y'1»))'(Z;1'1I;1i111!i'(~)1 

u j~& _ '. I 

IG.J'. (;:::11'(1)1'1' d(,), 1(,1"'/(') "'.b, 
,: :. 

,,,'" 
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5 Induced characters 

: " 

r • 'r. ' !',: 

, ~: :, " \ 

,,' ", :':" " ", 

Let H iii G be a subgroup. Given It chataClet! X .of. G •• wo .. o.\I~ed the 
character XH of H by restriction. In this chapter we study an approlUmately 
dual proces., where characters of 0 are induced f~om.:cp~rac1crrs of H. 

(5.1) OEFINITION Let H !ii G and let <p be a class function.of H. Then q>". 
the indl/ced class functiQn On G, is given by . ..' . 

q>G(g) 1 L '( - 'j, iHi "a q> xgx 

Where' <p' is defined by ","(h) = <P(h) if h " Hand <p'lY) - 0 if Y ¢ H. 

Observe th.t <po is really a class function on o and that rpG(I) .. 10: fll",(I). 
Another useful formula for IP"(g) is obtained by choosing It transversal T ... 
for the right cosets of H in 0 (that is, a set orfl'prfl$Cntati~ for t~ese cosets). 
It is then easy to see that . . . . . . . 

IP"(g) - 1:rp'(19t -').. ,I 

"r 

I 
(S.2) Ul .... ~ (Frobe.ius Reciprocity) Iit.H·1;; 0 and.upPo~ that IP i.' 

1 
clasa function on H and that .9 is a class function on G. Then . 

["' • • 9R] - [",G,8]..· . 
! Proof We have 
i' 

I
II I .. ~ G - I I .:" .:" '( - I\QI_) 

[",G. 9) w '1"'-1 t.. '" (g)9(g) - '1-;:"1-181 t.. t..IP xgx """. 
J v ""G v , .. 0 •• 0 

ell 
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Setting y ~ xyx-' and observing that .9(g) = S(y), we obtain 

Gil " " ,"~ I" _ ['" • BJ ~ -IGI-IHI r... r... 'I' (y)8(y) ~ -IHI r... ",(y)9(y) = ['P.9,,). I 
yC!G ,r,;.C) J!lilJl 

(5.3) CO~OLLARY Let JJ ,; G and suppose 'P is a character of H. Then 
",G is a character of O. 

Proof Let x E Irr(O). Then XH i. a character of Hand thus [",", X] = 
[<p. XHJ is a nonnegative integer. Thi. proves the re.ult since 'Po ". 0, I 

(S.4) COROLLARY "Let If !;;; G and suppose 'I' G Jrr(II). Then there exists 
X a Irr(G) such that", is a constituent of XH' 

,Pr~f Take X to be an irreducible constituent of rpG. Then ) ; 

the result follows. I 
0;0 [",G, x] = ['P, x"J J 

(5.5) COROLLARY Let 0 be abelian and suppose JJ ,; G. Then every 
l E Irr(H) is the restriction of some I' € Irr(G). ,." 

Induction of characters is closely related to the transfer map from a 
i,' ;group into an abelian faclor group of a subgroup. Many of the re.ult. prov­
'-' transfer can also be proved using induced characters. We give one 
":' example of thi, now. 

:' :<5.6) THBOR€M Let G have an abelian Sylow p-subgroup. Then 

:', IG' n Z(G)I 

, ,',.' i~ not divisible by p. 
,'" , 
'Proof Assume Ihe contrary and choose U 50 0' n ZIG) of order p, 

U,; P e Syl,(Gl. Let la Irr(U), 1 ". lu. and choose J4 "lrr(P) with 
, l. Now write 

1'0 = L: a,x 
x .. lrr(G) 

m4~o,~~r.v. Ihat 11"( I) - 1'(1) I (I : 1'1 - I G : PI i. prime to p. Therefore. thoro 
such that a, .;. 0 and p,j):( I). We ha vo 

. , 
, 1 r", o '" I:I'G, xJ - 1:1', xPJ 

thu$A is a constituent of XU' Since U ,; Z(G), we have Xu ~ x(l).\ and 
X)" = .\,(1'. (Sec Problem 2.3.) Since U ,; G', we have (det xl" ~ I" and 
l"" ~ Iv. Since p'(X(I),.\ '" 1", and lUI = p, this is a contradiction 

provo. the theorem. I 

I, 
i' 
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Explicit computation of induced characters is e~tremely useful for the 
conSlr..etion of character tables, despite the fact that "," is usually reducible 
even if ({I is irreducible::. [Note that if tp is reducible. then ((.IQ is necessarily 
reducible since ((,01 + (p,,Yl ~ CPt a + fP2 (I,J 

Given H ;; G, '" a character of Hand 9 e G, an efficient way to compute 
","ffl) explicitly is to choose repre.entatlves, x" ... , XM for the classes ofH 
contained In CI(g) in G and to use the formula 

a C (g ~ q>(x,) 
'" (9) = I G )I'~I IC.(x,)I' 

where it is understood that ","(g) 0 if H " CI(o) ~ 0. Thi. formula i. 
immediate from the definition of fPo siuce as x runs over 0; xgx- 1 = X, for 
exactly IC,,«(I)i ".llIes of x. 

Wt: shall now construct the character table of G = A:!. There are five 
conjugacy clas!\es; one each of elements of order 1,2. and 3 and two or ele­
ments of order 5, It is convcnienllo label these classes 1,2,3,51, and S2 in 
the table. Let XI 01';0 la' We havc:"-

Cia •• Jf': 2 3 5, 5, 

I qx) I for xe Jf': 60 4 3 5 5 
1Jf'1: 15 20 12 12 

X,: I 1 

Now let.1J ~ A.;; G and compute (I.)". We have 

(1.)": S 1 2 0 0 

using the above formula. [For instance, if o(g) ~ 3,thoro are two classes in H 
of elements conjugate In G to g. If XI and x, are representatives of the •• 
elassc<, we have IH(x,) ~ 1 and IC,;«(I)i = 3 = I CH(X,) I and thus (IH)"(g) - 2 
as listed.] 

Now [(1H)", I.] = [I., I.] = t by F'robenius reciprocity and thus 
(l,,)G _ 10 i, a character. We call this character X.' Thus 

X. = (1"l" - 10: 4 a 1 I \. 
Direct computation nOw yields [X., X.] = t and we have found an irre­
ducible charactor. 

Next, let ,\ be • nonprincipailinear character of H - A. sO that .I(x) = 1 
if Q(x) m I or 2 and ,,(x) = w = .','/3 for one class of elements of order 3 in H 
and '\(x) = w' for the other class, We get 

ii, ~ lG: 5 I -I 0 0 

.ince OJ + ro' = -\. We compute eX" x,] = 1 and so X, e lrrlG). 

Now let K be .: cyclic oubgroup of G of orciN 5 and lei I' 5 'rr( K), I' '" 1 •. 
Tht da •• 5. of,G contai,," a pair of inver'" ehlmenls of K, say " and x-'. 
Cho".., I' 110 thatp(x) .. '.' .. ' .... ,.,!llnoex' andx-' lit In Iheet ... 5, we h .... 
, ,(.\>1' ' , ,:;'," ';·'i.'·;"!"r ." "".. 2 ; , 
:, y)\,::,. ,:', ,I," ". :;~2'\'~1191((:~'.;-'" it +,8. 
"')"</1'"'' , ',' '""-".:,,,,,, ,"\ ': ":,.'.', . I 

. ;.;91mputatJQn yields (JIG, X.) .. " land Ihm 

";::';~'1~';: III ',:$l;;-Xs!;l!7":i:-l :1. 8+«" G2+t.~ 
, ,i;;:~';~ara~et:' :i,I:''.:''II- 'j'., .'!··;'i::,('~'i 

"Further computatibn yields that (JIG - x., x.] 5 I and hence 

," X, - fAo - Xi - X.' 3' -10 • + e' + I e' + " + I 
i. ~ ~haracter and [X" X,] = I su that X. is irreducible. 

Finally. replacing I' above, by v E Irr(K) with v(x) = c' yields 

l/I,' 3 -I 0 e' + .' + t ,,+ c· + I 

i. irf¢uCible and we have found all five irreducible characters of G. 

". p, 
, J., 

·iWe now consider the module theoretic interpretation of induced char-
acten~ 

, l'· 

(5.7) t)~IIINITION Let V be a f(Gl-module. Suppose V ~ W, ;l- ... + W. 
where the W, are sub~".ces of V which are transitively permuted by the 
action of O. Th~rt V te Wl , + ... 4- ~ is a.n imprimitillity Jffcompo.'dtion or v. 
If V i. irreducible and, hilS no proper imprimitivity decomposition (that is, 
with k > I), then V is a primitilJtl f[G}module. 

·We emphasize. thaI if. V .. W, + ... + W. is an Imprimitivity dccom­
position of V with k > 1, then the W, are definitely not F[G]-oubmodules of 
V.lnlhissituation,letH _ {geGIW,h - W,},then W, io.F(H}module. 

(5.8). 'OIIJOREM Let V - W, + ... + W. be an imprimitlvity deromposi­
lion of the F[G]-module V, Assume F !ii C. Let H be the stabilizer of WI' 
Suppose V alford. the character X of G and WI affords the character II of H, 
Thcn,x ~ .9i1" ',-!"" ' , 

, ,~lifrroof Let l' be'.'~'righl transversal for H In G and write W 5 W,. Then 
WHuns over 'the 'w,'u t runs oVer'T and . 

'.I\fl.' ' •.. ~'.t:~ \",.;""., v.' 'r . We. 
, :'! I.T 

Cb60se a basis, ",,,'i.i. \ w. for WSQ that (w,tll $ i $ m, Ie T) iu basis for 
V;'Le! 9 e G. WecOnipute xlD) using this basis. 



, For leT., the contribution of thobasil,~oc:tors,w,t;,toi)!(g)'wilLbe 2ero 
unless WIg .' WI. that is. Igl -I Ii! H. Aasumil\l'lgI,T.li~,h,6·H.·,write :w,h ,­
L41}w} so that }),,_, au - 8(lgI-'). ,Now;"'(w,I)g- 'Wo'hl:,.'!;,4IiW/, and 
hence the contribution of 11',1 to )!(g) is au, Th,erC!fore. !hetotal contribution of 
the 11',1. I :\'i i:\'i m. is 9(I,gl-'), It follows that x(g) -t.T9'(191-') - 96

(0) 
as desired, I 
(5.9) THEOREM Let H J: G and let W be ,'IUI F(H)-module. Then there , 
exists an F[G)-module V having an imprimitivjtydecomposilion V ~ r· K) ... 
where H is the stabilizer of WI and W, ~ W<~"f,~ffl'II),od,U!1II'1 ",: , ',): 

Proqf Let V be the extetnal direct sum of I G: III copies of W as 1I!l" 
F-vc>::torspace. Let T be a right transversal for H in G and assume 1 Iii T, Let" 
W ® I, for 16 T. denote subspaces of V. each iSOMorphic'to W. such that 

, ' ,'" I' ' V-E, .. ,.(W®O, Fix isomorphisms ",: W_W®t"ano'let'w®t 
denote ",(w) so that W®t ~ (w®tlweW). " 

Now for IV" Wand g" G. define w ® 9 Ii! V as follows, Write 9 = hI, 
with hE H and leT. and set w ® 0 = wh ® t. Note that for II' e W: x 6 11. 
and 9 e G, we have wx ® 9 = w ® xg, (The usual notation for what we have 
constructed is v ~ W ® FIlii F[O].) 

We now let G act on V by defining (w ® 1)0 ~ IV ® 19 for 9 E G. Observe 
that (w ® B,)g, w ® B,B, for all B" g, E G. Extending this definition by 
linearity gives V the structure of an F(G)-module and 

V~r'W®1 
loT 

t, ':, ': 
is an imprjmitivity decomposition, . ' , 

Clearly the stabilizer of W ® I is H and the map «,: W - W ® I is an 
iso~orphism of F[H]-modules, The proof is complete, I," 

.. , 
If SEi HI. then W ® " ~ W ® t in the above constructioo and it isreason­

ably clear that the module V is independent orthe choice of coset represent­
atives. We write V l1li: We;, Note. however, that we have not yet proved that 
W. is the unique (up to F[GNsomorphism) F[G)-module which satisfies the 
conclusion of Theorem 5,9, 

In the spe.;ial case that F = C. let Wafford the character 8. Then by 
Theorem 5,8. it follows that any C[G]-module which satisfies the conclusion 
of 5.9 affords X = aG, This proves uniqueness in this Case: The general 91\l1e i~ 
left to the problems, ' ' '" " , ! 

Note that Theorems 5,8 and 5.9 provide an alternate proof ofth. fact that 
induced characters arc characterS. Another consequence of these results is 
th.3t if X E Irr{G). then X i. alforded by a prilJlitive module iff X .. 9G for an~ 
character 9 of a proper subgroup of G, Such X are callt;d primilivecharacters. 
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(S,IO) ~1lI"~'TION Let X be a characte,' of G, Then X is mOllomial if X m .!G. 
" where ~ Is a hnear character o1some (not necessarily proper) subgroup of G. 
'The group G is an M-group if every X E Irr{G) is monomial. 

, Note that if X is monomial, Ihen by Theorems 5,8 and 5,9, X is afforded by a 
module which has an imprimitivity decompo,ition into subspaces of di­
,mension I, It follows that X is "Iforded by a representation :£ with the prop· 
erty that each row and column of .~(g) has exactly one nonzero cntry for 
,each 9EG. 

(S.lt) LEMMA Let 9 be a character of If ~ G, Then 

ker(8°) = n (ker .9)'. 
HO 

Proof Let X.:: aG
, Then 9 E ker X ill' 

L a'(xgx-') = L 8(1), 
x«G xcQ 

Since 19'(xgx-' )I:\'i .9(1). we conclude that gEker X iff ,9'(XflX-I) ~ ,9(1) 
for all X E G. ThIS happens )11' g .. (ker 9Y for all x and the proof is complete. I 
(5, 12) TH~RBM Let G be ,an M-group and let 1 J, < j; < ." < ,r. 
be the dlS!)nct degree. of the Iffeducible characters of G, Let X E Irr(G) with 
x(l) m fI, Then G'" !ii ker X. where 0'" denotes the jtb term of the derived 
series of G, 

, Proof Ifl,. l,thcnxislinel,randG' ~ ker x,Assume; > I and work by 
, induction on j, If t/t E Irr{G) and t/t(l) < x(l). then ,p(1) 1: for j < j and 

G<I-I) ;; G')' !ii ker ,p, ) 
, Since 0 is an M-group. we may choose H < G and linear A E Irr(H) with 
X ~ ~Q, Now [(In)G. I.] ~ [1/1' I,,] ~ I and thus (III)" is not irreducible, 
If t/t is any irreducible constituent of (I uf. then 1/1(1) <: (11/)G(1) ~ 10: II I = 
AG(l) ~ x(l)and thusG,l-1) s;; kcr >P, It follows that Gil-I);;; ker((ln)") s;;: 1/ 
by Lcmma S.l I. ~\SA. 

Now GIf) !: It s;;; ker). and since 010 -<l G. we have .. Ii::)\ ___ (,~,) ". 
/::$ "1:1~ ", , 

0(1) ~ n (kcr 2):t m kt:r X ".-' ~ (~:7>lr} ',I~; 
JI:CI (, ~;) ~:~;C:;'."': / t~ 

'C ,~nd the proof is complete, I <:''',:,.~ , :' ,., .,' / 
(5,13) COROLLARY (Taketa) Let G b. an M-group. Then G is solvable,:' 

It is not the case that all solvable groups are M-groups, [The smallest 
counterexample i. SL(2. 3) of ordor 24,] In Chapter 6 we shall discuss SOme 
.ufficient conditions. There is no known charaoterization of M-groups other 
than in terms of characters, 
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We shall now discuss some of the connections between charlleter theory 
and the theory of Permutation groups. Suppose the group G acts on the 
finite set n. [n other words, for each ~ E nand g Iii G an elen\~nt '" dl i. 
defined such that ~, ~ ~ and (~,)' ~,. for ~ E n and ~. h ~ G. For ~ ~ n, We 
,hall use the notation G. {g E GI~' ~ ~} so that 10: G I - Il!ll, when: l!l is 
the orbit containing ~. ' 
. Let G act on n .. For g." G, let X(g) - I {« e nl~' M ~JI. The nonnegative 
mteger valued funchon X IS caUed the permutation character IISsociated with 
the action. To see that X really is a character, let V be a C-space with a ba$i. 
identified with n. Let G act on V by permuting the basis. This mak .. V into 
a C[G}module called a permutatim, module. It is clear that v afford. X. 

(5.14) LEMMA Let G act transitively on n, let a" n and let H ~ G . Then 
(lilt' jg the permutation charactet;- of the action, ~ 

Proof Let V be the permutation module with basis O. Then V_ 
L . hnCP is an imprimitivity decomposition for V. The result is now im­
mediate from Theorem 5.8. I 
(5.15) COROLLARY Let G act on n with permutation character X. SuppOse 
o decomposes into exactly k orbit. under the action of G. Then [X, loJ ~ k. 

PrMf Write 0 - U:., Cl, where the Cl, are orbits. Let X, be th. per· 
mllt~tion character of G on Cl, ,0 that X ~ ~ x,. For IX e Cl,. we have X, -
(I.,) by Lemma 5.14. Thus [X,. 1.] ~ [(1 •• ) .1 0 ] - [I •• , 10 .] M I. There­
fore. [X. I.J ~ L: Cx" 10J ~ k and the proof is complete;' I 

Corollary 5.1S can also be proved as follows. Let al, be as above with 
U Cl" Then I l!l, I ~ IGI/IG,I. Now let 9' ~ (lX. g)iun. g E G, lX' ~ IX) and 
compute 19' I two way •. We have 

and the result follows. 

(5.16) COROLLARY let G act transitively on n with permutation character 
X. Suppose that IX e n and that 0, has exactly r orbits on n. (One of these i. 
(~}.) Then (X, X] ~ r. 

Pro~r We have 

r ~ [Xo •• loJ = Cx, (10.)0] ~ [x, X] 

by 5.15. 5.14 and Frobenius reciprocity. I 

Induced clutractere 

;The integer r in CQrollary .05.16;' called the rank of the transitive Beliol!. 
Recall thaI G i. doubly tranaitiVCI(or 2·tnlluitve) on n if 101 2: 2 and G. is 
tranaltive 011 n""{~};'tlult ;"1f.r·"_,2,. 
(5.17) COII.OU,AII.Y LefG'aet ann with permutation character X. Then the 
action is 2-troniitive iff X .. 1o + '" where y, e lrr(O) and y, rF IG • 

. i Corollary S. t 7 i. oftenllldu'f for'finding irreducible characters. For 
inslo.nc<:, ilshows tbat'th. symmetric group:t, has an irreducible elulractor of 
d"Ii"C n - I for n :l!:Z, and tbilt·.thi, character restrict. irreducibly to A, 
for n :.: 4. . . 

We noW consider th. qumionof finding (not necessarily normal) sub­
grOUfJ'!of a group G from informalion about it. characterS. 

SuppO.e wo wish to prove that G bas 8 subgroup 11 of fairly small inde •. 
This could be done ifthe character (In)· could be r"",gnized ... uch. Ike.use 
(I H)" i •• transitive permutation character (of the action on the sct of right 
cosetlJ.of H),there are a numbtr of n...,......ry condition, it must satisfy. 

(S.18) THEORSM Let H ,. G and lei X ;. (1 H)·' Then 

I, (a) x(1)IIGI; 
(b) [x.y,) S y,(I)for>/lelrr(G); 
(0) [X, 101 .. 1; 

.',,(d) .. x(g) ill loJnonnegative raliOllal'int.gcr (or all 9 e G; 
.I;(e)· x(g) s 1MI"J for 9 II G and inlell"'" m; 
iVI x(g) - 0 ifo(g)-I'IGI/x(I);' . 

. ,(a) x(g)ICl(g)I/x(I) ill intesral for all g e G. 
Proof MOlt of tbesea...molll .reimmediate from the fatt tlult X i •• ;;. 

transitive permutation character. Statement (b) follow. since l 

[X. >/IJ .. [(I H)·' y,] s [Iff' >/In] :s: y,(I). 

Statement (f) follows .ince IHI ~ 101/;«1) and if o(g)kIHI, then no con-
jugate of 9 lies in Hand 80 (l8)°(g) m O. . 

To prove (g), let CI be the set of right eosets of H so that X is the characler 
of the action of G on n Let· :I' ~ a(g) and let 9' = «~, x) I ~ En." E X", 
and .. " _ a). Since X is constanlon JI", we have 

,. < .. 1X"1x(g) .;. 1.4"1 - L: 11' J"\ G,I. 
.);,':'! . l,~' , ' ' •• n 

s'iriccaU' G : &reCi:iriJupte' in' O;'I.:t'r'lG.1 ;. m is independent of ~ and we 
hit'Ve'IJI"Ix\u) .. mlnl""m;«1~'proVin8the result. I 
. : •. I,,' '" \' ',I ",', '~d" ' 

,., The necessary conditionssiven in Theorem 5.18 are definitely not suf· 
ficient to guaranl~ tlull X ~ a pennutation character. For e~ample, tM 
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.imp~. group M n, of order 443.520. has an irreducible characle.r of d~gree 55. 
The character obtained by adding the principal character to It satisfies the 
conditions (a)-(g) and yet M" has no subgroup of,inde.56. ~. " 

The fOllowing re,ult can often be used t'l ,find pro~r .',~bgroups of a 
group. 

(5,19) T"eoKllM (Brauer) Let X be a character of G with [X. I.J ~ 0, Let 
A. 8 '" G and suppo,e 

[X .. , I.J ,. [XB. IBJ > [x • ...'., 1'0'). 

Then A and 8 generate a proper subgroup of G. 

Proof Let U be a C[G)-module which afford. x.and.letY, W; and Y be 
the subspaces of fixed point' of U under A, B and A 1':1 B ~pe<:ti.v.ly. Then. ( 
V~Y,W~Y.and .", ~j'~':" -:1' 

dim V + dim W ~ [XA' IA) + [X., I.] > [xAoO, 1.'0.J"- dim Y, 
0, I 

It follows that v, r. W oF 0 and thus <A, B) has nontrivial fixed point. on U. 
Since [x, 10 ) ~'O. we conclude that <A, B) < G, I 

An example showing how Theorem 5,19 can be used is the following 
proof that A, isthe uniqucsimpI< group ofits order. [Since I A.I ~ I PSL(2: 9) I, 
it follows that A, ~ PSL(2, 9),J As is often the case when try,ng to Idenhfy a 
particular group up to isomorphism, there is a great deal of tedious and de­
tailed work involved, Since the result hardly seems to be worlhthat much 
effort, the proof which follows is somewhat more sketchy than most in this 
book, 

(5,20) THEOREM Let G be simple and suppose I G I ~ 360 - 2' . 3' , 5. 
Then G ~ A., 

Proof SupposeG,,"; Gwilh IG: Gol D k > I.ThcnGi,i,omorphictoa 
subgroup of the alternating group A" Therefore k ~ 6 and the result follows 
if we can find Go with k = 6, , ' 

The only divisors of 360 which are ;;g 1 mod 3 arc: 1, 4, 10, and 40. Let " 
PESyI,(G) and N ~ NGW), We conclude that IG:NI = to or 40. By 
Burnside's transfer theorem, N > P and hence I G : N I IIOF 10. 

Now suppose P 5 M -< G. We claim M ~ N. If not, then 1 < 
IM:M r. NI:;; to and hencc IM:M r. NI- 4 or 10 by Sylow's theorem, 
Since the Sylow 3·,ubgroup" of G generate all of G, we ~v.1 Syl,(M)I < 10 
and thus 1M: M r. NI ~ 4 and IG: MI divide. 10, Thus IG: ~I - 10 and. 
M n N ;:::: P. Now application of Burnside's theorem to M Ylc:lds K ~ M 
with IK I - 4, Thus 81INo(K)1 and P '" N.,(K) 00 that IG: N.(K)I .. 5. Thi~, 
contradiction showt' M ~ N as claimed. '" '. .1. 

........ -~- .,,~-~--

--- _._._--------....... 
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Now let p .. P, ESyI,(G) and set D ~ I' r. P" Thon 1', ,;; N(D) '0 
that N(D) ~ N. However, P ,;; N(D) and we conclude that N(D) = G '0 
thatD ~ 1. 

Next we claim that G contains no clement of order 6. If x is an even per­
mutation On to points and o(x) I: 6, then x must contain a 2-cycle and x~ 
lixes at least two points. Since: no element of G of ol'der 3 lies in two distinct 
Sylow 3·,ubgroups, the claim follow" In particular. NIP act, faithfully On p, 
Since the automorphism group of a cyclic group of order 9 has order 6. it 
follows that P is elementary abelian. Furthermore, each involution in N 
inverts all elements of P. 

Now P ~ C(y) for <ach I #- yEP and it follows that N has exactly six 
conjugacy classes fmd thus exactly two nonlinear irreducible characters each 
of degree 4, If 10 .. X e Irr(G), then XN must have one oflhese as a con,tituent 
sincc N' :t kor x' Thereforo x(1) ;>: 4. 

Let XElI'f(G) with X(I) odd, Since 4{X(I). il follows ,hat XN has a linear 
constituent.< and'fhus X is. constituent of .<G, Thorefor<. x(I):;; .<G(I) ~ to 
and if X" IG we have X(I) ~ 5 Or 9. 

We will show that G has an irreducible character of degree S. From 
LXi01n(iJ) X(l)2 = 360 ;;;;: 0 mod 4, it follows that there exist at least three 
nonprincipai irreducible characters of odd degree. It suJilces to show that 
there is at most one ofdegr« 9. In fact weshow that if X e Irr(G) and x(l) ~ 9. 
then X isa constituent o[(1/\l. Jndee:d. X is a constituent of Ai"; for some linear 
character.< of N, Thus.<G ~ X + 1'. where 1'(1) ~ 1 and thus 1< ~ IG' Since 
UtN. 2J .. 0, it follows that 2 ~ I N as claimed, 

Now fix X e Irr(G) with X(J) = 5. Then XN ,..has a linear constituent and so 
[x,.~ I,.] "# O. Lel v be a\nonprincipallinear const.ituent of XP' Since every 
element of P is real~ XI' is real valued and [Xf" v] ;;; [XI" v], Let U ~ ker v, so 
that lUI ~ 3, It follow, thal [xv, luJ ;>: 3 and hence by Theorem 5,19, any 
two conjugates of U generate a proper subgroup of G. Note that we can lind 
ten conjugates of U such that no two of them centralize each other. 

Let V be a conjugate of U which dot:s not centralizt: V, and It:t II = 

<U, V) < G, If IG: HI ~ 6. we arc done. so assume that IHI < 60, 
" Now V eSyl~\(f:l) or else P ~ Hand tiHlS If ~ N. This would imply 

V .. I' which is not the Ca,e. Since U. V" Syl,(fI). it follows that 3 x 4 or 
3 x 10 divides I HI and thus I III ~ 12.24. or 30, 

If I H I ~ 30. then ,hcre exi,t; S "'" H w;,h I S I ~ 5, Therefore,l e : N(S) I " 
, , I mod S and divides Ie: HI ~ 12, Thu, Ie: N(S)I ~ 6, We m'ay assume that 
" this does not OCcur and henct: I H J :::::l. 12 Or 24. The only group of order 24 

~.: : which is generated by elements of order 3 has a normal subgroup of order 8 
. thus contains clements of order 6. We conclude IHI- 12 and there 

Ii"; .. '''''lSlO K...t;I H, elementary of order 4. 
Next, we claim [XH' 1 HJ ~ 2. To see this, we use the fact that the unique 

;;;..,-- -- - --.-
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nonlinear irredukible character .9 of H has degree 3 and is real. It follows that 
[.9 v • Iv] - I and thus XH. 9 +)" +~, where (~,)v - Iv. It follows that 
A, ~ IH and the claim is established. Also [xv. Iv] - 3. 

Now choose W conjugate to U with W ,; Hand W not commuting with 
U. Let L = (U. W). We may assume ILl < 60 and thus ILI- 12 and 
H n L = U. Since (X". III] = 2 = [XL. IL]. Theorem S.I9 applieS'again to 
show R ~ (H. L) < a. Since R it N. it follows that 9-1'IR I. Reasoning as 
before. I R I " 24. Since 1211 R I. this forces IR I = 60 and the proof i. com­
plete. I 

It i. often convenient to be able to write a character ofa grou~in term. of 
character. induced from linear characters o~ subgroups of. speCified type. 
For example. an important theorem ofJlrauer (which we will prove in Chap­
ter 8) as •• rts that every character i8 a l-Iinear combination of characters 
induced from linear characters of nilpotent subgroups. For now we consider 
only rational valued characters and cyclic subgroups. We prove the following. 

(5.21) nIHORp.M (Arlill) Let X bea rational valued characterofG. Then 

~ a" 1 G 
X ~ ,,-'IN(H):HI H' 

where H runs over the cyclic subgroups of G and aH e Z. 

The proof of Artin's theorem depends on a well.kno.wn result of alg.-. 
brai. number theory. namely that the cyclotomic polynomials are irreducible 
Over O. In other words. for each positive integer II. all of the primitive nth 
roots of unity arc conjugate over Q. (Thi, fact i •• Iso needed for Problem 3.11.) 

(5.22) LEMMA Let X be a rational valued character of a and let x. yea 
with (x) = (y). Then x(x) ~ xtv). 

PrOQ/ Let n ~ o(x) = o(y) and let e be a primitive nth root of unity. We 
have y ~ xm. with (m. II) ~ 1 and thus em is a primitive nth root of unity and 
8" = 6' for some automorphi.m " of Qte). 

Now x(x) ~ 1:f!.'/ s,. where each r., i. an nth root of unity and hence i. a 
power of e. We have 

X(y) = x(xm) ~ 1: er = I st ~ X(x)'. 

Since xIx) is rational. we have X(x)' ~ X(x) and the proof i. complete. I 
l'ro%/5.21 Define an equivalence relMion " on 0 by x !I! Y if (:<) 

and (y) are conjugate in a. It follows from Lemma 5.22 that X is constant on 
the equivalence classes under == and thus X. is a l-Iinear combination of the 
characteristic functions of lhese classes. 
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Let 'C,• 'C" ..•• 'Cm be the distinct (!'!!)-classes of 0 and let "" be the char­
acteristic function of 't, SO that ~x) .. 1 if x e Ii, and "'~x) = O. otherwise. 
Choose representatives x, e"~.~nd"~~ H, = <x,) and n, ~ IH,I. We h.ve 

(I)' . . 1",1"10: N(H,)Iq;«n,). 
1.d!'· '\' I 1.,.1,'," " '1 II" .• 

:.We prove by induetion on "I that 

(2) \" ",: .•• ; iN(H,)!c1iI ·,. '~:;ajn,(IH,)G 
j 

for ,suitable. a) e 1 ~het)! ai",:.Ou~~.Hi is conjugate 10 a subgroup of HI' 
The resuit will then follow since IN(H,)I divides I N(/f) I when aj " O. 

If", - I. Ihen '" .. (I) ait<l IGI"', .. (I".)" and (2) holds in this case. 
Suppose .,:> I. Write ., •. , .' . 

." I:'.'~' l : 

. (I",~ m 1: bi"'l 
'r " "I 

and compute the coefficients b) lIS follow$ using Frobcnius reciprocity and the 
fact that ["'j' GloJ .. 6jtl"Ji/lal: 

rn" I' bjl"NI 01 .. [(J Nt. GIl] R [I II .. (<I>j)8,J. 
Now (<1»)11, - 0 unle •• Hj i. conjugate to a subgroup of 11,. In that case • 
(<1>,)", takes on the value 1 on q;«nj).lement. of H, and vanish.s el.ewhere. Thus 
[1" .. (<Il)",] .. <p(nl)lnl and we conclude that 

,p .. : 'bl"'IGIqj(.N·;I'irII"IN(HI)lln, 

using (1). 
Th.r.fore, 

.~II/.)<J _ 1: IN(H,}I<I>,. 
i 

wher~ j runs over the set 'of subscripts for which HI i. conjugate to a sub­
group of H,. Solving for IN(H,)IGI, and applying the inductive hypothesis 
yieldB(2) and pro_the tbeorem. I 
(5.23)' COROLLARY i Let 'x' be .·""iational valued character of a. Then 
I alx .. I. aN 1.°, where H runs over the cyclic subgroups of a and a. e Z. 

"rob/tms 

(5.1).' Let H s;; K s;; a and suppose ihat <p is a class function of H. Show that 
(<pO)'l = !po. 

(5.2)·.;I,..t H. K \0 a with HK;.a and. po.e If! i. o.olass funclion of ff. 
Show:that (<p0)( .. (If!"~K)'" 
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(5.3) Let H !'O G and suppo, ' • fUQo:tion ,of Hand "', i. a cia .. 
funCtion of G. Show lhat (q>';H)" "''1'"';::' I,,'" .", '.'" '",I""", "" 

"Tt'··, 
Note Problems (5.1)-(5.3) will be usedfr ently, 

• "f' I I. 

(5.4) Let b(G) = m.x(x(I)lxe Irr(G)). rr H'!'O'G;' ow that b(H),s; b(G) S' 
IG: HIb(H). ' " ",,' , ", 

Note Since H i. abelian iff b(ll) - I, the inequality b(G) slG: HIb(H) 

generalize. Problem 2,9(b), , 
(5.5) Let F be an arbitrary field and lei H '"' G, i..Ct W be an f[H)-modulo, 
Show thai there i. a unique (up to F[G}isomorphi'm) F[Gl-module Y 
such that V has an imprimitivity decomposition V - L' ~j ~~ere II is t~~ 
stabilizer of W, and W 2;l W, as F[H}modules, ' , , 

NOleS By Theor<m 5.9, Y 2;l WG
• In the following problem, if V is an 

F[G}module and H S;; G, we use the notation YH to denotetbe,modul. y, 
viewed as an F[Jf]·module, '\ !';"': ,.' " 
(5.6) (MackeY) Let H, K <;; G and let T be a sct of dou!)le coset repre· 

sentativcs so that 
G ~ U HIK ,'1 

IIIIT ";', ': y Lr,1 . 'j:1 l' )".1.' 

is a disjoint union. Let W be an F[H}module f9r, an ~bitrary field F. Show, 
that ' , 

(WG
)" ~ L' (WH' n')'" ,,,or 

NOIe Mack.ey's theorem gcm:rali~s Problem 5.2. 

(5.7) Let H ,;; G and suppose,p is. character or If. Lot K ,;; G and assu!pe 
(","),Elrr(K). Show thai 11K ~ G. 

Note Problem 5.7 is an immediale consequence of Problem 5.6. It can, 
however, be done without using modules. ~~e key step is to show that 
[(,pG)" ("'HO')'] '" 0 and th.n conclude that W: HI,,; IK: K " HI· 

(5.8) let X be a monomial character of G and suppose K,;; G with 
x. E lrr(K). Show thai X< is a monomial character of K. , 

(5.9) Suppose that F is a subfield of C and let H 0;;; G. Suppose that ,9 i. a 
character of /J which is afforded by an F·r.presentation. Show that .9

G 
is 

afforded by an F -representation. 

Note It follows Ihat every monomial charaCter of G.is afforded by a 
Q[e]-reprcscntation, where t: is a primitive nth root of unity, iI being the 

-- -
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:, '. exponent of G (that is. the least commOn multiple of the orders of the ole· 
.: ment. of G). Clearly, an arbitrary characler 01 G has values in O[e]. In 

Chapter 10 we. shall prove Ihe Iheorem of Brauer which asserls Ihal every 
ch'ifa-cte, of G tS afforded by a O[e]-representation. 

(5.10) Let H ,0;;; ? and view C[H] S;; C[G]. Let I be a right ideal of C[f/] 
and let J ~ Ie[G]. Suppose that I affords 9 (viewing I as a C[HJ-module) 
Show that J affords 9G• .' 

(5.il) Let N -d G and xeIrr(G). Suppose that UN, IN] '" O. Show that 
N .. kerX. 

Hint Use lemma 5.11. 

(5.12) Let '1'0 ~ X E Irr(G) wilh 'I' e Irr(H). Show that 1.(x) 0;;; H. 

(5.13) (L. Solomon) Show thai each row sum in a charaClet table is a 
nonnegative rational integer. 

Hint Let G aCt on G by conjugation. Consider the permutation char-

Note The column sums are also integers. Thc:y can be negative. 

Let G be nonabelian and letf = min(X(IJlX .lrr(G), X(l) > I}. Show 

(a) If IG'I ,,; f,lhen G' s;; Z(G), 
(b) if I [t;. G'] I ,,; f, Ihen G' is abelian. 
(c) if 11 ,;; G and I G: H \ ,,; f, then G' ,;; H. 

Ifill' For(a).Ifx"G,thcn ICl(:<)I"; IG'\. 

(5.15) c Let H s;; G and suppose 'I' is a character of H with det 'I' ~ IH • Lei 
X = '1" and show (det X)' = 1". 

(5.16) . Let H be a ,?".imal subgroup of G and lot X = (lllf. Lei ,p be a 
n.onprmclpal IrredUCible constituent of "1... Show ker I/J - ker X. 

(5,17) Let H s;; G and let l ~ (lH)G. Fix a positive integer n. For y E G, lei 
m(g) ~ [x(,). I (,,] and define 9(0) = nO'''. Show Ihat 9 is a character of G. 

JJilit Let n be the set of right CO,el> of H in G. Fix a set s' with IS \ ~ Ii 
, and let A be: the set of all functions n ....... S. Then G aCts on A. 

Note This result provides another necessary condition to add to the 
list in Theorem 5.18. 
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(5.18) Let G be a group. Write a(n) ~ l{geOlo(g) ~ n}l. T1ttn the poly­
nomial 

fix) ~ (1/101) L a(m).,I"I'M 
M 

takes. on integer values whenever x e I. 

flint Use Problem 5.17. 

(5.19) Let G be doubly transitive on Oand let H!: 0 with 10:HI < 101. 
Show that 1I is transitive on O. 

(5.20) Assume the notation and hypotheses of Problem 4. I I and show that 
101 ~ q(q - I)(q ·1· I). 

mnts Let N ~ N(S) and show INI ~ q(q - I). Let 1.1rr(N) with 
.< ¢ I. and S S; ker ,\. I.et X € S. X f- I. Show A"(x) ~ A(I). Write A" ~ 
2:XjiilrrlG) ClXX and conclude 

'<(1) ~ ta,(x(1) -,q) ~ IG:NIA(I) - q La,. 
Finish the problem by showing that if a, ~ O. then X(I) ;:: q + I so that r II, s '«1). To show x(1) ;?; q + I, compute (Xs, Is) and uSo the fact that 
since eX., A] > 0 and X is real, then CXs. Is] :2: 2. 

Note Using the rosull of this problem, it is not very hard to prove 
that a ~ SL(2. 'I). a theorem originally due to Brauer. Suzuki. and WaU. 

, , i'l 
(5.21) Lot P(O) denote the sci of all Z-linear combination. of characters of 
of 0 of the form 1 n G for H S O. Show that P(O) isa ring. -'. 

(5.22) Let X be a rational valued character of G and let /taU) be the least 
positive integer such that "G(X)X e P(O). I.et N - ker X 80 that X may be 
viewed as a character of OIN. Show that 

n,,(x) ~ n.,.(x)· 

Not. The existence: of ".(x) is guaranteed by Corollary S.23 • . I ,. 

Hint If "X ~ ~ an(ln)". then "X ~ L a,.{l"B)G. Show thiS by' Wriiing 
(lH)" = (lNH)" + ~, '. whore ~(H' is a character of 0 with the pro~rty that !V 
is not contained in the kernel of any of its irreducible constituents. .., . 

(5.23) Let X be any characler of a. Show thaI 

lalx = L a,),G, 

where.t runs over the set of linear characters of cyclic subgroupn and "" IS Z. 

mnt Use Problem 5.3. 
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(5.24) Let G be a doubly transitive ~rmut.tion group on Il and let «. P € Il. 
with ~." /1. Let 'P .lrr(O,) and assume that 'P<I., E Irr(G,~). Show thaI 
['P". 'P0J S 2. 

Hint Use Problem 5.6. 

(5.25) A.sume that every Sylow subgroup of 0 has. f.ithful irreducible 
char.cter. Show th.t 0 has one also. 

Hint Let S be the product of all arth. minimal norm.1 subgroups oro. 
(fhi. is ca\led the soc/e of G.) Then S is a direct product of simple groups. 
Find .9 G Trr(S) such that ker 9 contains nO nontrivial normal subgfouP of a. 
(5.26) (P.s.,man) Let X s;; G - (I) be R subset and let n = IXI. Assume 
for .11 prime. p <: ". that. Sylow p-subgroup of 0 i. cyclic. Show th.t there 
elIists X ~ Irr(O) such that X 1"\ kcr(X) ~ 0-

Hints Reduce to the case that 0 is abelian by observing that it suffices 
to assume that G ~ (X> and that if [x. y] ~ ker(x). then both x and y; ker X. 
In the abelian case,let N $ G be maximal such that N 1"\ X - 0. Show that 
91N is cyclic. 

. I ' • ',: I' , ,1:' 

. Note Ifn" 2. the hypothCllis on Sylow subgroup. is vacuously satisfied. 

! ~. I I • , 
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.. [\. :";'~ I. ~'.,...:', .' I.: ..• ::t,.// I"" 

Let Ie Irr(GJ and H .; G. In general ••• ry liule can'"be"said about !liel 
restriction IH' The situation is quite differcnbf Hi. normal in G; 

Letll """ G. If 8 is a class function of Hand g e G. we define [/': 11 ... C . 
by 9'(h) ~ li(ghg-'). We say that 9' is conjugale to 8 in G., 

(6. I) UlMMA Let II .., G and let '1', 9 be class functions of Hand)C, Y E G. 

Then 

(a) tp1i. is a class function; 
(bJ ('1'")' ~ cp": 
(e) [<P". 09'] ~ ['1'.9]; 
(d) [X". '1'1· [XH' '1'] for class functions X ofG; 
(e) tp'" is a character if t.p is. 

Proof (aJ If hand k are conjugate in H, then so are h' and k' for all 

geG. Takcg ~ x-'. 
(b) Compute. [Note that had we defined 8'(h) to be Il(h'), then (b) would 

faiL] " 
(c) The twO sums are identical since xhx- l runs over H as h does. 
(d) We have (X.)' = XII' Apply (c). 
(e) Let X afford 'I' and define X' by i£'(h) ~ X()Chx-'). Check that X· 

is a rcpre!tel1tation which alfords tp~, I'" 

It follows from Lemma 6. I that G permutes Irr(IJ) by g: 9 .... 9'. Note 
that H act. I.;;v;ally and thus Gill pe.;muteslrr(H). 
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(6.2) THEOREM (Clifford) Let H <l G and let X E Irr(G). Let 8 be an 
irreducible constituent of XII and suppose ,9 ~ 8 1, Sz,'." .9/ are the distinct 
conjugate, of a in G. Then ' , 

XH = e :[8,. ,., 
where e - [x., UJ. 

Proof We compute (9G
) •• For II" H. we hav< 

9G(II) ~ I~I :[.8"(xhx-') = IHII :[ 9'(/1) 
..:~G .>reG 

since xhx- I e 1J for all x e G. Thus IHJ(UG
)// ~ :[HG 8" and hence if 

E Irr(H) and 'I' ¢ {8,}, we have 0 ~ [:[ 8", '1'] and therefor< [W')H' '1'] = o. 
X IS a constituent of fl; by Frobenius reciprocity, it follows that 

Un. ip] - O. Thus all irrl;uuciblc constituents of 'XH are among the OJ and 
XH - D.,I [XH • • 9,]9,. How<vcr, [XH • • 9,] ~ [X., .9] by Lemma 6.1(d) and the 
proof is complete. I 

Theorem 6.2 is so important that we digress to consider another proof in a 
marc general. module theoretic seuing. If l: is an F7rr;prcscntation of H ---=:I G 
for an arbitrary field F,,,we define the conjugate representation .ill for g E G 
by i£'(h) = X(ghg-'). Note that X· is an F-r<prcsentatiolt which is irreducibi< 
iff I: i.s. Also, if II and :£2 are F~represcntations of H~ then X/ and'! (/ are 
similar iff XI and Xl are. 2 

(6.3) DEFINITtON Let H <l G and let W, and W, be F[H]-modules. Then 
WI is conjugate to W2 if there exist bases for the ~ such that the corresponding 

· F-,(e~sentations of H are conjugate. 

· !6.4) LEMMA Let V be an F[G}module and let H <l G. Suppose W <;; V 
"an F[II},ubmodule. 

(aJ If 9 E G, then Wg is an F[H}.ubmodulc of Vand i. conjugate to W. 
(b) If M is an F[H]-modulc conjugate to W. then M :;, Wg for .ome 

geG. . 
; . (c) If U <;; V is an F[H}submodule isomorphic to W, then Ug ;;; Wi) 
as F[fl]-modules:-

.. .:'; Proof We have (Wg)h ~ W(ghg- 'lg = Wy since gllg-I Ell. Thus Wg 
· is an F[!tJ-SUb~odule. Let WI' wO!' ••• • ··w,. be a basis for W. Thc:n WIll, 

". w,,(J IS a baSIS for Wy. Let l' and \D be: the F·representalions of H corre­
sponding to Wand Wg respectivcly~ with rt::spect to these bases. W~ claim that 

'il - X'. 
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If X(yhg- ') ~ (a'l), wc have 

w,Ohg-' ~ L:aI]WI 
I 

Clu;i.pter 8 

and thus 

(w,g)h = L a,f.,w)y), 
) 

Thcrcfore. ~)(h) = «(11]) s I'(h), c.ulbli.hing the ctaim, The proof of (8) is 
now complete, 

If M is conjugate to W, then M corresponds to the representation .t' for 
~ome (I E G, Since Wg corrcspottd~ to the same rcprcsentaliot'), we have 
Wg ;;; M. proving (b). Finally. if U ~ W then with respect to a suitable basis, 
U corresponds toI, Thus Ug and Wg both correspond to X' and (e) follows, I 

(6.5) TH1!OREM (Clifford) Let if <;j G and let V b. an irreducible PEG} 
module. Let W be any irreducible F[lI)-slIbmodule of V, Then 

(a) v = r' III, where the III, are irreducible F[H]-submodulos of V, 
(b) Each WI is ofthcform WiI' for somog, E G and thus is conjugate to W, 
(c) In the notation of Lemma 1.13. "w(V) - n,,(V) for every F[H} 

modulo M conjugate 10 W. 

Note Another way of saying (c) is that each isomorphism class of F[N} 
modules conjugate to Wi. represented equally often among the WI, 

I'roof of Theorem 6,5 Clearly, L.G Wg is G-invariam and hence 

" V~ L:Wg 
"G 

by the irreducibility of V, The F[H)-module. Wg are conjugate to Wand 
hence are irreducible, By Lemma I, II, it follow. that V is the direct sum of 
some of the Wg, This proves (Rl and (b). 

Now let M be an F(H)-module conjugate to W, Since dim(M) ~ dim(W). 
it follows from I.emma Ll3(b) that it sl1ffice. to show that dim(M(V»­
dim(W(V) in order to prove that ",,(V) ~ "w(V), 

Since M is conjugate to W. it follows by Lemma 6,4(b) that M ;:: We 
for .ome @eO. Now 6.4(c) yield. W(V}g 50 M(V) and M(V)g-' s; W(V). 
Thus W( Vlg = M( V) and the result follows. I . 

(6,6) CORO~I..ARY Let N <I 0 and let V be an irreducible F[O)-module for 
some field F, Then when viewed as an F[H}module, V ;s completely 
reducible;, 

Proof Use Theorems 1.10 and 6.S, I 
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Note that Corollary 6,6' il independent of Maschke's theorem and is 
valid even if char{F) divides IHI, ''', 

Also note that Theorem 6.,2 is .. consequence of Theorem 6.5, 

We ·now return to the Itudy of C-eharacters and obtain some con­
sequences of Theorem 6.2. 

. 
(6,7) COROLl.AIt.Y LetH'" OandlupposethatXE Irr(O)and [X", I,,] ~ 0, 

Thelt H 50 ker X' 

Prool W. have XII'" L 8" where 8, '" I. and the ,~, are conjugate, 
Since(l.l' = l"for all geO.we have Xn ~ x(t)t" and Hs kerx, I 

Corollary 6,7 can also be obtained lUI a consequence of Lemma S, II (see 
Problem 5,11) since X i. a constituent of (I,,)" and ker(I,,)· nH'm H, 

An interesting class of problems in character (he()ry arise. from con.ider­
inghow the s(ruClUreof. group G and the set (x(l)lx .lrr(G)) are related, We 
give one result of this type as an application of Theorem 6,2, Many more 
results like this will be found in Chapter 12, 

: ",' !:' ' 

,(6,8) ~aMMA Let H <I G and suppo'" X E Irr(G) and .9.; Irr(H) with 
(xn.8) " 0, Then 9(1)1x(1), • 

Proof Since 8"(1) .. 9(1). we conclude that x(1) m et.9(I) where X" ~ 
e D., 9, lIS in Theoreni 6:2 with 9 ~ 9,. I 

(6,9) TH1!ORIlIo4 Suppo"" x(1) is a power of the prime p for every x' Irr(O), 
Then 0 has a normal abelian p-complement. 

Proof If N ... O. then by Lemma 6,8 •• 9(l)i08 power orp for811.9 E Irr(N), 
Worldn ' , n On 10 I. wo sec that it suffices to find a normal sub-
gr of index p, since the normal abelian p-complement for N will be one 

.. 'GJi' ' 11:,-<","'1/1" 

. \Wehavo' 

'I,: 
:1 01-10:0'1+ L x(1)', 

1C.lrr(GI .. ~I»l 
'".1'-''' ",' ',1 ", 

If Gis abelian, the mtdt' is trivial,'ptberwill(!, some X e Irr(G) i, nonlinear and 
thus pliOI, Since the last sum i, divisible by p. we lee that pliO: 0'1, It 
follows that 0 has' a nOl'llUlhubgroup olinde. p and the prOQfis complete, I 

,',I 
The convene of Theorem 6,9 is true lind will be proved later in this 

chapter, 
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(6.10) DEFINI1"ION Let H <> G and .l.t 9 6.lrr(H). Then 
~. ;,! '. . \ .. " :. L 

J G(9) "" (g eGJ~:'.)~L,.; . 
. ; 

,)'. 

is the inertia group of 9 in G. 

Since 1 G(9) is the st"bili,,,,r of 9 in the action of G on Ir~fl). it follow~ thai 
it i. a subgroup and thatI.,(.9) ;;< 1I. Also 1 G: 1.(.9)1 is the ., .. ofthe orbit of9 
and SO in the formula I \ ,'. I.," 

, 
XN - e L9, ,- , 

ofThco«m 6.2. wc have t ~ 1 G: 10(9)1. In particular. I. di~idcs IG: 1I I· It 
turn. out that e divides 1 G : H I also. but th~I.i •. much more d,iHkult to s~ow,. 
We sh.1I prove somc special cascS in this chapter and the general r.sult w.ll be 
proved in Chapler 11. using projective rCI?rcaentati0n:'.' """"~' .. 

The following result is of fundam.ntal,mportanco.n tbechamet •• theory 
of normal subgroups. 

(6.11) l'HIDR'EM Le. H "'" G •• 9 E Irr(H). and T - 10 (9). Let . 

.PI ~ (.p e Irr(T) 1 [.pH' 9]" OJ. 91 ~ (XElrr(G)I[Xn/9]" OJ.""' 

Thcn .. ,. 
(a) If.p €.PI. then </IG is irr.ducible; 
(b) The map .p <-.p" is. bijection of"" onto 91;. . 
(e) If.pG ~ X. wilh </I e .01. then.p is the unique IrreducIble consutuent of 

;('1' which. lies in sI:. . 
(d) If </I" ~ X. wi.h .p E.PI. then [.p#. 9] - [xII. 9]. 

Proof Let 1/1 Ed and choose any irreducible constituent X of 1/1 •. Thcn 
1/1 is a constituent ofh and ,ince 9 is a constitu.nt of </In. we conclude X E ij. 

Let 9 ~ .9,.9, ...... 9,bethedistinctG.coniu!!"t.s.of9 .. Th.nr -: IG: TI 
d - ,~ 9 'or some integer e. Sincc [J 1S invariant In T, we conc1ude an XN - e 1-,- I I II , . r 

rrom Theorem 6.2 that 1/1" = /9 for somef. Since I/J is a constituent 0 XT:I+ 

we have! ::; e. 
Therefore 

<1.9(1) ~ x(i)';; .pG(l) ~ '</1(1) - fl.9{I)';; .. .9{I) 

and hence equality holds throughout. In p~rtiCular. X(I) = 1/10(1) and ;.,~ 
conclude that X ~ 1/1" so lhat (a) follows. Also 

[XH' .9] ~ e - f - [.pH' 9] 
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and (d) is proved. Statemcnl(C) follows from the last equality since if.p, e.PI. 
.p, .. .p. and.p, is a constituent of XT. then 

Un. 9] <: [(.p + .p')H' 9] ~ [.pn. 9] + [(.p,)" • • 9] > [.pl/. 9]. 

map in (b) is well defined by (a) and its image lies in 91 by (d). II is one· 
:·' .. ;.·'Y-'_'" by (e). To prove that it maps onto dI.let X E 91. Since: 9 is a constituent 

INI there must he sOn'le irreducible constituent I/J of XT with [!,V if , 9] =1= o. 
1/1 e "" and X is a constituent of .pG. Therefor. X _ 1/10 and the proof is r·,3)11lflI,,,.. I 

(6.12) COROcl,.y Let X E Irr(G) be primitive. Then for every N"", G, 
XN is. a multiple of an irreducible: character of N. 

Proof We: have XN - e 'Li .. 1 a/. wlu:re: the \I.)j are distinct and t ~ 
G:/G(8dl. By Theorem 6.11, X ~.pG for some I/IElrr(lGUltl). Sinc. X is 

. ,:. primiti" •• it follows thall.(9,) ~ G and r = I. ThusxN ~ e9, and the proofi. 
.. . compl.t.. I 

The converse of Corollary 6.12 is false. For instance the irreducible 
':character of A:J. of degree 5 is imprimitive and yet the conclusion of the corol­
lary is (trivially) valid for this charact.r. CharaclerS which are multiples of an 
irreducible arc called homogeneous characters. Irreducible characters whose 
restriction to every normal subgroup is homogeneous are oftt:;n called 
quasi-primil ive characters. 

'(6.13) COM.OI.LARY Suppost: G has a faithful primitive character and let 
A <> G be abelian. Then A ,;; Z(G). 

ProQ{ Let X E Irr(G) be primitive and faithful. Then XA = eA fo" ,ome 
linear character .l. Thus A ,;; Z(X) = Z(G). I 

(6.14) COROLLARY Every nilpOient group is an M.group. 

Proof Let G be nilpotent and let X E Irr( G). Choose II ,;; G minimal. ,lOch 
:that there exists I/J e- Irr(JJ), with X = !/I G

• By transitivity of induction (Problem 
5.1); I/J is a primitiw character of H. It follows that 1/1 is a faithful primitive 
character of H/ker(';') ~ H and thus every normal abelian subgroup of [/ js 
; Since every nilpotent group contains a normal self-cenu'alizing sub~ 

i·" group, we conclude that R is abelian. Then IjJ is linear and the proof is com-
. . I 

" 

We shall soon give a much more general sufficient condilion for a group to 
an M-group. The preceding result is included here simply to illustrale the 

i'"llSel'ulrt." of Theorem 6.11. 
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(6.15) ""EOREM (Ito) Let A <l G be abelian. Then x(l) dividie, IG: A I 
i'or",l1 X E Irr(G)_ 

Pro~f Let A" Irr(A), with [X,. A) # O. and let T ~ I.(A). Then for ,orne 
'ilElrr(T). we have X ~ o/IG and 0/1, ~ eA. Thus A \i; Z(o/I) and hence 0/1(1) 
dlVld~S.l T: A I by Theorem 3.12. Since X(I) - I G: TI 0/1(1), we conclude that 
x(l) d,v,de.IG: A I and the proofis complete. I . . 

Note that the converse of Theorem 6.9 is immediate from Theorem 6.15. 
Therefore, the purely group theoretic condition that G ha~ an abelian nonnal 
p-complcment is precisely equivalent to the condition that X(l) is. power of 
fI for all X E Irr(G). 

Suppose N <l G and aElrr(N). Write ,9" ~ Ie,x, for XI~Irr(G) and 
e! >- O. Then (X/)", = e, [J-I 9J1 where 8 ~ 91> .. " .9, are the: distinct con­
jugates of a in G. Let T - 1.(9). By Theorem 6.11 it follows that iF­
~ .,0/1; with 0/1, E Irr(T) and 0/1," ~ X,. It follows that for the purpose of inves­
tlgatmg the nature or the integers eil it ~;uftlces to assume T ;;:;;: G, that is. that 
r} is invariant in G. 

For the remainder of this discussion we assume that 9 is invariant. WE 
have 

and 

Therefore. x,(l) ~ e,.9(1) and 

I G : N 1.9( I) ~ ,9"(1) ~ L e, X,(I) m L .,'11(1). 

so that 

Ie,'=IG:NI· 
It was remarked earlier (without proof) that", divides I G: NI. (Note 'm" __ ~ 

if N is abelian then " _ X,(l) and in this ca.e we know that e,IIG: 
TheMem 6. 15.) 

We see that in some respects. the integers e, behave like character degrees 
for GIN. Hlhey Were really character degrees. then One of them, say e,; would 
equal 1. That would mean that (x,). - .9. In other word., that,9 i •• xt,lIIilh/. 
to G. (Note that if.9 is extendible then it is automatically invariant.) 

A consequence of the next result is that if sOIne c, = 1. then the e, are 
exactly the degrees of the irreducible characters of GIN. 

(6.16) THHORijM Lct N <l G and let rp, 9 E Irr(N) be invariant in G. 
. Assume rp.9 is irreducible and that .9 extcnds to X E lrr(G). Let [/' ~ 

(,8 drr(G)I [q>".IIJ # 0) .nd.r ~ (o/I E Irr(G)I[(q>.9)", 0/1) .. 0). Then th--> Px 
define:s a bijection of [I' onto:T. 
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Proof We have (rpG). i. a multiple of q> and hence (rp")N - I G : N I 'P by 
comparing dcgree •. Thus [rp., rpG) ~ [rp, (rpO).) ~ I G : N I [rp, 'P] ~ I G : N I· 
Similarly, [(rp.9)G, ('P.9)G) - IG: N I. Also. by Problem 5.3, (rp91' = 'PGX' 

Now write 'PG ~ L' ... <,p. We have ['Po. 'P") - I G : N I ~ ('P·X. 'PGX) 
and hence 

L .;> - T .,.,(fIx, YX). -. _ . .,-, 
Since [J3x, n] ;;: 0 and [J3x, hl ;;:1 and all e, > 0, this forces [J3X,1X] - 0 
if fJ .. yand [PX, PX] .. I. Thus the fJx are distinct irreducible characters for 
distinct p. Thcse are all of the irreducible constituents of 'PGx - ('P9)". The 
proof is complete. I 

What is probably the most imporlant special case of Theorem 6.16 i. 
when rp ~ I •. 

(6.17) COROLLARY (Gallagher) Let N <l G and let X E IrriG) be such that 
x. B ,9 e IrriN). Then the characters fix for fI ",rriGIN) are irreducible. 
distinct for distinct fI and .re all of the irreducible conslituents of 9°. 

Proof This is exactly Theorem 6.16 in the case 'I' - IN' I 

Note that in Corollary 6.17 we have identified IrriGIN) with a subset of 
Irr(GI.ln this situation, we see that the., are e .. clly the fl{l) for /1 e IrriGIN). 

There are other situlltions where we have control ofthe I!/s. The following 
.. going down" theorem' is useful in studying the characters of,olvable groups. 

(6.18) THEO"EM Let K/L be an abelian chicffactor ofG. (That is, K. L"" G 
~ ___ .",O no M <l G exists with L < M < K.) Suppose 8 e IrriK) is invariant in G. 

one of the following holds: 

(a) 9. e Irr(L): 
(b) 8. ~ <'P for some tp elrr(L) and .' ~ IK: LI: 
(c) a. = Ii., '1', where the '1', E Irr(L) are distinct and , ~ I K : L I· 

Proof Let 'I' be an irreducible constituent of .9. and let T - IG(q»· 
Since .9 is invariant in G, every G-conjugate of cp is a constituent of 8t.. a.nd 
hene. is K-conjugale to '1'. It follows that I G : T I ~ IK: K n T I and hence 
KT _ G. Since K/L is abelian, K " T <l KT ~ G and thus either K n T -
KilrK n T = L . 

If K n T = L; 'then .9t., IP e L:l"'l ({J/, where t == 1 K: LI, (f)t ~ cp, and the 
'P, are distinct. Thus 11(1) - < I K: L I q>( I). Since a is a constituent of 'P'. we 
havell(l) :S: IK: LIq>(I) and therefore. ~ 1. This is situation (c). 
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Now assume K " T p K tIO that IP is, invariant iDoK and 9t M tIP for 
tIOme e. Let l ~ In(KIL). Since ".is linear. A8 E Irr(K~'AltIO (l9)i;" Ih "'IP· 
Suppose Ihal all of the charactert 19 are distinct as l,runs OVllt Irr(KIL~ Eacb 
of these IK: LI characters is an irreducible,conslit.\leator .,e .. with multi.· 
plicil) • and we h. ve 

_IK: LI.9(1) S ","(I) - IK: LI'I'<I). 
Therefore, 

and" .. I. This is situation (a). ':. 
In the ,emaining case • .t9 ~ 1'9 fa, sOme l,l' e Irr(KIL) with l " 1'. (AI 

U = ker(Aji). Then L!i; U < K lind I} vanishes on K - U.· Since 8 . 
invariant in G, it follows that 9 vani.h .. on K - U' for all 9 e G. . n •.• U' = L. we conclude that I} vanish •• on K - 1.. By Lemma 2.29 we 
have ,','" :.,\ ·,1 "f"".'.\":' 

IK:LI ~ IKiLI[.9,9J~.(9.,.9!ol., .• :::".,:", 

andtheproofjscomplet •. I' . ··ii .. '·"""·""'·.i,· i, 
• 

(6.19) OOROLLARY Let N .. G with IG:NI';"p, april!le. Suppose 
X e Irr(G). Then eith.r 

(al XN i. irreducible or ,! 
(b) x" l:r" 9" where the .9, are distinct and irreducible. 

Pro~r TakeK ~ GondL NandapplyTheorem6.18.Case(b)orthat 
theorem ClInnot oc<:ur since p i. not II square. I 
(6.20) COROLLARY Let N .. G and suppose I G : N I ~ P. a prime. Let 
9 E Irr(NI be invariant in G. Then 8 is extendible to q .. 

Proof Let X be an irreducibleconitiluent of 8". Then XN - .Sfor some •. 
Comparison with Corollary 6.19 yieldu - L I ',' ".'! . ,,: , 

Actually. Corollary 6.20 would still be true if the bypothesis that I G :!VI is 
prime were weakened to GIN cyclic. Thi.'ltrongcrresult will be proved in 
Chapter II. '. .... , 

,I 

(6.21) DF.FJI<J"I10N Let N <I G and let Xe1n(G). ThctlX is a rela/ive M­
charoc/er with ,espect to N if there exi$ts H with N!i; H.~ G and", " lrr(H) 
such that ",- = X and "'." I,,(N). If every X e In(G) isa relative M-characlAlr 
with 'especttO N, then G is. relMive M-grQUp with respect to N. . . 

Note that X € Irr(G) is a relative M-character with reaped to 1 iff it is a 
monomial character. and G i. a relative M.group with rea"""t to 1 iff it is an 
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M-group. Also. it is clear that if G is a relative M-group with respect to N. 
.Ihen GIN IS an M-group. 
.. ' . The conv.,se ofthe last statement is false. If G ~ SI.(2, 3) and N ~ Z(G), 
th~n.GIN a A •• which i. an M-group. However. G is not a relative M-group 
wllh 'espect to N ";nce G has an irreducible character of deg'ee 2 and has no 
subgroup of index 2 as would be required by the definition. 

(6.22) THEOkllM Suppose N <I G and GIN is .olvable. Suppose. further­
more, that every chief factor of every subgroup of GIN has nonsquare order. 
Then G is a relative M-group with respect to N. 

Note The hypoth ..... on GIN. above. lire automatically satisfied if GIN 
i. nilpotent Qr supersolvablc .ince then all chief factors of subgroups have 
prime order. 

T/oeorem 6.22 Let X s Irr(G). We must show that X is a relative 
M-cbatacter with respect to N. IfX. is irreducible. this is clearly the case and 
her;;e w. assume X. reduces. Let, K <I G be minimal such that K '" Nand 
X.o;.isirredtlcible. Then K > N and we may choose I.. <I G, L '" N such that 
,K/,L is a chief factor of G. In partiCUlar, KIL is abelian of nonsquare order . 
.. W. ,apply Theorem 6.18 to the chief factor KIL and the G-invariant 
character XK e 1rr(K). Since XL is reducible and I K : L I is nonsquare, we 
conclude that XI. D., "',. where the 'Pi E Irr(L) are distinct and t ~ 
IK:LI> t. 
, Let T - la('P,) '" L ;;2 N. fly Theorem 6.11, we conclude that X ~ 1/10 
,for some'" e Irr(T). Since TIN < G/N. we may apply induction on I G: N I 
to conclude that T i. a relative M-group with respect to N and that 1/1 ~ .9T 

for some 9 E lrr(H) where N S; H Si T and 3. E Irr(N). Now x ~ ",G ~ (9T)" 

::' a" by Problem 5.1 and the proof is complete. I 
, Note that Corollary 6.14 follows immediately from this resuit a. docs the 
. IOIOOwha1 more gener.1 fact thaI all ,upe,solvable groups are M.$roups. 

a stili more general sufficient condition. 

;;~'~~'~I~::~~:nlCLet N <I G and suppose that all Sylow subgroup. of N 
'\;,: that G is Solvable and is a relative M-group with respect 

N. Then G is an M-group. 

. Proof Let X e Irr(G). Since X is a relative M-character with re.pect to N 
,choose It Si a with N s:; H, "'" Irr(I1), "'H E Irr(N) and.p" = X. Now choos~ 
U s:; H, minimal such that there exists 11 e Irr(U), with 8" ~ 1/1. By Problem 
S.I. a" = (11")" ~ ",0 '" X and it suffices to prove that Ii is linc~r. 

Let M '" Y "N. Since (9"u)" '" '" and "'"u is irreducible. it follows 
that "'"V ~ .9 v and thus (S'V). = 1/1. € Irr(N). By Problem S.2. (,9M)' = 
(8NV

). e Irr(N) and hence 9" " Irr(M). 
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By the minirnality of U and Problem :;, I, ,9 is a primitive cha.racter of U. 

Let K ~ kef II, U ~ UII< and Kt :'vfKIK. Then .9 is a faithful primitive 
charocter of 0 and M has all of its Sylow subgroups abelian. Now let Z a 

Z(M) <I r;. If Z < M. let AIZ be a chid factor of 0 with A <;; M. Then AIZ 
is. p-grollp for some prime p. Cet P € Syl,(A). Then Pis abelian and A ~ PZ. 
so that A is abelian. Since A <I a. we conclude from Corollary 6.13 th.t 
A Z(O). This contradicts A :> Z. 

We conclude that Z ~ M, and hellce M is abelian. Since 8/J is irreducible, 
so is 8MK • Thus ,9",. E irr(/;;() and hence 8(1) = L The proof is complete. I 

We introduce s.ome notation. ff X is a character of G, let det X = A be the 
uniquely defined linear character of Problem 2.3. Now write o(x) ~ o(),). the 
order of), as an clement or I,he group of linear characters of G. (We call o(x) 
the determinantal order of X.) Since I G : ker ,! I ~ o(A}, it follows that o(xl 
divide< IGI. 

Now let N <l G and suppose .9 E Irr(N} is invariant in G. We wish to find 
,ullieient conditions that 8 be extendible to G. If (I G : N I .. 9(1» ~ I, then 9 is 
extendible iiT det 9 is extendible. We shall prove this now under the additional 
hypothesis that GIN is solvable and defer the general proof to Chapter 8. As 
will be soon. there is a gain in replacing the problem of extending.9 by that of 
extending the linear character, det 9. 

(6.24) LEMMA tet N." G and .uppose 9 E lrr(N) i. extendible to G and 
that( I G : N I. .9(1)) ~ I, Let). ~ det 9 and let i' be an extension of). to G. Then 
there exist, a unique extension X of 9 to G sllch that det X ~ !J., 

Proof Let ~ be an extension of .9 to G and let v - det ~ so that vN = 
Cet /" ~ ~ so that «. ~ I. and hence «IG,HI = la. Write! _ .9(1) so 
det(.'~) = ~'f det ~ = 0'/ v for bE Z. Sinee C(. I G : N I) - I, we ean ehoose 
bE Z such that hf'" I modlG:NI and thus .'1 = ~. Let X M o:"~. Then 
det X = a"lv ~ elV is 11. Since IXN = IN> we have 'XN = tiN !!!!!II ,9 as desired. ' 

To prove uniqueness, suppose X. i. an extension of 9 with det(x.) = II. 
By Corollary 6.17, we have X, = xll for some (J E Irr(GIN). Since X.(I) = 
.9(1) x(I). we have/i(1) I and 

I' ~ det(x.) ~ pf det X = fll /' 

and f!' = I •. Since (,f.IG: NI) - 1, this forces {is I. and Xu = X. The proof 
is now complete. I 
(6.25) THtlOREM tet N <l G and suppose GIN i~ solvable. tet a e Jrr(N) 
be invari.nt in G and suppose (8(1).IG: NI) 5 I. Then a is extendibl. to G 
iiT det 9 is extendible to G. 
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Proof If.9 is extendible. then obviously so is det :" We prove the Con· 
verse. tet I' be an "'''tension of A - det 9 10 G. We work by induction on 
I G : N I. (We may .ssume G :> N.) Cet Go be a maximal normal subgrQup of 
G with G. ;;, N. Since A extends to re" the inductive hypothesis guarantees 
that .9 is extendihle to Go. Ily Lemma 6.24. the!'e is a unique extension. 
X. e !rr(Go) with det(x.) I'G,. 

We claim X. is invariant in G. For g e G. we have «X.)')N = .9' ~ 8 and 
det«(X.)") ~ det(x.), '" (!J.GJ' m 1'6.. The uniqueness of x. now yield, (x.)' 
X. and establishes the claim. 

Since GIN is solvable. I G: G, I is prime and by Corollary 6.20. XO i. 
extendible to G. The proof is now complete. I 

We now discuss some 5uffiGient conditions for e:ltending linear char~ 
acters. A version of the following theorem is true without the assumption 
of linearity, The genernl result will be derived from this special case in 
Chapter 11, 
" 

(6.26) "HEORIlM tet N "" G and suppose .< is a linear character of N 
which is invariant in G. For each prime plo(A). choose II,'" G with 
H,.!N e Syl.,(GIN), and as,ume that), is e.\endible to lip. Then), is extendible 
to G. 

Note If p,j' I G: NI. then H. _ Nand), is automatically e~tendibl. to 
H,. It is only neceos.ry, therefore, to check the hypothesis for priMes dividing 
IG:NI. . 

'" Proql I.e! '" - o(l). For each plm. we may choo .. ~" a power of l, such 
O;""~.tJ. ~ and o{J.\ii8ia.power ofp. We shall.how that A, is e~tendibl. \0. 

!J.'M .nll • .is ,an extension of)', 
,,!,Since,)'.,iI .'power,of,A,:whiclt,is extendible to H,. it follows that)" is 

extendible to H,. Also J.. is invariant in G. W. now see that it is nolot18 to 
assume that m is. power,of p. 

tet v bcian extension of), to if,. SinCe p ,j' I G : H, I and II( I) ~ 1, it follo'-": 
that p,j'vG(\) and hence tbere exists an irreducible constituent X of vG with 
p.tx(l). tet x(1) M f. 

,We have [X" i v] ,. 0 and hence [x~, ),) 'flo O. Since )l i. invariant in G. 
we conclude thai XN ~ fJ. and thU8.(det X). - ;,1. tet li m del X. Since p.t ! 
and," iu power of P. we tnaychootte b E Z withfb !!!! I mod m. Then (6'). z 

A" - l and the proof is complete.' I 

(6.27) COROLL~~Y Let N .... G and suppose ), is a linear chilracter of N 
which is invadant in G. A8sume (I G : N I. o(),)) = I. Then ), has a unique 
extension II to G with the property that (I G : N I. 0(11») ~ I. In fact, 0(11) ~ 0('<). 
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Proof The existence of an extension is immediate from .Theorem 6.26 
since the hypotheSC$ are trivially satisfied. Let. be ,an··extension oil and ' 
cbooae bel, with biG: NI '" I mod (o(l)). leI /J .. 11'10 ",,1,. nen p. ... : 
l'IO'NI ~). In p.rticular, o{JJ):;' o(l). On the, other .hend, ( .... ,Al.). ~ 1.1 
sothat .... "eIrr(G/N).nd ,:.:.;: (: .. ,' ,i'. 

11""1 - (y""~)"".1 - IG • ., 

Therefore, o(p.) ~ 0(.1.). , 
For uniqueness, suppose t is an extension or l with (o(f),IG: NI) m I., 

Then (o{JJi), I G: N Il ~ I and (Pt). B I. so that /Jf E lrr(G/N). Itrollows thet' 
/Ji - I.and!' = • liS desir<:<l. I ' 
(6.28) OOROLLAJl~ Let N.., G with G/N solvable and suppose !J.e Irr(N) 
is invariant in a. Assume (la:NI, 0(9)9(1) ~ I. Then 9 has a uDlque ex­
tension, XEIrr(G) with (IG: NI. <>(x») - l.In ract oW - 0(8). , 

Proof By Corollary 6.27, let I' be the uriique extension"~f .. ~ det,9 to; 
G with (I G : N I, o(p.» * I. By Theorem 6.25 and Lemma: 6.~4. let x he tho, , 
unique extension or.9 to G with det X "l /L !hen «Xl ~ fl(p.); .. o(ll ~ 0(9).: 

If x. extend,' I) IIl1d (10: NI. <>(x.» a 1,Iet 11. '" det(x.).Thus ' 
(la:NI,o(p..» ~ 1.'\1'., : ..; 

, i '. ,I 
and hen.;e 11. ~ I' by the uniqueness of 1'. Then X. - Xby the ,unlquenetltl, 
of. X. This completes the proof. I ; ." , :: 

Note thet since 0(8) and .9(1) divide I NI, the eonditionthat 

(la: NI. 0(9)9{1» - t 

'" 

ill Corollary 6.28 will be .utoma tk if (I a : N I, I N I) - I. The hypothesi. of 
solvability in Corollary 6.28 will he removed in eha!'tot 8. . .' . , 

W. ,hell give one further extendibility oritlill'ion now.ltan be used whOlI 
a/N is .p:group for p '" 2. Unlike the previousresults, this co,ndition is inde­
pendent of character degr"". 

(6.29) OEFINITION Let X be a characLer ofG and lttp be.a prime. Then X is 
p-ratlonal if there exists an integer r with PA'r, .sucb ~hllt X(o),e Q[el"I"J for; 
every a e G. '\ 

We use the notation Q. ~ Q[e"'''] for 1 'S: k e Z. As is well known, 
Q. n Q, a Q" where d a (k, f). By Lemma loiS, it foUow. thet x(g) e OIGI 
for every character X of a and e"ery yea. Write I a I - • - p'm, with p,r m. 
It follows that X i. p-rational iff all of ils values lie in Q~. 

Let (1,.10) denote the Galoi. group (1(0,10.). If X is • cheractor of a, 
let t' be defin<:<l by xa(g) ~ x(g)a ror <1 E if(QJQ). Then x is porational iff X· ... 
X for all <1Eif,I.JJ) [Note that by Problem 2.2, t' is n~ly a character. In 
particular, !I,,(G) permutes Irr(G).] . 

-~--------------------------
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From Galoi. theory we have if(Q,IO.) ;;; (1(0 •• /0), where a. above 
" - mp' and p,r m. Thi. isomorphism is the restriction map. It follows if 
p !Ii 2 and a > 0, thet ,;"" is not invariant under !I(OJQ ) and hence if 
p .;. 2 and ~isa linear character ofa with plo(l), then A is not ;rationaI.Also, 
whon p .;. 2, we have 'I,.(G) ~ '1(0,./0) is cyclic. 
.. ~e have one mOre general rematk. If N ,;; a, then Olm ,;; OIGI and '0 t' 
IS defined (or characters X of If with (f e (, ,.(a). It follow. that X is p-ration.1 
ifft' m X for all ~E!I,(O). 

\6,.30) .TIlIlORIlM Let N -:'" 0 with GIN a p-group,p '" 2. Suppose a e Irr(N) 
IS u)Vartant to G and p-ratlon.l. Then .9" has a unique p-rational irreducible 
<;onwtuent x· FUrthermore, XN - 9. 

Proof Use induction on IG:NI. We suppose la:NI > I. Let K"" G 
N K and IK:NI- p. By Corollary 6.20,9 oan be extended to 

"':,?-""I' Since p ,. 2. '1.(K) is cyclic and we choose a generator <1. Now 
Itr(K) and (~')N = 9' - 9 since a is p·ration.1. By Corollary 6.17, we 

have~' - ~). for some (linear»). € lrr(K/N). 
If A - I., then ~' = ~ and ~ is p-rational. Suppose that this is not the 

ease. Then p ~ o().) and since p '" 2 we have X' ~ A and so "a = Am for some 
me Z. with", ji! I mod p. Choose b ~ 7. with (I m)b Ell I mod p and let 

~A·~. 

Since AN = I., we have "'" ~ ~N 9. Also, mb + I .. b mod p and thus 

",a = (A'q)a u Am"" I q z l'q ~ '" 

'" is p-rational. Thus in any case. 8 has a p-rational extension. '" G Irr(K). 
If tp E Irr(K) is any p·tationalextcn,ion of ,9. then tp ~ "'~ for SOme unique 
Irr(K/N) by Corollary 6.17. Weh.ve'!' = 'I" = ("'1')' ~ ""11' ~ "'1"00<1 

... , 1" - II· Since p '" 2, it fOllows that p,/' 0(1') and thus I' = I K' Thorofore 
tp."'. 

.Now let y ~ G. Then ("")" ~ (",a), ~ ,y' and a' ~ 3 so th~t "'. is a p_ 
, , . extensIOn or .9 to K and by tho preceding paragraph, we have 

.. ,y and", is invariant in a. 
" Since I G : K I < I a: N I. the inductive hypothesis guarantees that ,y" has 
a.unique p-rational irreduciblo constituent X and that x. ~ '" so that x. ~ a. 

Let x. ~ any p-.r.tional irreducible cOllstituent of .9". We show x. ~ X. 
'P be an IrredUCIble constItuent of (Xo)., Since (x.). is a multiple of 9. it 

';.collolysthattp. ~ 9and", g "'.forsomevelrr(K/N).SinceK/N S Z(G/N), 
i>~'Chave\!' >= 'YforgeGandthu5((J' = !/Iflv' = t/!v = fPandtpisinvariantinG. 

that (Xo). ~ "'!' for SOme integer e and thus'!' is p-rational since 
- (I/eho(k) for k e K. Therefore '!' ~ if! and Xo is,. constituent of "'''. It 

((0110. •• that Xo '" X and the proof is complete. I 
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We can use !'lome of our re~ults on character extendibility to prove Tate's 
theorem. This rcsull. which was originally proved in an entirely different way. 
scrvc~ as a ~'boo$ter" for transfer theory, as will be eXJ')lained. 

We define 0'(0) to be lhe unique minim.i normal subgroup of 0 such 
thnt 0/0'(0) i. a p-group «(or the fixed prime pl. Similarly. let A'(O) be the 
unique minimal normal subgroup o( 0 such that G/A'(O) is an abelian p­
group. [Not. lhat A'(O) & 0'0'(0).] 

LeI P E Syl,(G) and let N i2 p, Then N is said to control p-tran~rer if 
N/A'(N) '" O/A'(O), or equivalently, N 1"\ A'(G) = A'(N). Several o( the 
standard transfer theorem. assert that under suitable hypotheses. certain 
subgroups N control p-tran.fcr. [Usually. N = N(W) for some subgroup, 
W"" P.] Tatc's theorem guarantees that whenever N/A'(N) ~ G/A'(O~ 
then also N/O'(N) ~ O/O'(G). 

\ 

(6.31) !HUQR",.. (Tate) Let PeSyl,(G) and N;2 P. Suppose that 
N 1"\ A'(O) A"(N). Then N 1"\ 0'(0) O"(N). 

Proof (Thompson) Since N" P, we have NO'(O) ~ G. Let U ;" 
N ('\ 0'(0) so that U <l Nand N/U ~ G/O'(O) is a p-group. Th". V ;2 

O'(N). Assume U > O'(N) and choose V <I N, V ;2 QP(N) such that U /V 
is a ohieffactor of N. Let ~ be a non principal linear character of V/V, Since 
U/V isft chieffactororthe p-groupN /O'(N), we conclude that U /V !:;; Z(N/V) 
and hence J. is invariant. in N. 

Let 8 ~ AO'\Gl.lfX is an irreducible con.tituent of 8 and x E N, then since 
AX ':;::: A, we have 

[x. 8] ~ [Xu, AJ = [(X')u. AX] = [(X')u. A] = [x'. 8]. 

Since P s; N, il follows that we may write 

9 ~ I:aAt; 
• 

as t; runs over lhe ,ums orth. orbit. oflrr(O'(O» under the action o( P. 
N"w ,'1(1) = 10'(0): VI ~ 10; Nlisprimetop. It r"lIow. that for some t;, 

we have p,l' a. and 1',( 6(1). Write 6 = L, .. X where I!) is an <>fbit. Since xli) 
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is constant (or X e I!). we conclude that p .( II!) I. Since I!) is an orbit under the 
p·group P. we have 1(91 - I and t; ~ X, where X E Irr(O'(G». r. i. invariant 
und.!:!, p. p.( X(I) and p.( [,9, xl 

Since PO'(O) = 0 and X is invariant under P, it follows that x is jn­
variant in O. We claim that X i.extendible to O. By Coroll.ry 6.28. ilsufficc. to 
show that p,l' X(l)<>(X). Now 0'(0) hu a normal .ubgroup. ker(det x). K, 
such that 10'(0): KI .. o(x) and O'(O)fK is abelian, Since 0'(0'(0» e 

0'(0); it (ollows that O'(G) ha. no nontrivial p-(aetor group and thus p .( o(x). 
Since p.( xO). Corollary 6,28 does apply. 

Lot !/I be an extension of X to G and write 

!/IN - L b.'P. 
... 1,,(/1/) 

We have 

• , 
which is prime to p. We may therefore choose '1''' Irr(N) with p.( ['Pu. ),]. In 
particular, [<Pu, AJ '" 0 and since At; Irt(U) is Invariant in N. we conclude 
that <Pv - eA and thus' q>(l) ~., - [CI'u, A] Is prime to p. Since V 5 ker A 
and 1(/" ~ eA. we conclude that V s;; ker 'I' and 'P e Irr(N IV). Since N IV i •• 
p-group, q>( I) is a pOwer of p and hence q>( l) m I. 

Now N (ker CI' is abelian and thus AP(N) " ker 'P. How.ver, U ~ 
1"\ 0'(0) s;; N ('\ A'(O) - A'(Nland therefore U s:; ker <po Since 'Pp eA. it 

that A S 1", This contradicts the choice of ~ and completC1l the proof 
o( theorem. I \ 

We discuss. one funher topic in thi. chapter. Let IV "'" 0 .0 that 0 per­
mutes irr(N). It is also true that 0 permutes the 8f.'iI of conjugacy classes of IV 
and 'ii is natur.1 to consider the relationship between these two actions. It i. 
not the;case that tbey are necessarily permutation isomorphic although they 
are closely related •. 

(1i:32('OOoREM (B~a~~rr I1i) be Ii group which acts on Irr(O) and on 
the Set o,f conjugacy cl ..... of O. A8sume that x(g) - x"(g") for all X e Irr(G). 
a eA' lind ge G; 'wh'¥;iI','is' an element of Cl(g),. Then (or each a E A. the 
number;of fixed irreducible charactc" of G is equal to the number of fixed 
classet: . . " 

Proo! Let X, and.1l"j be tho irreducible characters and conjugacy classe8 
of 0 ror 1 S I, j S k. Choose 91 E.1I"I and writ. g,' = 9) if .11",' : .'Jf'j. Let 
X ~ (X~gj»' the character table or G. viewed a •• matri •. 
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. For aEA. leI PIa) 3 (p')' where p') g 0 unl ... Xi' - Xi' iIl·which """" 
Pij'. 1. Si.nilarly. define Q(a) m (qJJ)' whcrc,qO'" 1.if ..1(:,~- IX' ,4M ;,. ,,,,,ro,, 
otherwise. ... I 1. 'J.>I!I)I"; ":'"," '1.,(\ '! 

The(., v) entry of the matrix P(a)X is i,i": ! 

L P"X,(o,) ~ X,"(gj . ," , 
sinQC only when X, - X: is p" '" 0, Si.nilarly, !~ ,(Ii,v)en,o/Y .. 1!r file matr~ 
XQ(u) is: . i j ,' •• I • • • I ) .: I I 

L x,(gJ}qJ" xJ9:-') ' 
) 

'>0" • r 

since only when g) ~ 9:-' is q), ~ 0, 
The hypothesis of the theorem now implies that p(a)X - XQ(a), Thus 

Q(a) _ x~ I P(a)X since the orthogonality rela.tions guarantee that X is 
nonsingular, We conclude that tr PIa) ~ tr Q(a). Since tr PIa) is the number 
of X e Irr(G) which a fixes and tr Q(") is the number of:a-fixed conjugacy 
cia ..... the proor is complete. I 

(6.33) COROLL,aY Under the hypotheses of Thoorem 6.32 the numbers of 
orbi(s in the actions of A on the irreducible characters and conjugacy classes 
of G are equaL 

Proof Apply Corollary 5.15 to the result of Theorem 6.32,' I 
We may apply Theorem 6.32 to obtain information about the characters 

o("FrobeniLisgroups," u .~" ' 

(6.34) THEOREM Let N'" G and assume that CG(;>:) s: N for every 

I ", "'<! N. Tho" 

(a) For 'I' e Irr(N), with ip ~ IN' we have 10('1') - Nand tf>' e Irr(G). 
(b) For X E Irr(G) with N ~ ker X, we have X ~ tf>0 for some II' e [ff(N), 

Proaf Let ipelrr(N). ip '" I., To show that q>GeIrr(G), it suffices b~ 
Theorem 6,11 to show that !a(ip) - N. In order to pro". (a~ therofore, It 

sull\oe. to show that no element 9 e G N ~ normaJize any nontrivi'!>!, 
conjugacy class of N and then apply Theor..." ,6.32. , " 

Suppose then, 9 E 0 - N normalizes Jf';a class of 11(. I.et )i i; Jf'. \hen 
x'l! X and thus x' ~ x' for some n e N. Therefore g.-I E C(x), SlDce 
gn - 1 f Nand "e N, the hypothesis yields x- 1 and thus 'Jf' ~ {I}, Thi~ 
proves (a). . 

Now let X E Irr(G) with N ~ ker X. ChOOIC' an irreducible constituent 'I' 
of x. with 'I' '" 1 •. Then X i. a constituent of <f',;.which is irr!'ducible and so· 
'i1, - X· The proof i. now complete. I. ,I, .', '. ,! ;" 

, It turns oul that the groups G satisfying the hypotheses of Theorem 6.34 
and for which N <: G arc exactly the "Frobeni". groups" which are dis­
cussed at some length in the ne"tehapter. 

/'rob/em 

(6.1) Let N.., G and .9 e Irr(N), Show that ,9" E irr(G) iff la(9) N. 

(6.2) Let N <J a and suppose GIN is abelian. Let C be the group of linear 
characters of GIN so that C acts olllrr( a) by multiplication. (See Problem 2.6.) 
leI 9 € irf(N). Show that 

J:.Gmf L" 1-, 
Where/is an integer and the Xl t: Irr(G} constitute an orbit under C. 

Hi", Let X E Irr(a). Then (XN)G ~ PX. where p is the regular character 
~~. . 
(6.3) Let N '" G alld let X E Irr(G).nd 9 E Irr(N) with [XN' .~] jc O. Show that 

arc eqllivalent: 

(a) XN~e9,withe'~IG:NI; 
(b) X vanish., on G - Nand 9 is invariant in G; 
(c) X is the unique irreducible constituent of ,9G and ,9 is invariant in a, 

i',! .;;an,N
tfi

O'1d1e ,In the situatiol1 of this problem, we say that X and ,9 are fully 
i.i with respect to GIN, 

',1". 

(6.4) Define Jf'(G) - [If 0; GI ipG "',r(G) forsome '" E Irr(H)) , Let H(G) M 

1\Jf'(G), Show that if G is all M-group, thell H(G) is abelian. 

" Note ~Y P~oblem 5,12, 7..(0) ~ H(G) for all groups, O. or course. H(G) 
. IS characterIstic In G. 

"" (6.5), Let H(G) be as in the preceding problem, Show that H(G) centralizes 
, "N IN for ."ery N <l G and conclude that if G is solvable. then H(G) is nil­

:: potent, 

Note I? fact we may conclude that if G is solvable, then H(O), .. 

~'~;~:i:;T;~h:'~S~"~iS~~O)~lbecauso a group which is nilpotent of class;:. 2 necessarily 
~i ' ,abeliall noncentral subgroup; namoly, the next to the last 

term In ItS lower central series. 

,"" 'Hint Ifip_lrr(N)with N "" G, then H(G) .. 10\'1'). Use th\sto show that 
:: [N, H(G)] s: N', 



1 
:: . 

1 i 
" : , ' 
I, 
i I; I . 

. I \ I 
• 1 

I 

! 
I 

I 
I 
! 
i 

'I 
I 

I! , . 
I! 

I j 
I' 

• i I 
. Ii II 
~I!I Iii Ii 

96 Chapter 6 

(6,6) Let G be solva.ble and assume that every X E Irr(G) is quasi~primitive, 
Show that G is abdiatt 

(6.7) Let N"", G and assume that GIN is solvable. Let X E It'r(G) and 
II E Irr(N), with [X", ,9] ,,0. Show that x(l)j,~(t) divides IG: NI. 

Note Thc concilision of this problem in.lid even ifOIN is not solvable. 

(6.8) Stlppo'e that G has cxaetly one nonlinear irreducible character. Show 
that G' is an elementary abelian p-grol1p, 

(6.9) (Domht>lfl Lct G be an M-group and suppose N <I G with 
(I NI.I G :NI) ~ I. Show that N is an M-group. 

Hint Let :lelrr(N). Find II <;;; G and Aelrr(H), !cO) ~ I such that 
[(A"")" • .'1] " 0 and AG E Irr(O). Use Problem 6.7 to show that !c""(l) ~ :!(I) 
and then use Problem 5.8. 

(6.10) Let N <I G with (I G : N I. I N I) ~ l. Suppose that every subgroup of 
GIN is an M-group. Show that G is a relative M-group with respect to N, 

'V~pl, k""'I"'{~"""'I.:. v .. ll. r~i:t:t-tlb,~ r~ ~()t I l.~,,'l)'\ Lt..-. ..... 
(6.11) Let A <I G with A abelian. Suppo,e X E Irr(O) is a monomial char­
acter. Show that X is a relative M-character with respect to A. 

Hillt Write X ~ ~G. with A a linear character of H '= G. Then everv 
. d 'bl . f(' )·h 1'1" I·)"·'L-····,~·<G.A', Irre UCI C constituent 0 ,l\.A. ..... 1I as mu lip tOtty • ... .)1'1 t .. (.,(,. ,..,.~ ... ~~ .4;, '~''''' ,.l~ 

Nole Since Problem' 6.11 ig fal,. if A is not .btli.n, it does not follOW L.l 
(and is not true) that an M·group i. necessarily a relative M-group with""f ... " 
respect to every normal subgroup, '''\to.~/oI'' 

... ,lA 

(6.12) Let K/L be an abelian chief factor ofG. Let 'P E Irr(L) and T ,,; 1.('P). ~ c. 
Assume that KT ~ G. Show that one of the following occurs: 

(a) ",( cJrr(K); 
(b) <p' c ,,9(orsome8Elrr(K),wher.e' ~ IK:LI. 
(e) 'P" m D-I ,~" where the 8,.lrr(K) are distinct and I -IK:LI, 

Hinl Usc Problem 6.2 and the ideas in the proof of Theorem 6.18. 

(6.13) Show that the number of rcal classes of a group a is equal to the 
number of rca I valued X E Irr(G) . 

Note It is easy to see that if I GI i. odd, then 1 is the only real element. II, 
follow. that Problem 6.13 gelleralize. Problem 3,16, 

(6.14) Let F be a field with O!;;; F;; C. Say that geG is an F-element if 
x(g) E F for every X" Irr(G). Let a be. p-grol1p with p .. 2 and .how that the 

Problems 

numbtr of classes of P-elemenls of G i. equal to the number of X E Irr(G) with 
values in F. 

lfinr Let e be a primitive I G I th root of unity. ,,,,,t 2\' be the Galoi; group 
of F[e] over F. Define actions of\J on Irr(OI and on the set of cia,,"" ofG . 

Not. Problem 6.14 is false without some assumption on G. Counter­
examples with G a 2-group and a of odd order have been found by Thompson 
and Oade respectively. 

(6.15) Let F be an arbitrary field and let N <I a. View F[N] ;;;; P[G). Show 
that J(F[N]) ;;;; J(F(G). (See Problem 1.4.) 

(6.16) Let J' be • p·group and Q a q-group, where p and q are distinct odd 
primes and J' ~ Aut(Q). Show that I PI"' 11 Q I by carrying out thcfollowmg 
steps. 

(a) It ,uffices to assume that Q i. elementary abtlian, that is, is an F[P]­

module with F '" Gf(q). 
(b) It suffi"" to assume that Q i. an irreducible F[P)-module. 
(e) We may assume that P i. not cyclic,.o th.t by theorems on p-groups, 

it fol\ows that there exi.ts A <I P with A elementary abelian of order p'. 
(d) Q is imprimitive as an F[P]-module and we may choose H ,;;; P, 

IP:HI ~ p, with Q P ~. f.1 W"c8ch W,an F[H}modulewith al! I W,lequaL 
(e) I_el N, be the kernel of the action of H on w,. Then 

(.n 1I'I:S:pnIH:N,j. 
:S<H"I"l • , 
• (~J)(f) Complete the proof by mductlon. 

Hint Clifl'ord's theorem (6.5) is used in (d). Show that F[A] cannot h.ve 
• faithful irreducible module. 

NOles The result of Problem 6.16 may be stated as a theorem in arith­
metic, If Q i&elementary abelian of order q", then I Aut(Q)I - n r; I ('I" - qll 
and hence this number i. nOI divisible by p' if p' > W· 
. The induction in the previous step (f) would not go through to prove the 

weakertheoremlhallPI <: 1(11, 

(6.17) Let N <J G with O/N cyclic, Let .9 ~ Irr(N) be invariant in 0 and as­
sume that (.9(1). If: N I) - t Show that .9 is extendible to G, 

.... Hint Show that G/kcr(dct 8) is abelian. 
/'.. . ' i' 

',"Note The result of Problem 6.17 is true without the assumption that 
(.9(t).IG:NI). t 
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(6.18) let N .., G and suppose G - N H with N " H - 1. let.9 e Irr(N) be 
Invariant in G and assume (.9(I~ I G : N I) - 1. If H is SOlvable. show that .9 ill 
.. tendible to G. . 

Note The result of Problem 6.18 is true withoui tlle,asiumption that H 
is solvable. However. even if H is abelian. the condition (.9(I).IG: NI) ;,; i 
cannot be removed. 

(6.19) Let N "" G with G/N a "..group and let.9E Irr(N) be invariant and p­
rational and assume p,( 0(9) and p ,( .9(1). Let X be the extension of 9 to G 
with p,( o(x) (which exists by Corollary 6.28.) Show that X is p-rational. 

(6.20) (Thomp,on) Let E'(G) denote the minimal normal subgroup of G 
such that G/E'(G) is an elementary abelian p-group. Suppose N S; G wit~ 
p.r IG: N I and E'(N) m E'(G) " N. Show tha\O'(N),:" O"(G) " .y. 

H in" Sharpen the proof of Theorem 6.31 as follows. Choose J so that 
~, = I". Let '# ~ '#(01"1/0,) and let A E Syl,('#). Now A PO?""t .. ~rr(H) for 
all H !i G and J is invariant under A. Now proceed' WIth the proof of 
Theorem 6.31 but arrange matters so that X.I/J and 'P arc inv~riant under A. . ,; - '. .. 
(6.21) Let 1 ~ H • .., H • .., ... <I H,- G. AStiume that HJH'~I i. non­
abelian. Show that there exists X E Irr(G) witbx(l) '" 2'. 

Him Use Corollary 6.17. 

, '.JLI· 

<,:' .1.. '" 

/ 

7 T.I_ sets and exceptional characters 

. Suppose We know lhat G has a subgroup 1/ with cerlain specified prop­
erhes and assume that we have some information aboul how II is embedded 
in G. ~ow can we draw conclusions about G? We might try inducing the 
IrredUCible characters of H to G. Usually this gives little information since 
'f I HI i. much smaller lhan I G I. the characters 9G tend to h. vc large numbers 

'rreducible constituents with large mulliplicities. even if .9.; Irr(H). 
in situ~J1onSI howevert One can find a difference of two characters 

9, - 9, of 1/ where (8 1 - .9,1" ~ XI - X, and XI alld X, are under control. 
In these situations. informl1tion about Trr(G) can be obtained, 

The earliest example of the uSe of this technique is in the proof of 
Frobeniu!j> theorem. We shall give this before discussing any of the later 
refinements of these ideas. 

In Theorem 6.34 we considered groups G having a normal subgroup N 
such that C.(x) 50 N for all I .. "e N. It follows immc-diately using Sylow's 

" theorem and the fact that nontrivial p-groups have nontrivial Centers that 
,. (iNI. IG:NIl = l. By the Schur-Zassellhau, theorem we conclude that 
" ther. exist. H '" G with NH ~ G and N n H _ 1. 

", In this. situation, Jet 9 e G - H. Write (1 :;::; Xn with x e- Hand 1 .,. n E N. 
If Y e H ri Hilt then y e Hit and y ::t:;II. hit for SOme h e /I. Since Y E Ht we. have 
[h. nJ - h-'h" = h-'y II' 1/. Since N <I G. we have [h. nJ ell" N = 1 and 
h e qn) 10 N. Thus h - 1 and y - 1. We conclude lhat H " H' g I. 

DIlFINITION Let H IZ G. wilh I < H < G. Assume that H " H' = I 
;;i'~b.'n.,..r 9 e G - 1/. Then 1/ is a Frobeoi" .• complement in G. A g/Ollp which 
:·'.::oo,tain. 8. Frobenius complement is called a Frobeniwii group. 

.9 
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We have proved in the foregoing that group' ,atisfying the hypothelleS 
of Theorem 6.34 with 1 < N < G arc Frobel1i\l~ groups. Frobenius' theorem 
is the converse of this. 

(7.2) ·'·IIf.OREM (f'robeniu.,) Let 0 be a Frobenius group with comple­
ment H. Then there exists N"" G with HN ~ G and H n N I. 

The ract th.t the group N of Theorem 7.2 satisfies the condition that 
Co(x) 50 N for all 1 ,p X E N i. not difficult to prove and is left to the reader. 

Before beginning the proof of Theorem 7.2, w. mention the curious fact 
that it is triviatto find N. What is hard is to prove that N is a subgroup. 

(7.3) L"MM' Let j{ be a frobenius complement in G. Let 

N ~ (G - ,Y/') v {I}. 

Then INI ~ 10: HI. It M <10 with M n 11 ~ I, then M';; 

Prorl Since H ~ No(Il). there are IG: HI distinct subgroup'r e 
form H". The,e contain exactly 10: HI(IHI- 1) nonidentity elemenls. Th 
remaining dements of G constitute the set N. We have 

INI ~ 101- IG: JJI(IHI - I) ~ IGI - 101 + IG: HI ~ 10: HI· 

If M "'" 0 and M n H = I, then M n W z I for all x € 0 and thus 
M!: N. The proofis complete. I 

We mention that except for some special ~ase.;, no proof of Theorem 7.2 is 
known which does not use characters. 

(7.4) LEMMA Let If be • Frobeniu. complement in G. Let 8 be • cta" 
fu"ction of H which sali,ties ,9(1) ~ O. Then (,9")/1 s a. 

Proof Let I ,p II E 11. Then 

8G(II) ~ (I/IHI) L 9'(;:11.>:-1). 
x,G 

If 8'(.,hx- l ) '" 0, then 1 ,p xhx- 1 E H n HX
-' and x G H. Then 9'(;:lIx-') 

8(11). We have 
,9"(h) = (1/1111) L 1/(11) .9(h), 

.. II 

Since ,9('(1) = I G : HI ,9(1) ~ 0, the proof i. complete, I 
Th. proof of Theorem 7,2 may be motivated is"follows. Assuming the 

theorem i. true, let X e lrr(G) with N s; ker X. Then XII , Irr(H). Now glv"" 
XII ~ 'P E Irr(HJ we try to find X" Irr(O). We (10 this for each 'P € Irr(H) and 
check that nker X is the desired normal subgroup. 
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"Proof of Theor"", 7.21..ct' 11/ ,. 'P e Irr(H) and writ. ,9", <p ~ <P(l)1. 
!iO'that ,9(1) .. O .. Now [90 ,9"] .. [9, (9°).] ~ [9,8] by Lemma 7.4. Thu, 
[9°, 9°] ~ I + <P(I)', Now (9", I.) .. (9, III] - -<P(I). We may therefor. 
write ,9" E <po -;- <P(l)I., where 4'~ in clallS function of 0, [",., 1 oJ - 0, and 
1 + <P(1)2 ~ [",', ",')+ '1'(1)',loth.t[",",,,,"J _ 1. Since 9iudifferenceof 
charllctets, so is 9" and hen", 'P" i. a difference of ~haracte\'s 9lso. Since 
['P., 'P.] '" I, it follow. th.t ± 'P" e Inia). Furthennore, if II ~ H, th"" 

'P"(h) - SO(h) + q>(1);' 9(11) + <P(t) ft q>(h). 

III particular, ","(1) > 0 and thus 'P. G IrriG). 
For every n"nprincipal 'P ~ Irr(H), we have now chosen an extensjon, 

'P"" Irr(G). Let M ~ n. ker ",-.If., e M n H, then q>(x) ~ 'p",x) ~ ","(I) ~ 
",(1) for all ",EJrr(H) and thus:< K t. By Lemma 7.3, M!: N. 

Conversely, if g E G lies in no conjugate of H, then 

'P.(g) - <P(l) ~. 9"(g) ~ 0 

and 9 E ker 'P". It follows that M = N and hen", the norm.1 subgroup M 
satisfieslMl = IG:HI. We have IMHI""IMIIHI ~ IG:HIIHI ~ IGland 
th.result follow.. I 

The normal subgroup whose existence is guaranteed by Theorem 7.2 is 
called the Frob,"iu. k,,"ei of G. By Lemma 7.3, it is uniquely determined by 
n. We mention without proof that in fact a Frobeniu, group has. unique 
conjugacy class of complements and a unique kernel. 

An entirely equivaleht version of Fro ben ius' theorem may be stated as 
follows. J 

(7.S) COROLLARY Let a be a transitive permutation group On 0 with 
character X. Assume x(g) os: I for all 9 E G with g.,. I. Then the set 
ke Glx(g) - O} u {I) i •• transitive normal subgroup. 

Proof Let ~ G 0 and •• ;ume 101 :l: 2. If there e~i.tsany g " G. 9 ,p 1 with 
X(g) I" 0, then 0, is a Frobeniu. complement. By Theorem 7.Z. and Lemma 
7,3, {geGlrlg) ~ OJ u {I} _ N i. the Frobenius kernel. It i. transitive 
since NG, G. I 

We shall nOW discuss 80me ofthe ways th.t the ideas in Frobenius' proof 
have 'been e~tcrided and used in other conte~ts. We need to introduce some 
tenninology. I .... ! 

,',! ' 
" " 

(7.6) DBFINlTION' Let X Si G be a .ubset. Th"" X is a T.I. set (trivial 
intersection set) if for every 9 e G, either X' ~ X or X' 1"\ X Ii {I}. 
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(7.7) LEMMA Let X be a T.I. set in G aDd let <p and .9 be cI .... functions on 
N ~ N.(X). Assume that I(> and.9 vanish on N - X and that 8(1) ~ O. Then 
9"(:<) ~ 8(x) for all "E X and [,90. 1(>0] .. [9, <,0). .... ", :. "',.I 

Proof Let x" X. Then ,90(;x) = (I/INI) t,:o ,9't)':<Y-'). If 90(y"y-'l,i'~ 
0, thenyxy·1 EX n X'-' andyxy-I .. ·t.Itf~lI~w~t,hat~ EN ~d 9'(y~!';~i~~ 
= 9(x). The first statement DOW follows., ,I\,~ I 

We have [9".I(>c1 ~ [(90)",1(>]. Since I(> vanish .. on N - Xand (.9")N·-' 9 
vanishes on X. we conclude that [(90)N - 9.1(>] m 0 and hence [9", 9"] ~ 
[9,1(>] as claimed, I ' '., "''':: L... ":1 

Because of the requirement that 11(1) ... O,tbe preceding lemma cannot be 
applied if.9 is a character. We usually take 9to be a difference of tWO chal­
acters. Such • difference i. called a generalized, characl."., Note, that 9 is. 
generalized character 01 G iff [8, xJ "Z lor, all X e Irr(G)" Also. the ... of 
,generalized characters of G is a ring ... 

We are now ready to consider 1I"0U"s whose Sylow 2 •• ubgroup P is 
generalized quatemioD. If I PI;;,; 16, ",!e shall prove tb¢.,tbeorem of Brauer and 
Suzuki which a ... rts (among otber,tbinlll')that, .• ucba,group cannot.be 
simple. TItis'theorem is also true if IPI'-,8 but it is m05" difficult topro~~,in 
that case. 

We shall use the lollowing facts about a genera~:quatemion group P: 
. ,,~I '!q·~,'I)\ ," t'" ·',H f.:'" 

(a) P has a cyclic subgroup ofindex 2; '., 
(b) IP:PI ~ 4; "I','!,;;.,' 1:·:(;1!j}'~(I" 'IJ.~j,::~ 
(c) Iz(P)! ~ 2; ,; " 
(d) noncyclie subgrOUps of Pare themselv.s generalized quaterni,?%" 
(e) P contains a unique involution, 

We shall need to usc the result of Problem 3.9 iD the proof. 
t. _I 

(7.8) TIIEOREM (Brau,r-Suzuk,) Let PeSyl,(G) be generalized quai¢r, 
nion with IPI;;,; 16. Then there exists N"" G withlNI odd and such that 
GIN has a normal subgroup 01 order 2. ." 

" 
Note that possibly N ~ 1 in 7.8."We first provelbe following weaker 

version. The: full result will then follow easily, 

(7.9) TIIEOREM Let p~Syl,(G) be generalized quatefnion with IPI;;,; 16. 
Then there exists M <I G such that IMI is even and GIM is nonabelian. 

Proof Let H '" P be cyclic with IP: HI = 2. We 'have f" '" Hand 
1P'1-IPI/4:2: 4, so that P' > Z(P) and bence C,.{P') - H. Let C ... C;:.W) 
and N = NoW). Now P E Syl,(N) and e <I N so that H - P nee Syl,(c). 
Since a Sylow 2-subgroup of e is cyclic, it follows (for instance from Burn­
side's transler theorem) that e has a normal 2-wmplement K and K.., N. 

- ~ - .,..-- ----------_ ... ---... 
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Now N/C is isomorphic to a subgroup of Aut(P'), Sjnce pi is a cyClic 2-grouPI 
it lollows that Nle is a 2-group. We therefore conclude that N = KP. Since 
e = KHwe have I~CI = 2. 

Let V;; P' with W: VI = 2. Let X = C - VK. We claim that X is a 
T.I .... and N - N(X). Now C/K '" H is cyclic and V KIK is its uniqucsub­
group of order equal to lUI. It follow. for y"e that ytX iffo(yK) in C/K 
exceed. I V I. We conclude that ye X iff (21 V I) 1 o(y). 

Now I I" I = 21 U I and P' <I C. Since P' contains all elements of C of 
order 21VI, it follows that P';; (x) for all xEX.lfxeX n X,, then P';; 
(;x) and (1")';; (x). Since WI = IW),I, we have P' ~ (PO'I and gEN. 
Since: clearly N ~ N(X), it now follows, as Claimed, that X is a T,I. set and 
N _ N(X). Since 1f"1 ;;,; 4, we also have 410(x) for every x E X. 

Now C/V K is cyclic of order 4. Let A be a linear charactcr of C with 
ker). - VK. Let ,9 - J.N - (Ief. Since ker J." e UK;; ker(lcl"'. we con· 
elude that .9 vanishes on V K and in particular 8( I) = O. Clearly, 9 vanishes 
on N - C and hence [} vanh;hes on N - X. We may therefore apply Lemma 
7.7 with I(> ~ 9 to conclude that [9G

, II"] ~ [9,8]. 
To compute [.9, 9]. ob""rv. that (td'" ~ IN + J1 where ker J1 = C. We 

claim that AN E' Irr(N). Otherwise, J.'" is a sum of linear characters and P' c 

NI ~ kcr AN ... UK. which is not the case, Thus 8;;;;[ AN - J4 - I/V and 
[.9, .9] ~ 3. 

(j G a Now [9 ,9 ] = 3 and [9 , la] = [8, I,] ~ -1. It follows that 

8G ~ ±XI ± X, - IG, 

whore XI, X, E irr(G) are not principal. Since 9G(I) = 8(1) = 0, we eondude 
at the signs. above are opposite and without loss we may write 

.9(; !OIl(; XI - X2 - la' 

I,l.:nless (J is conjugate to an element of XI we conclude 

x,(g) - X,(g) m I if 4,j'o(g). 

Since P has a unique involution, it follows that G has a unique conjugacy 
class of involutions, Let .:f I be this class, Define the class fUllction cp On G by 

<p(g) = 1{(x,y)lx,YEJf'" xy = g)l_ 

" If q>(g) .. O. then g ~ xy lor involutions x and yand hence g" = yx = y - '. 
Tf o(g) is .ven, let" be the involution in (9). Then (x, (f) is an abelian, non­

,crcHc group of order 4. Since P has no such ~\JbgrouPI neither does G 
by Sylow's theorem. We conclude that I(>(g) ~ 0 if o(g) is even. Thus 
"I(>(g)(XI(g) - X,(g) - 1) ~ 0 for all q € G. Therefore 
'". ' 

(2) [I(>, XI - X, -loJ = o. 

" 
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In C[G].let K. be the class sum corresponding to the conjugacy class X,. 
Then in the uotation of Problem 3.9. 

KIKI = ra1hK", 

and ifg e X .. then <pIg) = "" •. 
By Problem 3.9 we have for g 6 ,:I". and x EX, that 

qo(g) = "11. = (lX,I'/IGI) L X(x)'Xfrij/X(l). 
x II! 1,,((;) 

Since xix) and <pig) are real. we may rewrite this equation as 

(IGI/IX,I')<p = L (x(x)'h(I))X 
Xlllrr(G) 

and 

for all X E Irr(G). 
We conclude from Equation (2) that 

XI(X)'/XI(1} - X,(x)'/X,(I) = 1. 

From Equation (I) we have X,(x) = XI(.<} I since4,r o(x} and also X,(I} ~ 
XI(1) 1. Sub<titution into the preceding equation yields 

XI(x)'/X,(I} (XI(X) I}'/(X,(I) - I) m 1. 

Simplifying this, wc obtain 
(XI(") - l,(I))' 0 

and we conclude that x e ker XI. 
Sinoe Q(x) - 2, we have Iker x,l is even. Now, X,(I) = 1+ l,(J) " 2 

and thus Gjkcr x, is non.belian. The proof i. now complete with M = 

ker XI' I 
ProofofTheQrem 7.8 Let U be the (normal) subgWup generated by all of, 

the involutions in G. If U has a cyclic Sylow 2-subgroup. then U has a normal 
2.complement Nand N <I G. In this case, U /N '"" G/N and U /N is a cyclic 
2·group. The result follows. 

Assume then that the Sylow 2·,ubgrollp, of U are noncyclic. We derive. 
contradiction. Since 811 U I, we may choo,e V, with U !;;; V !;;; U P ~uch that 
I V: U I :s; 2 and 1611 VI. Now Theorem 7.9 applies to V and we may choose 
M '"" V with V / M nonabelian and 1 M I even. " 

Since a Sylow 2·,ubgroup of V contain. a unique iA.Yolution. it follow. 
that all involutions of V are conjugatc. Since M '"" V con III ins an involution, 
it follows that M contain. all of the involution. of V and hence U !ii M. Thus 
IV:MI:s; IV: UI:s; 2 and this contradict. VIM being nonabelian and 
completes the proof. I 

T. I, "$IS $nd exc~pliona.1 Ch$rElc1ers 106 

By the Brauer-Fowler theorem (Corollary 4.12). there are at most 
finitely many nonisomorphic simple groups which contain an involutio.; 
whose centralizer is i.omorphic to 80me given group C. Much work ha, been 
done in recent yea" to find all of the simple groups corresponding to various 
specific C. A key step is to find all possible orders of these ,imple group. and 
this often involves character theoretic technique, related to those in this 
chapter. As nn illustration of this we prove the following. 

(7.10) TJI1.lQREM Let G .. G' and suppose t eGis nn involution with 
Co(t)dihedral of order 8. Then 101 - 168 or 360, 

We need a lemma, ' 
jt' ,i ,. ,', , 

(7,11) LEM!>IA (Thompson) Let SeSyl,(G) and suppose M!;;; S with 
I S I M I ~ 2. Let t e S be an involution which is not conjugate in G to any 
element of M. Then ql G'. 

Pro~r 1,0' G act by right multiplicatio" on n = (Mglu. G). Then 
101'" 2IG:SI. Now if Mg< Mg, then y<g-'.M, which is not the cas •. 
Thu8 t has no fixed points on n and since I G : S I is odd, it follows that < 
induces an odd permutation on n. Therefore, there exists A '"" G with 
I G: A I ~ 2 and t, A .• The result follOWS. I 

'Proof of Theorem ,7.10 Let D - Co(t) and D" SeSyl,(G). Then 
Z(S) !: Z(D) ~ <.) and hence S .. C(.) ~ O. Thus De Syl,(G). Let M 0;; D 
be cyclic of order 4"" that t is the unique involution in M. Since G ~ G'. 
Le!rima 7.11 guaranI .... that every involution in G is conjugate to t. 

1<1 Now M isa T.I ... set in G since if M n M' oF 1. then te M' and thus 
t' .. 'f' and xeD. SinCe M .... D vie have M - M' This argument also shows 
that D ~ Nr,(M). 
" Let.l be a faithful linear character of M and let .9 - (1", - .I)". Since ;.' i. 

irreducible, il follows thaI [9, 9J ~ 3. Also • .9( I) - 0 and 8 vanishes on 
D ,.. M. Thus by Lemma 7.7 we have [9G

, 8GJ ~ 3 and also (90
)" ~ 8. 

Since 8"(1) - ,9(I} ~ 0, it follows Ihat we may writ. 9G 
- lo + X - "', 

where X, '" e Irr(G). Calculation in D yields 4 - 11«) - ,9"(t) and we have 

. ' 0 - I + ;l(1) "" 1/1(1), 4 ~ I + ;l«) - ",(t) . 

" ' 'Let X den;'t. tb~ (uniquei ~nju8aCy cia .. of involutions in G and define 
the class function ((! by 

. rp(g) -1((x,y)IX,yeX,xy c gil. 
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If xy ~ 9 for involutions x and y. then gK = g-' and conversely. if x e X'. 
x '" g, and g" = g- '. then y = xg i. an involution. It follows that !p(g) m 

l{xeX'lx '" g, g' = g-')I. If I '" geM and g' - g-', then',' ~ t and 
xeD. We conclude that !p(g) = 4 for I .. geM . . , 

Reasoning as in the proof of"l"heorem 7.9 an~ using Problem,).9, we have' 

IX'I' {It)' 
1(>=- L -~. 

IGI "",eO) W) 
Since IX'I = IGI/8 this yields 

a IGI[ ~t)' ,pIt)'] 
[.9.1(>] = 2" 1+ ~I) - ,p(I) . 

Also, [9". 1(>] _ [(I" - .<). (P,,]. Since I(> has the con.tant value 4 on 
M - {l},thisyield.[!JG.1(>] m (I + i) + (2) + (l - j) - 4. We conclude that 

(2) 2' ~ I G I [I + X(t)' _ ,pIt)'] 
.«1) ,p(I)' 

Write a = x(l).and b = X(t) so that ,p(1) = a + I and ,p(t)": b - 3 by 
Equations (I). 

By the second orthogonality relation we have 

S = Iqtll ;" I + X(t') + ,pIt)' .. I + b' + (b - 3)'. 

Since, b E Z. we conclude that b .. I or 2. 
Assume b = 1. Equation (2) yields 2' .. I GI [I + (I/a) - (4/(a + I))] and 

IGI m 2'0(0 + 1)/(0 - I)'. 
'-

Now 2la(a + I) but 24 -I'IGI and we conclude that 2'1(" "..1). Therefor •. 
2' .( a(a + I) and since 2' IIGI we have 24 -I' (a - I). No odd prime divisor of 
a _ I ca" divide 2'''(0 + I) and we conclude that a - I is a power of 2 and 
thus a ~ 9. This yields IG I - 2' x 9 x 10 - 360. ", ..-- ' I 

Nowa.sumeb _ 2. Equalion (2) yield. 2' ~,IGI[I + (4/a)."..'(1/(a + I))) 
and 'I '\.! 

IGI- 2'0(0 + 1)/(0+ 2)'. 

Reasoning exactly as .bove. we conclude 'that 
2' )( 6 )( 7 _ 168, The proof is complete. I" 

','I .,',' I 

a + 2 - 8 and IGI"",' 
1 "I i !~,il 

We mention that GL(3, 2) ;,; PSL(2, 7) ia the unique group G of v,u,,, /,.~ •. 
168 with G _ G' and A. Oli PSL(2, 9) i. the unique one of order 360. 

.' "'.,' I ::'-1 ",I ": •• ~ )~\;.!'H ":,1' "::"~" 
·:.::rl':1;""\("f:.i'~;i.·,J ~ 

We go hack 10 the proble", of Obtaining Information about the 
ducible characters of a group from information about a subgroup. 

1f. I • • ets and exceptional chdraoters 107 

f/' lm Irr(N), We introduce the notation 7o[.9"'J for the set of Z-lille:ar combin­
ations of elements of [f'. (Thus Z[lrr(N)] is Ihe set of generalized characters 
ofN.) - . 

Suppose N 0;;; G and that we can find a map .: 1'[.'1'] .... 1'[ltr(G)] such 
.th.t , is 1'-linear and that [1(>', 9·] = [I(>, ~J for all 'P, 9 E 2[Y']. (Such a map 
is: called a linear isometry_) In that case We have [i", x*] ~ 1 for X€Y' and 
'lhus ±X· e Irr(G). Write r.(x) ~ ± I so lhal r.(X)X' e lrr(G). Thc characters 
£(X)X· are called the exceptional characters associated with !/ and .... They arc 
in one-tO"One correspondence with Y. 

How might such a map. be constructed? An easy example ofa linear map 
Z[9'] .... l[lrr(G)] is lhe induction map 8 .... 8G

• This map. however. is tarely 
an Isometry on Z[:I']. By Lemma 7.71 we See that there are situations When 
induction is an isometry on 2[Y'r - (9 € Z[.9') 19(1) = 0). This occurs. for 
instance. if N ~ N(X), where X is a T.1. sci and Y' ~ Ix" Irr(N)lx v.nishes 
on N - XJ. The problem then is to extend H linear isometry from 1'[.'I'J" 
to all of Z[Y'] . 

(7.12) DEFINITtON Let No;;; G and Y' 0;;; Irr(N) with IY'I;" 2. Suppose 
.:Z[Y'Y", Z[lrr(G)]" is a linear i,ometry. We say that (Y', t) is coheren' if 
1: can be extended to a lint:ar isometry. defined on Z[Y]. 

If t' is the induction map and (.Sf', T) is coherent~ we simply say !I' is 
col'er,ont.it should be emphasiZed that cven in this case, the map. usually is 

induction. The prototypical example of coherence is where N is a 
Frobenius complement in G. There, lrr(N) is coherent; and the proof of that 
fact is the essence of the proof of Fro ben ius' theorem. 

lf~~t') is Coherent, the map. is not always uniquely defined. Nevertheless 
the sct'i\. exceptional characters c(x)x· is uniquely determined by (9', t"). 

(7.13) c l-et (Y', t) be coherent and let. be a linear isometry which 
extend. t. Th here exists f. e ± I such that 'X. e Irr(G) for all X" 9'. The 
function I: 9' ... Ir J dclined by I(y) ~ eX· is one-to·one. The image of I 
i. {I/- e Irr(9)1[3' . ..v] '" 0 forsome ~ d'[Y']"}. 

Proof For XEY', [X·. X'] ~ I. and we may choose '(1.) ~ ±I '0 that 
Elrr(G). We claim e(x) ~ f.(~) for all ~e9'. We have .9 = x(l)~­
Z[9']" and thus 

x(lW - W)X· = .9'" Z[lrr(G»)". 

'Evl.I",.ti·~ on at I yields 0 .. x(lW(l) - W)X'(1) and hence e"(I) .nd X'(I) 
the same .ign. Thus «X) - «e) as claimed. 

The foregoing also shows that [9'. lu)] '" 0 for some 9" Z[9']". 
suppose ,pelrr(G) and [9" ,p] '" O. where ge1'[.9T. Then 
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,~ ~ L><>' "xX and 9' ~ L "xX'· Therofore O;t [X', "'] ~ <[fIX), "'] for 
some X E.'I' and hencej(x) ~ ",. 

To show that/is one-to-one, it suffices to show that til has trivial kernel. 
Thi, follows since if .9' ~ 0, then 0 ~ [.9', .9') ~ [9.9] and hence 9 ~ O. I 

Suppose N 5 G • .'I' 5 Irr(N). 1.'1"1 > I and t: Z[9']" --> Z[lrr(GJr is • 
linear isometry. We seck conditions on 8' sufficient to guarantee that (9\.) 
is cohc:rent. One such condition is that all X E Y havecquat degrees, Although 
this is not hard to prove direct.iy, we shall derive it as a corollary of the follow­
ing mOre general resull of Feit.· 

The main point of FciCs theorem may be summarized as. fol ws. List the 
degrees ;;:(1) for X s r.J' in increasing order. Assume that the sma tie. these 
divides all of the others. Then f/ is coherent ift.he degrees do not. increas 00 

rapidly. 

(7.14) THEORI;M (Feil) Let N 5 G, .'1' 5 Irr(N) and let t: l[9'Y--> 
l[lrr(GW be " linear isometry. Suppose .'I' ~ 9'" v (xl. where (9'0, ,) i> 
coherent. A"ume that there exists f E 9'0 ,uch that "'(l)Ix(I) and 

1 ~ , 
X(l) < 2,/,(1) L. W) . 

'f' .::'! ~n 
Then (Y', t) is coherent. 

Proof Let" l(.9' 0] --> l[lrr(G)] be a linear i,ometry which extends, on 
l[Yo)'" We shall define X' so that thc map. can be extended to all of l[.'I'] 
hy linearity. 

Let x(I) ~ d"'(I) '0 that X - dill" l[.'I']". Define I'J. by 

(I) (X - !I",)' ~ I'J. - d",' + L b<~·. 
'j;.Y'n 

where [I'J., ~') ~ 0 for .11 ~".'I' o. or course, I'J. is a (possibly 0) generalized 
character of G and all b, 6 Z. We shall show that [I'J..I'J.) Bland all b, - O. 

Now 

and thus 

Thet'eforc 

(2) 

I + d' ~ [(X - d",). (X - d.p)) ~ [(X - df)', (X - d",)'] 

1 + ii' ~ [LI, I'J.] + L hl "" (b. - iI)'. , .. 
[I'J..I'J.] "" Lb,' ~ 1 "" 2i1b., , \ 

Furthermore. sincn maps into Z[lrr(G))', we have (;( - d",)'(I) = 0 and thus 

(3) ° ~ L b,~'(I) - <1",-(1) "" 6(1). , 

T. t. sets and exceptional characters 

For ~,,9'o let S = ",(l)e - W)"'EZ[.'I'O]" Then 

[S" (X - d",),] ~ [8. (X - d",)] ~ dW). 

Therefore 

dW) = [!!', L b.~·] - d[S'. ",'] "" [2', I'J.] 

= ",(l)b, - W)b. + de(l) "" 0 

since!!' ~ "'(lg' - ~(I)"'·. We conclude that 

"'(Ilb, ~ W)b.-

Now define I' ~ b.N(I). We hav.then 

(4) b, ~ I'W) 

for all ~ E 9'0' 
Also. since S'(1) ~ O. we have 

and we ma y write 

(5) 

for all e e .'1'" and fixed ~ .. O . 
By hypothesis we have 

(6) 2d",(I)' < L W)'. , 
Suppose I' ;t 0. Then by (4) we obtain 

2 db.' - 1"(2 d",(I)') < I" L W)' - 1>,' 
and therefore 

Now (2) yields 

[6.,6) + 2 db.' ~ 2 db •. 

109 

Since b. isan integer ;to (since I' ;t 0) and [I'J., I'J.] <: 0, we obtain I'J. ~ 0 and 
b. ~ l. Thus I'J.(I) - 0 and (3), (5), and (4) yield 

d",(l) - L b,W) = I< L Wi'. 
Since b. ~ I, I' = IN(1) and thu, 

Ji d"'(I)' ~ L Wi', 
Thi, contradicts (6) and proves I' = O. 
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It noW follows that all bl = 0 and (I) yields 

(X - dy,)' - h. - dy,·. ',' 

h [ ' 'J - I and we extend. to Z[V) linearly by deftnina From (2) we ave Ll, '" -

1* ~~~ow show that. is a linear isometry on 'Z[V] and that it extends T. If 
9 E l[V]', wilh [.9, xl = •• we can write 

a = a(x - dy,) + 'P. 

where 'P E Z[Vo]" Then 

II· = u(x - dl/l)· + 'P. - a(x - diJ!)' + 'P' - II' 

d T how that. i, an isometry, it suffices to show [p •• v·l 
an~~.hu]sf·exten ~',~ Ifo/: veV we already know thi •• Since [h.,';°l s o for 
- LP \I OtJ4.\I~.7.. o· I' . 
~E.io and [A.tiJ I. the result now rollows. ' 

L t N c:: G and V c: lrr(N) with IVI <: 2. Suppose 
(7 15) COROL'.ARV • - - h t 11 X Ii V have equal 
.:ZL1"'l' -> l(lrr(G)J is a linear isometry. Suppose t a a . , 
desrl:es. Then (V. f) is coherent. 

. I "I. Let ',. X, E V be distinct. Then Proof Use inducllon on "" A 

[(x I X,)'. (X I - X,)'] = [(X I X,), (X, - Xl)] d 2 

o rte (x - Xl)' ~ a /J where IX, and since (XI - 1,)'(1) = • wc ,?ay W.I I • d fJ and extend by 
/J e Irr(G) are distinct. If ". = 2. de~n[~XJ~ _=(:(:n~ x; )I. e Z) and thus • 
linearity to leV). [n thiS case - I ;, 
agrees with t on l[V]'. . b I. ')' ~ I' _ v 

If /I = 3. let X, eV - {XI' Xl}' Reasoning as a ove, 1.<1 - X. 
where 1'. v E Irr(G) and I' '" v. Also 

[(xl - x,)'. (X, - xX] = I 

. = P but not both. U iI S ~. define and we conclude that e,ther I' ~ ~ or v fi • __ fl x • D -a and 
• • - p and X • ~ v. U v 5 P. de ne XI - ., • 

x. =~, X'I -. I' , extend • linearly to Z[V] and check that. agreeS 
1. .;;; -Jj. n Cit ler easel . , t' 'S' ce 
'. h ond on' -', and that. IS an Isome ry. 10 Wlt l' on Xi ..... Xl ft 11.1 Ao 

ZCYJ' = (a(x. - X.) + b(x. - x,)la. b Eli, 

Ihe re.ult follows in thi~ case"_ {I her. 3 ::; IV 0 I m II _ I. By the 
Suppose" > 3. WrIte V -: $1'0 v X, w and observe thaI 

indoctive hypolhesi •• (.$1' •• <) 15 coherent. Choo", iJ!6Vo 

T. I. lets and exc$plional cluiracters. III 

y,(l)lx(l) since "'(I) = x(l). Now 

I ,11-1 
2'/'(1) L: W) = -2- X(I) > x(l) 

\ 'f hVo 

and thus (9'. t) is coherent by Theorem 7.14. I 

The mo.t COmmon applications of coherence arc in the situation of a 
"tamely imbedded" subgroup as defined in the paper of Fe it and Thompson 
on Ihe solvability of groups of odd order. For the purposes of this book, we 
give a considerably more re.trictive definition which. nevertheless, is im­
portant in applications. 

(7.16) DEFINITION Let K Si G. Assume 

(a) K is aT.!. .ot in G; 
(b) K <: Na(K); 
(c) CG(k)!: K for all I ~ k" K. 

Then K i. a T.I.F.N. subgroup of G. 

The" F.N." in the foregoing delinilion stands fo~" Frobenius normalizer." 
Note that it N ~ N.(K). where K is T.I.F.N. in G, then N is a Frobenills 
sroup and K is the FrobenillS kernel. By Theorem 6.34. th. irreducible 
¢haraeters of N are thus of two types, those with kernel containing K and 
those induced from nonprineil).1 'P E Irr(K). If V (X G Irr(N) I K $1: ker xl. 
then the object of what follows is to prove that V is coherent. Results of Feit 
and Sibley do. in fact, prove this in most cases. Note that if K S;; G satisfies 
COn 'ilion (a) of Definition 7.16. lhen (c) is equivalent to CN(k) s K ror all 
I,. eK, where N ~ NG(K). 

An 'mportant theorem of Thompson (not involving characters) asserts 
that Fro niu. kernels are n .. essurily nilpotent. The nil potence of T.I.F.N. 
subgroups w assumed in what follows. (The reador Illay simply consider 
thi, to be an ad I' .1 hypothe.is in Definition 7.16.) 

A mOre elementary fact about a T.I.F.N. subgroup K of G is that 
OG:KI.IKI) m I. that is. K is a Hall subgroup. To .ee this, let pIIKI, let 
P e Syl,(K) and suppo,e I'Si S e Syl,(G). Then II(S) .. qt') .. K by part 
(e) of 7.16. Now Z(S),. 1 and so S >;; qZ(S» s K. again by 7.16(c). Thus 
pA'IG:KI. 

W. mention some situations whe,e T.I.F.N. subgroups arise. If 
... e Syl,(G).IPI = pand P 5 Co(P) < N.(P).thcn P is".l.F.N. This happens. 

instance in permutation group~ of degree p and in the groups PSL(2. pl. 
'" A doubly transitive permutation group is a Zassellhau, grollp if Some 
, , .. " nOn identity clement fixe. two points but nOne fixes throe. Let G be a Zassen. 

haus group On a set n and let ~. P ~ n with a .,. p. Then G, is a Frobeniu. 
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group with complement Gd . (We are a",uming Inl > 2 to avoid triviality.) 
I.et K be the Frobenius kernel of G,. The nonidcntity elements of K ar. 
exactly those elements of G which fix « and no other point. It follow, easily 
that K i. T.I.I'.N. in G and G, = NGU<)· 

(7.17) I,IJMMA Let K. b. T.t.r.N. in G and let N ~ N,,(K) and !I' = 
{X e Jrr(N)IK ~ ker xl. Then induction defines" linear isometry 

Z[!I'], - Z[lrr(G)]". 

Also, if a e Z[!I']". Ihen (9G). = 9. .. 

Proof If X E!I'. then X = eN for some ~ E Irr(K) by Theore~Thus X 
vanishes on N - K.. If 'P, 9 E 1.[.7)". it follows Ihat 'P, II vanish on K 
and Lemma 7.7 yields [<pG. ,9"] = ['Po ,9) and the first a.sertion i. pro" . 

Also, (9"). ~ ,9K by Lemma 7.7. Since 9 vanishes N - K. it suffices t 
show that 9" vanishes on N - K in order to prove that (S"), m ,9. However, 
no clement of N - K can be G-conjugate to an element of K since if 
XGN - K and o(x)iIKI, then K <: (K, x> and (K, .~> = K<x> So that 
I <K, x> : K I is not relatively prime to I K I. This conlradict. the fact that 
(I G : K I, I K I) ~ I. It nollAi'oliows from the definition of 9G and the fact that 
,9 vanishes on N K that ,9G also vanishes on N K and the proof is 
complete. I 
(7.18) COROLLARY (Brauer-Su:tlk0 Let K be an abelian T.I.F.N. sub­
gro\lPofG.LetN ~ NQ(K)ande = IN: KI.LetS" ~ (XElrr(NlIK!;t; kerx)· 
Then either 

(a) I!I'I = I, IKI I + e and K is an elementary abelian p-group or 
(h) .7 is coherent and there exists a one-to-one function/: !I' ->lrr(G) 

and r. = ± I Stich th:!l (x - ~)G = .(f(X) - !@) for all X, ~ E!I'. 

Proof All of the orbits of non principal irreducible charact.", of K under 
the action ofN have size e. Thlls x(I) ~ ,forallx~!I'andl!l'1 & (IKI- I)/e. 
If WI:;, 2, then Corollary 7.15 yields that !I' is coherent. In this case, (b) 
follows from Lemma 7.13. 

If WI = 1, then IKI- I ~ • and the nOn identity elements of K are all 
conjugate in N. It follows that they all have the same prime order and (a) 
follows. I 

The theorems of Feit and Sibley generalize Corollary 7.18 by dropping the 
"ssumplion that K is abelian. If I KI - I '" e, they prove lI'al either !I' is 
coherent or K is a 2-group. Before proceeding with the proofs, we di~uss 
some implications of coherence in the T.I.F.N. situation. 

(7.19) LEMMA Lei K S; G be T.I.r.N. and let N = NG(K). Suppose 
pr 5 1 x E Irr(N)1 K \t ker xl and that X i. coherent. Let" denote an iso-
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mOltry Z[X] .... Z(lrr(G)] 8uchthat • extends induction on Z[X]'. lei 
• - 'E,.~ X(l)X, Then 

(a) If "'elrr(G) and t/!,{:i:'x"lxs:t'), then "'. m a. + 9, where a i. 
rational and [,9, X] m 0 for an X E X. 

(b) «X·). - X)/x(l) is independent of X E X. 
(e) (X")N - X = a. + ,9 for X e:t', where a is rational and (9, {] ~ 0 for 

an ~ E:t'. 

Proof (a) Let X, ~ e tr. Then 

["'., xii), - W)X] ~ [t/!, (xi1)~ - W)X)G] 
- [t/!. xil)~" - W)X'] = o. 

Thus X(I)[t/!., {J m ,(1)(",., X] and hence [t/!N' X]/x(I) = a is independent 
of X elf. Therefore, t/!. - a~ + 9, where (9, x) = 0 for all X e fr. Thus (a) is 
Pfoved. , 

(b) Let X. ~ e:!', Then 6 - xil)~ W)X E l[X]" and so (aG
). = 6 by 

Lemma 7.17. However, aG = lJ.. = xil)~' - W)X" and thus 

xill~ - W)X ~ X(I)(,"). - W)(X·). 

and 

Thus (b) follows. 

(e) Let~, ~ E tr and write (:, ~ ~(1)~ - ~(I)~. Then 
• 

[<i"l., lJ.] m [X", lJ.0J = Ex", a"J [x. 6] 

so that [(X·). - x. 6] ~ O. It now follows as in (a) that (X"). - X = a. + 9, 
where a s [(x'). - X. ,]/~(I) and [e, ,9) = 0 fOf ~ E fl:. I 
(7.20) THEORilM Let K s; G be T.I.F.N. and let N 2 No(K). Suppose: 
!I' - (X E Irr(NliK ~ ker xl is coherent and let .r S; [rr(G) be the corre­
sponding set of e~ceptioDal characters. Let" be an isometry l(!I') - l[1] 
which e~tend$ induction on Z[!I')' and tet e = ± I sO that ex' <; I for X E !I'. 
Then 

(a) 1-("'elrr(Glit/!isnotconstantonK - (I)}. 
(b) 1ft/! ~ .X· e I. then "'o' - 6X. is constant on K - (I I. This constant 

hastb. form mx(l )/1 N: K I for some mel which is independent of the choice 
of X e!l'. . 

(c) If g e a is not conjugate to an eicmenl of K - {I}, then t/!(gW(1) 
i. independent of the choil>: of'" e I. 

. (d) If X e!l'. then X·(1)!x(1) i. independent of the choil>: of X. 
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Proof We apply Lemma 7.19 with !f: = 9'. Thcn ~ - \p. ~ PH" 
where PH and PN/i: lifE regular characters. In particular, !X is constant on 
K _ (I l. Also. if 11 is a generalized charactllr. of Nand (9, x] m 0, for all 
X E 9', then K is in the kemel of every irreducible ¢(lDstituent of 11 and hence 
9« is constant. .: f t r : ", , ," 1.1'.' 

Now. if tJi if, I. then 7.19(0) yields tJi ... a~ + IJ and tJi is coostant on 
K {I}, U tJi e I. then 7.19(c) yields f.tJi. - X + a« + 9 where <tJi ~ X'· 
However, X E!I cannot be COOSlant on K - \1), otherwise, by problem 3,8. 
.very nonprincipal irreducible characI~r of K is a constituent (If x.· This 
would (orce 19' I ~ 1 which is not the case. Thus W. is not constant on 
K - {I) and (a) is proved, . 

The firsl part of (b) is immediate from 7.19(.). To evaluate the constant, 
choose e E!I with W) _ IN: K I. thaI is. { ~ )" for some nonprincipal 
linear.l E lr~K). Now (~'). - ~. i •• generalized characler of K with constant 
value m on K _ {I}. It follows that mE Z. U X E 9' is arbitrary, 7.19(b) 
yields Ihat m'!xO) = m/W) where m' is Ihe const,ant value taken on by 
(x'). _ x.on K - (1). Sinoe W) -IN:KI, we have rn' ~ nlx(I)/IN:KI 

and (b) followS. 
Let X, ~ E!I so that W)X· - x(l)~' - (W)X - x(l)¢)G, which "allishes 

on clements g" G not conjugate to clements of K - It)· Thus W)X'(g) 

_ x(l),'(g) ~ 0 and (e) follows. 
Finally, (d) is immediate from 7,19(b~ The proof i. complete. I 
We now begin work toward the theorems of Feit and Sibley. 

(7.21) LlJt.tMA leI N be a Ftobenius grQUP with ·Ftobenius kernel K. 
Suppose IN: K I isevon. Th$n K isabelian. ,: . .' :'~": ' 

Proof Let leN be an involution, '\'hen I f K since (IKI, N: KI) , .. I 
and thuu' '" x for x e K - (I). Now map.lr,~ K by x .... x· 'x', Thill,lllllp 
is onc·to-one since ifx· 'x' ~ y-ly',thenyx- l - (Y;<·'Yandtbusyx· ' " I. 
Ther.for. Ihe map i. onto and every X" K has the form .-'u'. 'Thus 
x' ~ (u-'u')' M (.')-'" x-'. We noW have (xyY - (xyr' =y-l~.' = 
lx' (yx)'. Thus xy yx for x. ye K and tbe rCiluh follows. I 
(7.22) LIlldMA Let I' e Syl,.(G) with p .. 2 and suppose P is T.l.F.N. in a 
and is nonaholian. Let N _ N.(P) and let 1 -.: Z S; Z(f) with Z <t I!(, Let 
!f: ~ (x E lrr(N)IZ ~ ker xl. Then!f: is cQhe~ept, . :', 

NOI' By Corollary 7,15, the lemma ia a\sO true if /' is abelian cXQOIlt 
inlhcdegcneratccasctbatlXI- 1,lnlhalcascZ - PudIPI-IN:1'\'+ L 

: " ' , I '+ ~ • ' \ "l , 

Proof of I.e"""" 7.22 Let e _ IN;p,\.By Lcmma.1,21,. ilodd II\Id Ihlll 
INI i. odd. Since Z > I, X .. 121, ut, ~ Ii! ,,"bavo>millilnurn possible dcgr .. 

T, J. /ilots and exceptional charac1ers !IS 

and let lIf. ~ Ix E lIflx(l) = Wi) S·· '. -By Corollary 7.15 lIf' h'" moe I NI ,s odd, ,;,. ,; and thus I!l!'" I ~ 2. 
:t" ;iii • Q IS, co c:rent. Now define sets q: for "-

Th
' or,_,V{l,).wherethex,.rechosenfrom!l!'_X, th' I) ' .... 0 by U$!I;,~!l',S ... ,,;r.='rw . ,."so ,txl sX,.,(I), 

coherent. \ -. . .. e use tnduct,on On i to show that :l; is 

Now the degrees of the X E !!( 1\ 
all X e lIf. It follows by Theorem 7 ::~:.t ~f th~ form ep" .nd so eo)1 x(1) for 
it suffices to show for j ~ 1 thaI' nor erto show that lIf,is coherent, 

2W}X,(I) <: z: x(l)'. 
,lco';:'j_1 

We have 

INI- z: x{l}' ~ IN:ZI + I:" X(I)' 
;reill/N) L 

"'~ 

and so IP:ZI divides L ... x(I)'. Thu. 

e'IP:ZI divides L x(1)'. 
xelt" 

If X E or, then X _ ,9' for some ~ e Irr(P)' 2 
Thus x(1)' _ .'.9(1)' divides "1P"ZI and.9(1) ,.;; IP:Zlby Corollary 2.30. 
Also, x,(I)' Ix) I)' for j ;;, i and we ~on and he~ce XI;>' d.''',de. L.O:(I )'. 
In. particular, since 2W) <: p~(l),.;; x,(~\~~.t~:~:,(I) dtV,des L ... ,", x(l)'. 

': 
2~(t)xm <: X,(!)':;;; L x(1)' 

,(1II.t" .... 

Ih~ result fOllows. I 

LIlMMA Let N iii a and 9''' I IN . 
i'ometry and let lIf. '!V 5;; ':¥ r~itl!' !!tt;:,t ::![9'~' - ZClrr(G))' 

coherent. Let (J and f be isometrics on Z . - 121 and (!!t, a) and 
t1 and < are .s implied by coherenoe. The~ErJ and l['!lI], re.pectively, 

~'] m 0 for all X E lIf and ~ € &. 
S\lPP')se x. e !f: and ~. G <11' with 

(Xo(l}tt. - ~.(l)x.)' x.(J)~"' - ~.(J)x,,·· 

:tv <!JI is coherent. 

!' Proaf For /I v E 9' writ Ll( ) (1 
thaI aX' and 'f.I/'EI~r(G)efo:i.ve";;1' ~ - V(t)J.lEZ[9']',l.,eto,e a±l 
.~'J '" O. Then ~X. b 9 & c~' for $:~e ~: r~(~) ~o~e (a), suppose 
~, E ~ _ (~) and write", _ OX,' and ~ ~ 8. ' Th Ie ,'. X, ~!!t ~ {xl . ." . en" ;0 ~ .. ~ and 
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we have 

o c [~(x. X,), ~(~. q,)] ~ [~(x, XI)'. ~(q. ~,)'] 
~ r.J[(x(1)y, - l,(!)O). (~(I)e q,(1)OJ] 
~ r,J(X,(1)~I(I) + X(l)q(I)[t{!. m 

Sine. [y,,~] :l!: O. this is impossible, and (a) is proved. 
Now fix Xu E:r and ~. e I{// and assume ~(Xo, ~.r ~ x.(1m.' -~. X.". 

Define" on i:!:v 'i'I by X" ~ X' for X e !l'and~' = ~'for ~ e 'lV and extend by 
linearity to O[;t v '81]. It follows from (a) and the faet that a and t 

isometric". that • is an isometry and ": l[i'( v '11'] .." Z[lrI'(G)], It th 
suffices to show that. agrees with the linear extension of" to Q[!l' u '1V) 
However, '" agrees with (X on O[.:r]°. OPWJ' and 6.(Xo. P'/o). Adimension coun 
shows t.hat these span O[:.r. v I:.<IJO over Q and the result follows. I 
(7.24) i'HEOREM (Sibley) Let P E 5),I,(G) be T.I.F.N. in G with p ~ 2 
Let N=NG(P) and 9'= (X<lrr(N)lP>tkerx), Let e~IN:PI. Then 
one of the following occurs. 

(a) 15"1 ~ I, P is elementary abelian, and !PI = e + 1. 
(b) 9' is coherent. 

Proof If f' isabel ian. this is included in Corollary 7,18. Assume that P i. 
nonabelian so that e is odd by Lemma 7.21, and thus I NI is odd, Let Z .. 
P' ,; Z(P) > I and let 'IV = {q E 9' I Z '" ker ~}. Let:r = (X,;.9' IP' <;; ker xl. 
Then !pJ is coherent by Lemma 7.22 and every X E:r satisfies x(1) ~ <, 
Since X ~ i for X E!l'. we have [ft coherent by Corollary 7.15, Since Z <;; f", 
we have IY. ",!pJ = 0. Moot of the proof is devoted to showing that [ft u 'IV 
is coherent. 

Let ., l[X] - Z[[rr(G)) be a lineor isometry which extends induction 
on Z[!l']" Similarly. let t be an isometry on Z[!pJJ which extends induction, 
Since !l' ,; ,!If ~ 0, Lemma 7.23 yields [X·, ~'1 = 0 for x E [ft and ~ e ~. 

Let a ~ (I/e) L "~ ~(I)~. Since el~(1) [Or ~ E 'lV. ~ is a character of N, 
F"Of X G ,'I:, X" ~ ±~' for any ~ E qq and Lemma 7.19(a) yields 

(X"). ~ .9, + a,~, 
where 8, is a generalized character of N such that [8,. q] - 0 for ~ E <11' 
and a, E Q. 

Since all Xl t) ar<equal (or X E I.i; Lemma 7.19(b) yields that 

(X·)N - X s a, - x + a,~ '\ 
is independent of X E [ft. It follows that .9, - X ~ ~ lind a, ~ a are in­
dependent of X e !l' and 

(1) (X·)N=X+~+""" 
The n<xt ,everal paragraphs are devoted to proving that a E Z, 
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Since Z i. contained in the kernel or x E q: and of every irreducible 
constiment of~, we have(oCl e Z that x(z) x(l) and ~(z) = 6(1) .nd henC<! 
Equation (I) yields 

,X·(l)",;, X*(z) ~ *(1) - .(z)). 

Wt, also have PH - PH" + e<X where p" and PNI' are regular characters. 
For'%'~ Z- {I} we tlius have ' , 

, , ' 

INI ~ 1',.(1) p,.(z) ~ e(.(1) «1:» 

and hence 

(2) 

We now compare X'(I) and x'(z) in a different way, L<:t.)( o • .:l'"I."" be the 
conjugacy cla.ses of G. numbered ro, that 

, '\' 'I" ".! .' 

,(aL,.)(. '" {I}; ,'" ," " 
"fbi: .)(,,;Z ,.0iffi ~~; 

(c) , .)(1'; P, ,. 0 'Ilf i ';;' .: I ,,' . , 
Note that .ince P'is a T.!. set with,N -N(P), we have:*",,; P is. conjugacy 
class of N ror i 5,' and .)(,,; P ;';"1 <t N for 1 S; r, 

Write' K, e C[G] 'for the'cla;;&',on! corresponding to .)(, and K,K) = 
L all.K., where ", .. " Z, Now fiX I, j ,;; r, Let t{!6 Irr(G) and let. (y(K.) ~ 
o/I(x)l.:t" .IN(l)for x ~:*"~ as in Chapter 3. Let Jl <;;; C be the ringofalsebraie 
integers so that w(K.) E R. Write oIi(l) = mp' with p.r m. and let q ~ )Pili", 
W. hll\'e ' I 

(y(K1)w(KJ) ~ r "1I.w(K.). 
• 

For I' > "~, we claim th.t Q,(K.) e qJl, From the T.I.F,N, property and 
the fact that .:t".,; P -0. it follows that !PI divides 1.:t'.1 and thus 
m(w(K.)/q) e R, Since also I(/.w(K.)/q) E Rand (m, q) - I. it follows that 
w(K.)fq ERas clainied. Thus ' 

• 
w(K,)oI(Ki'" L uIJ.w(K,) mod qR. 

"', 1 ,. ... 0 

Now let r < I' S;' and x e .:t'. ,.., P, Let C = C,.(x) and let !l ~ 
{(~,"~)Iu E .:t"" IJ e .:t'J. wI! - xl, Tbena~ - Inl and C act, on n by 
(u, ,or D (W'. v'), If '0 e C - {I} and (u, v)' - (u. v), then ". ve C.(e) !: P 
and' so u".:t',,; P !: Z and ,imilarly y "Z. However wI! - x e .:t'. and 
.:t'.,; ZI,=0, Thi. contradiction show. that all orbit. of C on n have 
size I C I and thus I C I divide. "1)0: 



liS Cllaptor 7 

We have CJx) '" P and so C,.,(x)" C and.lP:Ci divid .. ,jX.I.It'now 
follows tbat mi.a'J.w(K.)/q) " 11. and lin"" q(av.w(K.)/q) e R., wcb\t.vc 
a'}/lm(K/I) e qR and . i'i (! i .1\ ·"!;I~J 

r I: 
w(K,)w(K) .. L a'J.W(K,J mod qR. .-0 

Now suppose '" Iii Irr(G) is such that'" is constant on Z - (I). Then all 
w(K.) are equal (to w. say) for I ;:; I' ;:; rand w(Ko)" 1. Also write 
a,) = L;.-1 Q/JIII so (hat 

(Ii :;:: ajJO + 1.I1}W rnod qR. . !" ',I'j 

Sinco INI i. odd, the nonidentity clements of Z ore not conjugate in,N 
(and hence not in G either) to their inverses. Thus'a; t~ - o.AasumeX' 2 iI'thO 
eta .. of inverses of X, so that,a" • .., ,IX.,t-'",I,(lIll,fI.,W."thus ,have./". 

(3) auw .. w' '" IGIYIPj.!:d12'wmod qR."· .. ·,,;' ,'i~!,',,', , 
In the special case that'" - I., we have w - IGI/IP'Land q - IPI so that 

. [;j.' •• "" I! 

, auIGI/IPI" IGI/IPI + a"IGI/IPI:mod IPI ' " 

aDd au .. I + "., mod IPI. Now (3) yields, ' , '" 

(1 + a,,)w '" IGI/IPI + '.i.;w ilIod qR" , , 
and 

(4) w ;< lal/lPimod qJt 
,! ,',d',. ,r 

We apply this to the character y, - 8X· e Ire(G) with E !;II' ± 1 and X e·£-. 
Note that'" is constant on Z - (I) by (2) and thus (4) appli ••. 

We havdor z e Z - (I)that " 

x'(z)IG:PIIx"(1) .. ,w "!lIG:PI m!N gR. 
., ",,"." ' .. ·1· 

Since IPI divides QX'(1), this yield. """',': ''''''.'' ""., ""'" " " 
4 ':' .• ,\ 'I:· . ) .~\ 

x·(z)IG:PI '" x'(I)IG:Plmod: 11'IR.",: ," 
" 

Now (2) yields 

IG:PI·IPla -la:Plu*(I) - x"(z»eiPIR 

I ,l,ll;.l 
I :'~ ~ 

and hence la: Pia e R. Since also IPla ,;.. X"(l) -:. X·(.)e R and (I a:PI,-IPI) 
11m 11 we have a ~ R tl 0 !!II Z as desired. " I •••• ~ L 

Now let X, l. "X and ~"'iII. Note that x(l) = • divide. q(l) and we wrile 
e ~ '1(1)/0. Let., = el - ~ e Z(9']". We have '. 

[.~,x.·l ~ [.,U,·),,] - [ •• X, + A+ .... ]. , 
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Sin,co ex.~] = 0 = (~, X. + <1], this yield. 

[<pG, Xl"] ~ cex. x. + A] - a[~.~]. 

However, [~. a] = c by definition of. and since a E Z, we have cl [<po. Xl']. 
This cal1'lation also ,how. that 

['1'". X'] = c + [rpG, Xl'] 

for X. #; X. Thi. yields 

'1'0 ~ e(1 + b)X" + cb L ~. - r. 
h:t';.;_x 

where b e Z and cr. ,'] = 0 for all , " X. 
We al.o have 

and,thus there are two possibilities: 
i, 
,(i) b ~ 0 and [r. Il - I; Or 

:,(ii) b = -I, IXI ~ 2 and [r. r] = 1. 

i' ,Jnsituation(ii),wecanreplacc.by •• wherexT· :qr;-X2·and:d/lll 1:1:;->:1· 
for X = {X .. X,}, The r.sult of this change i. to put us into situation (i). We 
thus ".ume that (ex - ~). ~ ex' - r. 

Now let~, e'iY - (~) so that 

~.(I) = ('I'. ~(I)~. - ~1(1)'/] = [rpG, ~(l)~.' - ~.(l)~'] 
- (r. ~.(l)~' - ~(I)~. ']. 

Thus again we have two possibilities: 

r ~ ,(; or 
r .. -~.' and ~(l) - ~l(l). 

,If r .. ~'. then ~l' ~ -r for every ~l e"!!- {~} and thu, 1'iY1 = 2 
d "ill ~ (q. ~,) with q(1) = ~l(l). In this .ituation, we can redefine < and 

th s we may assume that (i) occurs. Thus 
!: I r I' 

(eX - ~)" = ex· - ~' 

. and hen !!" u 'YI is coherent by Lemma 7.23(b). 
,",." To ~omp.lete the proof, we observe that L", ~(1)' ~ INI- IN:ZI 

and so '~ dmslble by I P: ZI and hence by e'IP: ZI. Let", e Y' - (X v 'Y). 
Then as In Lemma 7.22, we have'" - 9", with 9 e Irr(l') and 9(1)' ;:; IP: ZI. 

"'(1)' - .'9(1)' S e'IP:ZI S L WI'. .... 
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Let X E If' so that X(I) ~ e and 1/1(1) 2: px(l) > 2X(l) since 1/1 f' ;t: and .0 
8(1) 2: p, Thus 

2X(I)I/I(I) '" 1/1(1)' s L W)~, 
(0:, ......... 

Since Ii: u 11 i, coherent and X(ll11/1(I) for all 1/1 e fI', repeated application 
of Theorem 7,14 yield, that tl' i. coherent and the proof is complete, I 
(7,25) THEOREM (Feil-Sibley) I.et K 0;; G be T,LF,N, with ~N.(K), 
" IN: K I and ,S'" ~ (X E lrr(N) I K II: ker xl, Then One t>f the foll\\wing 
occurs, "-

(a) 1.>"1 =1,1 K 1= " + I and K is an elementary abelian p.group, ) 
(h) K E Syl,(G) and IK:K'I < 4<1', 
(e) .'/' is coherent. 

Proof If K is abelian, either (a) or (c) occurs by Corollary 7.18, Assume 
then, that K is nonabelian and so e is odd, If IK:K'I = e + 1, then KIK' 
is an demenlary abelian p-group and thus K is a p-group. Since e + 1 is even 
p = 2 and (h) follows, Assume therefore, that 1 (X I; ,,/ I K' Ii ker xl I 2: 2, 
This set;s thus cohercnt by Corollary 7.15, Let L <l N with L 0;; K'minimal 
such that PI = (xEfI'IL 50 kef xl i. coherent and assume that fI' is not 
coherent so that L > 1. 

Let M"", N be such that LIM is a chief factor of N, Since 

(XeY'IM';;; kerx) 

is not coherent, repeated application of Theorem 7,14 yields 1/1 E Irr(N) 
such that 

2.1/1(1) 2: L x(I)' = IN: /.1 - IN: K I & .(1 K: LI - 1) 
;t. .. tf 

and M 0;; ker 1/1, Let ZIM = Z(KIM), Then Z" I. :> M and hence L ,;;; Z, 
Also 1/1 ~ ,9" for some ,9 Girr(K) and 9(1)':> IK: 21 so that 1/1(1)' ~ 
e' IK: ZI, Thus 

4e4 1K:ZI <.:4e'I/I(1)' <:e'(lK:LI 1)', 

Now write a IK:f.landh ~ IZ;LI,WchavebIK:ZI = IK:LI =aand 

4e'a 4e'bIK:ZI2: b(IK:LI-I)' = b(a-I)'. 

If 4e' ~ bra - 2). this would yield ba(a - 2) 2: b(u - I)', which is pot the 
case, Thus b(a - 2) '" 4.', . 

HZ = L, then Z(KIM) = LIM is a p·group for some prime and thus 
KIM i. a p·group, Since M 0;; K', it follows thill K i. a p·group, By Theorem 
7,24; we h<lve p = 2, AI,o. a - 2 '" 4,,' so that 

IK: K'I S IK: '-I r. a S 4.' + 1. 

Problen:w 12t 

SincelK; K'I i. a powerof2 and •. >1 i. Odd. we have IK: K'I <: 4e' and 
(b) h(lld.,, . ' 

If;Z> L, then we must have el(IZ:LII) and b:e: e + I. Also, KIM 
isno'~~\itlian andthu.Z,':i,!".~iJ,~;rl(IK: ZI- I), Thus' 

a ~ (e + 1)b <: (e + I)' :e: e' + 2, 

Thus, 4.' :> b(a -.2) <: (0 + 1)1' <: 4<1' since e <: 3, This contradiction 
provos the Iheorem, I 

We remark that .ituation (b) (:an actually Q<;cur with Y' not coherent. The 
inequality I K : K' I <: 4<1' can be .harpened, In fact, the groups in which (b) 
occurs have been classified, 

Pro6him 
" 

(7,lj;'L;t N -ei G, H',;; G. with NH ~ G and N n H ~ L Show that the 
followihg are equivalent: 

(a) Co(n) 0;; N for all 1 ,. n EN: 
(b) Cn(n) - 1 fo .. 11 1 ,. n EN; 
(c) CG(h) S H for.1I 1 ,. hE H; 
(d) Every" e G - N is conjugate .to an element of H; 
(e) If 1 ,. he H, then h is conjugate to every element of Ni" 
(f) H is • l"robenius complement in G, 

\ 

Not. Problem 7.1 does not invo!.ve characters. It i. included to acquaint 
the reader with some elementary properties of Frobenius groups, Much 
deeper inrormat,ion i1!l known. 

(7,2) (Wlelandt) Let It s;; G with M"" H and suppose that H n W 0;; M 
whenever" ¢ H. Show that there exists N <l G with N H ~ G and N " H 
= M. ,\ 

, "" 

Hint Note that H .l. M is a T,I, SlOt. Mimic the proof of Frobenius' 
theorem. 

(7.3) Let H s;; G and ~ e Irr(H), Suppose (~ - W)!.)" ~ ,9 and (9, 9] ~ 
I + ~(1)', Show that there e~ist. N <I G with N n II ~ ker ~ and every 
x E G - N conjugate to some element of H, 

(7,4) ".Let H<. G and sUPPO$C induction to G is an isometry on Z[1rr(H»)" 
ShoW~h.t 11 is a Frohenius complement in Q, 

(7,S) Let N ;; G and fI' ,;;; Irr(N), Assume that induction to G isan isometry 
on Z[b"J" and WI <: 2, Suppose fI' 0 ~ {~E fl'1~ is e.tendible to OJ ,.121, 
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LeI d ~ g.c.d.((W)I'; E Y' oD and ... ume dIW)f",·,all;'; e,Y'. Show.,that 
Y'o ~ Y'. Y' is coherent, and that ."ery': e Y' has a unique extension to.O;] , 

(7.6) Let PESyl,(O) with IPI ~ p, CGi~)Ep~ andl~~(P):~1 ~~. Sh~~ 
that 0 has at mOst < + (I' - I )Ie irreducible charaotel'S with degree not dm-
sible by p. "." r" '~! :: :'j" I ", 

Hi",s Note that P i. T.1.F.N. in G if. > l. If e ., P -·1. let 1 be th. 
corresponding set of cxceptional characters ofO. Show.~£ •• '1 )!ix)I' :>: p"'" <, 

wherel "xEP.If;«x)cO,then p\x(1)· ",.', . ;',,;,' ,.-,.' .. ,,,' 

Note It is a oonsequence of some or'R~,Brauer'. deep results in blod' 
theory that in the situation of Problem 7.6. the upper, boun~is alway" 
attained. 

(7.7) In the situation of the proccding problem, as"urne that 0 ha~ e""!?lly. 
e + (p - 1)1' irreducible characters of p'-degree. Let I' ~ (>;). If X eTr,iiO) 
is not exceptional (in particular if. ~ p - I), show that ;«x) ~ - I. O. or I 
and that x(l) " XIx) mod p. If, ., p - I and 1 i. the corresponding '!"t, of 
exceptional characters. let (J ~ L". ;«x). Show that (J m :t 1 and X(I) ii 
-e(J mod p'for X E I. 

Note The result, of Problem 7.7 together with the equation 

I x(l)x(x) m 0 
,{¥IrrIG, 

and the facts that x(I)IIGI and ~x(l)' ~ IGI provide. powerful tool 
for oomputing the degrees of the irreducible cha.acters of a group which 
satisfies the hypotheses of Problem 7.6. ' ,; 

(7.8) In the situation of Lemma 7.13. a""ume that 1.'1'1> 2. Prove that •• i; 
and I arc uniquely determined by (Y'. <). ' , , " , :i, , 
(7.9) Let K ~ G be T.I.F.N. Let X be a (possibly reducible) charact .. ~f G 
which is constant on K - (l). Assume that Y' ~ {'" e Irr(NG(K»)I K 1. ker "'I 
is coherent. Show that the multiplicity.with which each .. ceptional char­
acter appears in '1 is proportional to its degree. ; . ',I \ I 

(7.10) Let K be T.l.F.N. in G and ... ume that 

// _ (>/I e Irr(N(K»)I K ~ ker "'I 

is cohercnt. Let :r be the corresponding set of exceptional characters 
of G. Let M m n, ... ker X. Show that M n K ~ 1. 

(7.lt) In the .ituation of Problem 7.10, show that either M - ker X for.n 
xeIYorelseMKoodO. " ,," 

... --'--~ 
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JIiIlt. Suppose X e ff and U ~ kcr x> M. Then U/M is an-group 
where" IS the set of prime divisors of I K I and so U ~ MK. Use the Franini 
argument. 

(7: 12) ;Let K be T.l.f.N. in G and let e ~ I N(K): KI. Suppose that G has a 
fa,thfu! irreduc,ble character of degree <2e. Show that K is abdian_ 

(7.13) fn the situation of Problem 7.12. assume that K .,.; G. Show that K is 
an elementary abelian p7group. 

Hinl. LetA be a linear charaet"' of K with IK: ker 21 ~ p. Show that 
there eXISts faithful XElrr(G) with X(I) < 2e and [x,. A] 1- O. Use Problem 
7.11. 

(7.14) Let 0 be a simple Zassenhaus group itt which the stabilizer of two 
points has evcn order e. Let the degree of G (the number of points permuted) 
be k + I. Show that k is a prime power. 

Hint Count inVOlutions to prove that G has a nonprincipal irreducible 
character of degree < 2e. 

NOie Problem 7.14 is true without the assumption that e iscvcn. This isa 
theor~rn of Feit and the case where e is odd is proved ill his book. 

(7.15) Let N " G and // " Irr(N). Suppose that r: 1'.[Y']' _ 1'.[lrr(G)]' is 
a hnear ISometry, Assume that IY'I :e: 3 and that for every X • .p € 9'. we have 
(;((1)"'.- "'(I)X)' = a9 - blP fOf sOme IP. 9 € I'f(G) with a. bE Z. Show that 
(Y'. t) IS coherent. 

Him Suppose X, 1/1, '1 E [I' are distinct. Write 

(X(I)", - .p(l)X)' m as - b'l'. ('1(1)", - "'(1)'1)' ~ CJ1 - dv 

w' h a. b. c, d > 0, Then exactly one of 9 - J1 or 'I' ~ v holds. 

(y. 6) , Let N SO 0, Y' ~ 1"r(N) and suppose T: 1'.[Y']' ... 1'.[lrr(G)]' is a 
itne r ISometry. Let Y',. Y', ~ Y' such that Y', "Y', 1- 0. Assume either 
that .'I',I:e: 3 or that Y', - {if, xl with "'(I) ~ X(I). Show that 
(Y I U • t) is coherent. 

. Hint L .,f,: Y', - 1'f(G) and '" = ± I be such that e,f, defines an appro­
priate extenSion of < On l[Y',]. If 1//,1 :e: 3 for i = t. 2. usc the hint for 
Problem 7.15 to show that" =', ,;nd/,(X) m I,(;() for X E Y', n //,. 

(7.17) Let K 50 0 be T.I.F.N. with N _ NG(K) and 

// B {XEirr(N)IK % kcr xl. 
Suppose that", is an exceptional character of G corresponding to X. Show 
th.t the values of", and X generate the some field over Q. 
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(7.18) Let K" K, s; G be r.l.f.N. with N, = NIliK,) and 

.'1', = (XE Irr(N,)IK, 't. ker xl 
and aS~Ul'('je that the [/1 are coherent with 1/ the corre!llponding sets of 
exccptio"al characters. Suppose ~, n ~, i' 10. Show that ~I = II, and 
K, is conjugate to K,. 

Him To show ,hat K, = K ,', it suffices to .how that x' e K, for 
.< G K ,. x i' I. Use the fact that the K, arc nilpotent to prove this. 

(7.19) Suppose IGI is odd and that Croix) i. abelian [or every I i' xeG. 
Assume that G is neither abelian nOr a FrobeniU$ group and show that every 
non principal X E Irr(G) is exceptional for some T.I.F.N. subgroup. 

Note A group with all C(x) abelian for I .,. :x I; G is called a CA.group:, 
Problem 7.19 is a step in M. Suzuki's determination of all simple CA·groups. 

(7.20) Let K ~ G be T.LF.N. with I K I even. Let N = NG(K) < G and 
Y' = (l/ldrr(N)IK >!: ker t/I). Assume that g' is coherent. By carrying out 
the following stcps. show that G has il nontrivial normal subgroup of odd 
order. 

(a) Show that G has a unique conjugacy class of involutions and that N 
contains exactly e ~ IN: KI involution.. , ' 

(b) Let t/I E Y' and let t/I' be the corresponding exceptional character of 
G. For 1 i' x E K we have t/I'(x) st/l(x)·!- a •• where a. G Z is independent of 
x. Show thMt 

v,(t/I') = ev,(t/I) + (1/1'(1) - .t/l0) - a.)/IKI 

where 'V2 is as in Thcon:m 4.5, 
(e) Showthat(t/I'),: = t/I."" a.I •. 
(d) Show that there exists t/I ~ Y' with ker(t/I') i' I. 
(e) Complete the proof. 

HinlS (a) See the hint for Problem 4.11. 
(b) Let."', ~ (xeGI" '" I.x' m I); 

_of, ~ (.H' G Ix' i' I. x is conjugate to an element of K); 

, .\ 

.<11, .. G - (,of, v .<11,). . 
Compute L t/I'(x') separately on each. of .111,. """ and ,of,. Note 'thay 
L" .• , t/I'(x') = L, .... , t/I'(x). 

(c) Let m. ~ (t/I'(I) - <t/I(I) - a.)/IKI. .. ';, 
Usc (b) to study the behavior of m. as t/I varies over fI' and conclude that 
m. = O. Use the ract that m. i. proportional to t/I(I). 

(d) Note that K is not elementary abelian. 

Proble .... 12$ 

Nares A corollary of Problem 7.20 is that a simple Zassenhaus group 
of odd degree has degree I + 2'. This is another special case of Feit's theorem. 

There do exist simple groups with T.I.F.N. subgroups of even order. If 
G .. SL(2. 2"). with " ~ 2. then the Sylow 2-subgroup K of G is T.I.F.N. 
It is elementary abelian or order 2'. In this Cilse, coherence fail. because 
IN(K):KI ~ 2' - I and the set Y' contains only one character. 

If a - 8:(2') with odd" :> 1 [the Suzuki .imple group of order 

(2' - 1)(2")(2" + I)J, 

then again the Sylow 2·subgroup i. T.I.F.N. Here. case (b) of Theorem 7.25 
holds, 

(7.21) (Sibley) In the situation of Theorem 7.20. let • ~ IN: KI and 
k - IKI. Ifm ius in 7.20 (b~ show that 

1"1, ".,' , 

- e/(jii. + 1) < m < e/(jii. - I). 
, :." I", .:. " ' ',' 

In particular, if K is not im elementary abelian p·grouP. show that m ~ O. 

• Hints Let I '" x E K and Llse the inequality 

" .. IC~(~)I:> t t/I(:>:)t/I(x), 

, i 11,(~1,," 'j, 'I .,,,',,' ,~I""" "'~'·i~.'~ 
where;l.i. the sel ohxceptional.charact;en. Derivelhal 

;.' . '2m ... ti> 'rit'(k - 1)/ •. 
: i i .. , .".,,!., p"", ': I 

(7.22) Let K ~ G be T.l.f.N. with :N ... N(K) and 
, : , ' " II ~ 

. Y' - (X e Irr(N)IK ¢ ker xl 
cOherenl. Let '" 61.r(0) .wilh K rt kctt/l. 

I, 1 I ,I;'''''':' f ' :: i' 1 " I "' . .1 " 'I 'J'" ,'!l ,: '.l'i i ~ , 

. ;, (a),;!,lf t/I i. nonexecptional, ShOWithat IKI:!: t/l(I) + I - [!{I •• I.). 
:; (b):I,U,,,, i •• xceptiona1 •. 8ho~,th~I.K:I.< "(1)'., 

. "Hi.i's' (bl Rcid~C;i! i(i~he iia~'tii~t .,~''; X + h. where X e fI' and either 
.. ~~',-'?'~r K !:i,Ii~;\'lf A:,t.;O,appalto Problem 7.21. If AN O. pick an 

',', Jrteduclble constituent, ~ '" I. of i/tYi and apply part (9) to ~. 

. ~ i ,.' 

\ 
1,;',',1",'1 \ • 
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There are" many ways in which class fun¢tio~s of a group can be ~on; 
structed. For instance. we could define 11(1/) - IN.«u>J1 or 1I(g) = I If U 
i. conjugale 10 some fixed" e G, and 1I(g) - 0 otherwise. It is per~ap. , , 
much to expecl lhot such arbitrarily d.fined'fiirietio .... wlll'turn' out \ 
characlers, (For inslance, in the """ond enmplc' given, 9(1) .. ,Oif x" I.) 
One might hope, however, that. well chosen IJ will be a generalized char­
acter, that is, 9 e Z[IniG»), or at least that,i!i',an ~-lilloar,~mbination_,~~\ 
irreducible characters for ,orne specified dOli R with Z s; R \0 C, (We: 
denote the sel of these R-ge.era/i:ed cliarai!r~s by R[lrr(G»)'J 

How can one decide if a given class fu~clio,! 9,~,,,:,!,R~generalized 
acter? Of course, if one knows Irr(G), the answer i. easy: simply ch:7k " ' , 
[.9, X) e R for all X E Irr(G), A mor<: situatioIi'" t~t one has ~nouJlh 
information about some family:lt' ofGso t~t It can be shown 

that .9n E R[lrr(H)) for every H E r;I:~~~::'~:~~~i~:~i::!~;:~~~;;i~ that for suilable families:lt' th,la.t f< 

,9 E R[Irr(G»). For instance, lhis will tlie col~tio" . 
nilpolent subgroup. of G. 

(8.1) DEFINITION Let R be • ring with Z \0 R SO C and let JI" be. family of 
subgroups of G_ 

(a) !it .(G, JI") is the set of class functions 9 of G such that ,9H E R[Irr(ll)) 

for all H " JI", " _ G ' " 

(b) J .(G, Jf") is the set of R-hnear combmattons of characlers '" for::" 

'" E Irr(H), If '" JI", 
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If R ~ Z, we dclete the subscripts and wrile Of(G, JI") and J(G, JI"), 

(~.2) UlMMA LeI JI" be a collection of subgroups of G and let R be a ring 
with,Z SO R ,.. C. Then 

Iii) J(G, JI")';; J.(G, JI") <;; R[Irr(G)) <;; IitR(G, JI"), 
(b) Of.(G, JI") is a ring in which J .(G, JI") is an ideal. 

i~dd\tio~ ,and multiplicalion are pointwise,) 

The containments in (aJ are all obvious from the definitions, To 
(b) observe that Z[Irr(H») is a ring for every He JI", Since Z ,.. R, it 

f9!,~ws th~t R[Irr(H)) is a ring, If rp, 9 elit.(G, JI"), then 

(rpB)H - rpUBH e R[Irr(H») 

rp9 e 11t.(G, JI"), which is, lhcrcfore, a ring. 
", :,. To prove that J .(G, JI") is an ideal, we use the fact that if ~ is a class 

e'l:~~~~lo~f H ,;; G and {J i. a class function of G, then (aPHt = ~G{J. This is 
,> '. ,from lhe definition of induction (and appears as Problem 5.3), 

.. ', ,Let rpeJ.(G, JI") and 9EOf.(G, Jr'), Then rp = LH." (""R,)G with 
.:.~w, E R[Irr(H»). Now 

rp9 = L (""I/)G9 = L ("',R,BH)", 
H R 

"',.,9H" R[Irr(H)), it follow. that rpa E J .(G, Jf") and the proof is 
: romplete" I 

. It follow. from Lemma 8,2 thai in order 10 prove lhal J .(G, Jf") = 
il suffices 10 show thai IG e J(G, Jf"), Furthermore, if this can be 

for some family Jf", it follow. that 

J R(G, JI") = R[Irr(G)) = 1it.(G, JI") 

DEFINITION (Brauer) A group E is p-dementary (where p is a prime) 
.is the dire<:t product of a cyclic group and a p-group. We say that E is 

/.r,"",m',,,yifit is p~elemcntary for SOme prime. 

(BrauIoT) I...c:t Il. S R ~ C~ where R is a ring, 

(a) A class funclion ,9 of G is an R-generalized character iff ,9E E R[Irr(E)) 
every elementary E ,.. G. 
(b) Every X E Irr(G) is • I-linear combination of characlers of the form 

. ~,tG for linear characters). of elementary subgroups of G. 

Let 4 be the set of elementary SUbgroups of G. Statement, (a) of Brauer's 
:::Il,eolrcm, is exactly the assertion that R[Irr(G)] m 1it,(G, I), This part of the 

IS often called the" characterization of characters," . 

• I 
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Every E E ,f is nilpotent and hence is an M.group by Corollary 6.14. If 
cp E Irr(E), then 'P ~ AE, where .< is • linear character of some Ii" ,;; E. Since 
Eo".t and cpo ~ iY, it follows that .f(G, 8) i. exactly the set of Z·linear com· 
binations of ",G for linear A E Irr(E) wilh E G.t. Therefore. stalement (b) of 
Braller's theorem amounts to the assertion that Z[lrr(G)] ~ J(G, I), This 
is often called the "'heorem on induced characters." 

By Lemma 8.2, both parts of Braller's 'rheorcm 8.4 will be proved when 
we show that I" E ,/(G, t). We work toward this goal. The proof given hereis 
based on an idea of B. Banaschewski. It is suggested t . t lhe reader also 
consul, the Brauer-Tate paper for anolher approach. 

(S.5) LeMMA (Banaschew.,ki) I.et S be a nonempty finite se and let R be 
a ring o( it.valued (unctions defined on S (with pointwise additio and multi· 
plication). If the function Is with constant value I does not lie in ,then there 
exists XeS and a prime P. such that p divides/Ix) for every f E 

Proof For each xeS, let I, ~ {/(x)lf6R}. Then I, is an additive 
subgroup of Z. H for some xeS, we have I, < Z, then I, ~ (P) fof,ome prime 
and the result follows. Assume then, that I, Z for every XES. For each x. 
we may therefore ehoos.lx Gil withj~(x) ~ I. Thusf, - I., vanishes at x and 
TI". (Ix - Is) O. Expanding this product yields an expression for I, as a 
linear combination of products of the functions/,. Thus Is E R. I 

To obtain a ring to which we can apply Lemma 8.5, we con~ider per. 
mutation characters o( G. that is. characters o( the form (I.)" for subgroups 
H,;;a . 

(8,(,) LBMMA Let H, K 5 C. Then (1.)"(I.)G - :t .u(\ v)O for subgroups 
IJ 5 H and integers au <: O. 

Prool Wl'it.,9 = (IS' so that (111)"(1.)" 9 /l(1.)G ~ (9 11)0 by Prob­
lem 5.3. By Lemma 5.14, 8 is the permutation character of G acting on tho 
set of right cosets of K.ll follows that II" is a permutation character of Hand 
hence ,9/1 ~ L au(lu)" (or subgroups U 50 H and integers au <: 0, Since 
((lfI)/I)" = (Id", the t'esult follow~. I 

(8.7) CORO~LAkY The set of Z·linear combinations of characters of G of 
the form (I,,)" is " ring 1'(0). Let .11.' be a collection of subgroups o( G wi2! 
the property that if K ~ H <!.11.', then K e :1('. Let P(G, .11.') denote the set of 
Z-linear combinations of characters of the form (til>" with HE.1I.'. Then 
P(G, .If'') is an ideal of PIG). 

To apply Corollary 8.7, we define a clas~ of groups morc general than 
elementary groups, 
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(8.8) (IF.~INll1ON " gro·up His' p.quas/·tlementary if H has a cyclic normal 
p.complement (or the prime p, We say that H is quasi.elementary if it i. p­
quo.i..,lementary for .ome p. 

. Note that subgroups of p..quasi.elementary groups are themselve. p' 
quasi.elementary. Thus in the notation of Corollary 8.7. p(G, .If') is closed 
under multiplication, where.1l.' is either the set 0(.11 quasi-clementary sttb· 
groups o( G oris the set .of all p-qua.i..,lementary subgroups of G for some 
fi~ed prime p. 

(8.9) . ~F.MMA LeI x e G and let p be a prime. Then there exists a ,,·quasi· 
elementary subgroup. H .: G, such that (lH)"(X) is not divisible by p. 

" '. . ;:.' 

Proof LeI C be the "..complement in the group <x). (Possibly C = I or 
C ~(x).)Let N~NG(~~ .• o.tha\,~eN. Since (x)/C i~. p"group, we may 
choose Hie E Syl,;(N IC) WIth (x) ;; H. Then C i. a norm.1 p.complement (or 
Hand H is p-quas~elementarY· .'. . 

. Now (I';)G is the permutation character of G .cting on the right cosets of 
fi;'andso (I~)~(x) ~ I{HYIH>:x;~ Ny,yeG)I. If Hyx sHy, we have 
x'" E H and hence 'C'.'':; H. Flo';':ever; C is the unique p-complement in 
H and hence C'·, .. : C and y i; N. We theicfimi need to count the number of 
fixed points in Ihhctiooof ('x)"'oh theco,etsof H in N. 

. Since C"'? N, )lnd9 !ii.H, we ~!hatCi~ in the kernel of the action of N 
on the cosets of H in N. Sin¢<! (x)/Ciup.gfoup, it follows that the numbero( 
ito'iifuted eosels i' di,.;si'ble byili~a. lIence (I H)o(.:) '" IN: HI mod p. By th_ 
choic. of H, p,tl N: HI and tbC~lJr i. complote. I , . 
(8.10)· THIlORt!III!«(L:SO/Qmon)Let :It' be the set of Quasi.elementary 
subgroups of G and .1t'. the set of p..qo.si-elcmcntary subgroups for some 
prime p. Then 

(a) 10 e P(G • .1t'). 
(b) miG e p(G,.1I.' p) for sOme m ~z with r,fm. 

Proof By Corollary 8·,7, P(G.:It') is a ring of Z-valued functions on O. 
If IG ¢ p(G, ;If), then by Lemma 8.S, Ihere exists" E G and a prime p with 
plop(,,) for aU rpep(G • .If'). 'fhis contradicts Lemma 8.9 and so (.) is proved. 

For (b) let R = (rp + opl G lrp e p(G • .1t' p)," e Z}. Then R isa ring. lfther<: 
~i.t. "eO and a prime q. wilhqlOP(x) for oU rpeR, then since pIGER. we 
have q .. p and thus ",chave _ contradiction to Lemma 8.9. By Lemma 8.5, 
we conclude lhat Id'EfR and hence (I - np)lo G p(G,:It' p) (or .ome n € Z. 
Thi. completes the proof.' I . 

~~ ,':' ';, • ,j; ::' I . " 

Only part (a) of Th.orem 8.10 is needed to prove Brauer's theQrem; how· 
ever; part (b) is userul for certain refinements of the result. Recall that we 
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need laE"(G./). The method of proof is tsl\"ntially to use,S.lOto reduce 
the problem to quasi·elementary lIloups. We,need,~ le,tn,ma., , ,', 

(8.11) U!MMA Suppose G = CP where C <I G, P is a J>-8lOUP and p:tl Cl. 
L.lt A be a linear character of C which is ill variant in, G and suppose 
Cc(P) s;; ker ,I. Then A = Ie. 

Pmoj Let K a ker L Since A is linear, it takes on distinct constant values 
on the di~tinct casets of K in C. Since::;' is. invariant under the action of P, it 
follows that l' normalizes each coset Kx for x e C. 

In the conjusation action of P on Kx, the number of moved points is 
divisible by p. Since p,t'IKI. we have p,t'IKxl and thus Kx,r. CdP)'; 0. 
Since Cc(P) 5 K by hypothesis. we conclude that Kx - K and thus K = C 
and A = Ie as claimed. I 

Pf{)QjojTheorem 8.4 As was remarked follo~inll. the,,\atement of the 
theorem. it suffices to prove that 10 e "(G, I), We, l.\sc: In1pct1on on 101, we 
may therefore suppose that I" e "(H.I H) wh~ne~e~H,'i.G. where In, is the 
sct of elementary subgroUps of H. Thus Z[lrr(H)J ~ ~(H, I;') for these 
H by Lemma 8',2. By transitivity of induction (Problem '5.1), it follows for 
'P e .F(H.I I/l, that 'P" E .F(O,II/l $ ,f(O.I). Thus for all H < G an~ 
'P <! Irr(Hl, we bav" ",. E .1(0. oil and it will suffice to show,that I. is a ?" 
linear combination or characters induced from proPer subgrou.ps." , 

By Solomon's Theorem 8.IO(a) we are done if G is not quasi.elementary 
and .0 we may assume that G has the cyclic normal p.complement C. L<!t 
P e Syl,(Ol and Z = CdP). Since we may clearly assume Iha.t G is not ele: 
mentary. we have Z < C and E PZ < G. ' 

Write (I f,)G = I (i + E. where E is a possibly reducible character of 0, 
We,hall.how that every irreducible constituent oCE is induced from a proper 
subgroup and thus I. = (I.)" - E E .f(G. oil as desired. ' , ' 

Let X be an irreducible constituent of E. Now CE = G and C '"' Ii: - Z 
so that , 

,1 " 

by Problem 5.2, Thu. 

I ~ [(Iz)c.lcl- [l e'-I!'s.,;lcJ I .. 
, , " ' , ' !, t ,: ! \!, .' .' ~,: i' ! i 

and hence: [5c . Ie] .. O. Thu .. (xc. Je] ~ 9.:.fl"~ .'~, ;(.," '1,1'; i", "\ '", '" 
Let. be an irreducible constiluont of Xe. nOQ,.1 " 1 •• IHowovor. Z .... G 

and"" Z SO ker«I.)") and hon"" Z I> kor, X. W. th.rcfoft-,have Z SO ker l 
and thus by Lemma 8.11. A is not invariant i~ 0, L.lt T,~ 1.(,<) < G. Sy 
Theorem 6.11. X = >/tG for some >/t e Irr(T). The result nOW follows. I 

,r , ' I ',',i,' ';, 

Tho following is a useCul ipecIal case qfpart (a) "if Bra"~r:$ theorem" 

Braul!U"a theorem 

(8,12) COROLLARY Let X be a clans function of G. Suppose 

(a) , x. is a ieneralized eharact.r (or every elementary £ ;;; G; 
(b) I:x. xJ = 1; 
(oy x(l) ~ O. 

Then X e Irr(O). 
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pro~r Using (a) and Theorem 8.4(a), we have X = L 0., for eG lrr(G) 
and ul e Z. From (b) we conclude that at most one u( .. 0 a~\d X ~ ± ~ lor 
some ~ e Irr(G). Then (c) yiclds the re.ult. I 

Before going on to reap SOme of the harvest of application. of Brauer'. 
theorem,.we digress briefly to derive tho "local" version of the re.ult. In tbe 
Brauer-Tate proof, this is obtained as an intermediate result, 

(8.13) COROLlARY Let If, be the set of p-clementary subgroups of G for 
" •. ,;.c···. fixed prime p. Then 

for some m e Z with p,t'm, 

, p'roo.( By Theo~em 8.1O(b).lherc exists m € Z with p,t'm such th.t miG is 
• 2-100 •• r combination ofeharacte" of the form (lff)O for p-quasi-elementary 
'H iii O. Let Iff denote the set of elementary subgroups of H If II is p-quasi­
elementary, then Iff S I, and by translllvi(y of Induction. we h. v. 

(I H)" e ",(G,II/) S;; "(G, If,). 

The result nO follows. I 

W. shall USc auer's theorem to remove the solvability hypothesis from 
':Th.'''c,' III 6.25 On ending characters. To do this we need part (e) of th. 

followmg result, [Pari will be u.ed in Chapter 13.] 

,U!MM'" L.lt N <I 'and let X ,I,,(G) with XII = .9 e (rr(N). Let 
For each coset Ny of N in G compute 

~(Ng) - (l/INIJ L >/t(x)X(x). 
IfIN., 

(a) IC.[>/tN' a] '" 0, then ~ e Irr(OIN). 
(b) If [>/t •• 9] ~ 0, then ~(Ng) m 0 for all g. 
(e) If X : >/t. then ~(Ng) - I for all y. 
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Pro(l Conjugates of Ny in G/N all have the form Ny' '" h- '(Nglh for 
II c G. It follows that ~ is a class function on G/ N. We may thus write ~ ~ 
L b,{. where e runs over lrr(G/N) and b, E C. Now 

I ~~ 

b, ~ [~. e] ~ IG' NI L ~(Ng)e(Ng) 
• N{lfiG/N 

1'(" _-
~ -IGI ,,".,p(x)X(x~ ). 

'" ~(1 

where in the last expression, we view e 5" Irr(G) and use Hi act that as such. ~ 
is constant on cosets of N. 

We thus have h. ~ [,p. xeJ. Now by Corollary 6.17. x~ Irr(G) and tho 
characters Xe are distinct for distinct ~ E Irr(G/N). Theref re ~ ~ L h,e 
satisfies ~ ~ 0 unless ,p ~ Xe for some e 6 Trr(GIN) in whi h case ~ ~ e. 
By Corollary 6.17. ,p ~ Xe for some e iff [,pN' .9] '" O. The result now 
follows. • 

(8.15) ,'''I)OREM (Gallagher) Let N <l G with .9E'rr(N) invariant in G. 
Suppose (.9( I). I G : N I) ~ 1. Then .9 is extendible to G iff det 9 i. extendible. 

p;o~r The" only if" part of the assertion is trivial. Assume ). ~ det .9 
is extendible to p E Irr(G). [f N ~ JJ ~ G with HIN solvable. then .9 is ex­
tendible to 11 by Theorem 6.25. By Lemma 6.24. there is a unique extension 
X'H" such that det(X,H,) ~ I'll' Definc the function X on G as follows. If 
g G G. Ict H ~ (N. g) so that /J/N is cyclic. Set X(g) ~ X'H)(Y)' We shall usc 
Corollary 8.12 to ,how that X E [rr(G). 

First we establish that X is a class function. If g. X" G. let If - (N. g). 
,0 that IV ~ (N. g'). Define ,p on IV by ,p(h,,} ~ X(H,(h) for h E H. Since 
map h f-I' h·t; is an isomorphism and X{H) e Il'r(H~ we have'" IS Irr(l{~. Also. 
(det ,p)(h') ~ (det(X,H,))(h) ~ J1(h) ~ II(h').,o thatdet,p ~ ~w· Furthermore. 
if 0 E N. we have ,p(o) ~ x"nC0'- ') ~ .9(n' -') ~ 9'(0) ~ .9(n). It now follows 
from the uniqueness of X(IJ'V) I that XOI"" ~ '" and hence 

X(g') ~ Xw,(Y') ~ ,p(g') ~ XIH)(Y) ~ X(g) 

and X is a class function. 
Noxt.letE ~ Gbcelementaryand,etH 5 NEsothatH/N '" EI(N" E) 

is nilpotent and X(H) i~ defined. We shall show that the restriction XII E' X(.H)\ 

and thus X" ~ (Xu,,), which is a ehar.cter of E. If 9 e H. then (N. jl> '" 
K ~ H. Clearly. (X(H»)' is an e",ension of .9 to K and det«x,H»)') * ~. so 
that (Xu',), ~ X"), Therefore. X(g) ~ X,.,(") ~ Xu,,(g). hence XH m X(H) as 
claimed. and x,.; is a character. 

Ne,t. we compute [X. xl For e.ch coset N g of N in G. we hnve 

L Ix(x)I' ~ L Ix,.,(x)I'. 
;tI.f!flif} ;r;eN, 
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'where H ~ (N •. g) = (N. x) for all x eNg. Sin .. (Xm»). '" .9" IrnN). 
Lemma 8.14(c) }'Ields LxoN,lx(/f/X)l' = I N I and it follows that LuG I;«xll' 

.... IG:NI·INI-IGI.nd [X. xl-I. 
Finally.;«I)" 8(1) > I .nd hence x~Trr(G) by Corollary R.12. Clearly. 

·X.·~ .9 and the'proof i. complete. .• 
I I".', , '. r " '~ 

(8.16) COROLLARY' Let N'", G .nd ge lrr(N) with .9 invarinnt in G. Sup-
pose ([ G: NI. 0(.9)8(1)) ~ I. Then 9 has a unique extension. X e Irr(O) with 
(lG: N I. o(X)) -. Un fact. ott) - 0(.9).1n particular. this hold, if I I G: NI.I Nil 
'" I. 

Proof This is immediate from Corollary 6.27 and Theorem 8.15. (See 
Ihe proof of Corollary 6.28.)" I 

We have already seen several conditions sufficient to guarantee that 8. 

character value is zero, The rollowing is a powerful One. 

(8.17) THroREM Let X ~ Irr(G)~d suppose p,r( I GI/;«I)) forsome prime p. 
.TI!e~ xlg) ~ .ql"henever plow) • ...... 

''';'Proof Deflne.9 on G by .9(g) ~ ;«g) if p,ro(g) and .9(g) = 0 if plo(g), We 
shall use Brauer's theorem to show that 9 is a generalized character. 

Let E ;; G bc'elementary. Since E is nilpotent. we may write E = I' x Q 
where P is a p-groupand p,rIQI.lfxEE and p,ro(.,). we h.vex~Q and so.9 
vamshes on E -:- Q an? .9a - X<.l", ' 

Let ,p E irr(E). W. have 
I 

1£1[·9 •• ,p] ~ L x(x)YilX) = IQI[xQ' ,po]. 
..0 

Since I EI ~ IPIIQI. we conclude th.t IPI [.9 •• ,p] ~ z. 
Now let OJ = w, be the algebra homomorphism Z(C[G)) ~ C associated 

with. X so that m(K) = X(g)lfl!x<I). where.Jf' is the conjugacy class con­
taining 9 and K = !.f E e[G]. We shall write ru(g) for the algebraic integer 
ru(K). so thaI 

xtg) = ;«1)!n(g)/I.Jf'I- x(1)ru(gllCG(g)I/IGI 

IEI[9 •• ,pJ = L;«X)i/irxl m ;«IGI)I L ru(xlffiICG(x)l. 
x_a x.Q 

Sine. P ;; Co(X) for H Q. we h •• ~· 

IGIIQI [9,pJ IGIIEI X7iT '" ~ xliII PI [9 •• ,p) ~ Jofn(x)i/irxlICG(X):PI. 
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which io an algebraic integer, Since iPl [9 •• tIt] ~ Z. we have [9 •• tIt] eO and 
thus (IG IIQ I Irt I)[.9 •• tIt] 5 Z. Since IGIIQllx(l).e Z and is retativelyprim. 
to IPI. we conclude that [.9 •• tIt] 5 Z and hence9 •. iu generalized character, 
of E. ! 11\ . 

Brauer's theorem now yields that,.,il is a,generalizedcharacter of Gdn 
particular [9. X] e Z, Now [9. x] '" (I/IG!) I (lx(g)I' Ip,i'o(g)). and 'l' 
o < [9. x] :0:; [X, X] ~ I. We conclude that ,[~, X] - ,!;x ,,,x] ~nd 

O~ [fl- B),X) ~ Iii I UXw)I'lpi'04)}, 

The result now follows. I 
A character X 5Irr(G) is said to have podefect 'e'" ifp does not divide 

IGl/xlt), 

In Chapter 2 we discussed the question of what inlOrmation can be <lb­
tained about a group from a knowledge of its character table. Since D. ,a?d 
Q, have the same table, one cannot determine the orders ~f the element', in 
the various chl.:sscs. Neverthdtiss. it is poSliib!e t.o determine the sets of prime 
divi.ors of these orders. To do this, we .halhpply,Theor~m8.4(a) in .situ­
ation where R tI= 1.' "II . .'::" :.1"·' .;'\ ;;1:,", 

If 9 e G, we shall use the notation 1I(g) t<l ,denote the set of prime divisor. 
ofo(g~ :,1 ',": ,,,,,. \"" ,;-1.,("., 

(8,18) LE .... A Let 9 E G and let " be a' sct of prim.s. Then' the~e ;eillt 
unique x. y E" G With 

(a) 9 - xy ~ yx: .:', 

(b) n(x),;;" and ,,(y) () " - 0· 
Furthermorej.x~yE<g>. ,1'J~",.1i '·i _.' 

··,1 

Proof Write o(g) - "In such that evo:y 'Prime divisOr ofm is in ,;laJid 
no prime divisor of" is in n. Then (1ft. n)';" J and we have krn +' I. -' 1, ,for 
some k, Ie Z. Let ;t. ;go; g'tl and y ;= gt.1N SO that 9 ::::II xy = yx and x; ye to>· 
Since x" !;II I l1li ~; (b) follows. . ,.,' 

Now .uppose 0 - uv - VI< with n(u),," and n(v) () " - 0. T,'19P 
u" C(o)" C(.<) and hence n(xu-'J" n(x) u n(u) .. n. Similarly, 

n(y- 'v) ,;; 71(0) u 1«y), 
:~ .' 

so that n(y-Ip)nn(xu- I)"",0. Since y~IV_)CIJ.-I, We have )Cu-t~· 
I II1II y-Ivand unique:ness follows. I ,,1 '0''': 

If 9, 1t, x, and yare as in Lemma 8.18,·wc write x;: g,. and y == g •.. If 
n:.:::C::< {pJ. we write x lIS Ulland y - Up" \ ' 

-
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(8.19) LIlMMA Let I G I ~ mn with (m. nJ ~ I and I<L " be Lhe set of prime 
dm.o{s of m. Let 9 e G. with 9 - Y.·, and define a On G by 

.. ,,' 9( ) = {n if x.' is conjugate to g, 
x 0 if XIII"' is not conjugate to g. 

?t R be the ring of algebraiC integcrs in Q[e], where l; is a primitive mh 
roo.~ 9~ I. Then .. 9 is an R~gencrali7.ed character. 

. p!~o! ~t E <;; G be elementary. It suffices to show that ,9." R[lrr(E)]. 
~U~~,~,lS ndpotent. we may write £ ~ H x K, where H is a n-group and K 
IS a n .. ,group. Then for x e E, we have x = UV; U E H, ve- K and thus U :nil X 

and V..,q ,xII" III" 

Jfg i. not conjugate to any element of K, then 9. _ 0 and there is nothing 
to prove, Suppose then, that,gll 92, .,., g, are the distinct elements of K 
which are conjugate to g. Then the clements x s E with XIII"' conjugate to g arc 
exactly the clements of the cOselS Ilg,. I :0:; i ;; r. 

Let y, e Irr(£). By Theorem 4.21, we have y, ~ ~ x q for oome ~ e Irr(ll) 
and q E Irr(K). We have 

lEI [,9., y,] ~ ± I 9(uy,)y,IUY,) ~ n ± q(g,) I ~(u). 
/-llu;,H /-1 ,,~H 

Since I ..• ~(u) • 0 unless { ~ I". we have either [9" tIt] ~ 0 or 
, 

IEI[8.,t/t) ~ nIIlIIq(g,). ,. , 
~o~ lEI - IKIIHI and IKlln and thus [,9., y,) i. a multiple of I iJlBj which 
lies In R. The resuh now follows. I 

et R be the ring of algebraic integers in (l[e), where, 
t;!";::~l':~~~ti;~~ rOOt of I. Let P E Z be a prime and let I be a maximal 
~i of R with p ~ Let x, Y E G. Then xp' and yp' are conjugate in G iff 

,. 1(Y) mod I for very X E Irr(G). 

Proof Write I G I ~ pith p,r". and define a On G by 9(g) ~ " if g p' is 
.'"1,nj"sate to xp' and 9(0) ;::::0:0 0, Otherwise. By Lemma 8.19, 9 is an R~gcner-

character of G. 
"j , Suppose I(X) .. X(y) mod I for every IE Irr(G). It follows that 9(x) 
,,!, .9(y) mod I. Now 9(x) - n. If .9(y) - 0, then n '" 0 mod I and n E 1. Since 

I. and p.f'n, it follows that I 1M (p, n)!iii J and this is a contradiction. Thus 
- n and hence y p' is conjugate to xp' as desired. 

Conversely, we, may suppose xp' = 9 - yp' and we show that X(x) " X(g) 
". x(y) mod I. Write X<.A> ~ L ..\./1 where the ),/ are linear characters. Since 

e.<x>, itsumces to show that A(g) '" ..l(x) mod I for linear..l. 
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Now X = qh. where h = X," (x) and ,\(x) = ,\(g)'\(h), Let '\(h) = J so 
that bpm 

= I for some m. For ~ E R, let cz'" denote its image in RII which is a 
liC!ld of characteristic p. We have 0'" - (b*)" NI 

- 1* ~ (J'" - ,.y'" and thus 
0* - I" = 0" ,,"<I J " I mod /, It follow> that ,\(.,) '" .llq) mod I and Ihe 
result follows. I 

Note that by Theorem 8,20. it follows that if x,' an ,are conjugate and 
X e Irr(G). then X(x) - X(Y) lies in e(Jety maximal ideal of which contains p. 

(8.21) THEOReM (G. Higman) Let X,. X,. '''. X, the conjugacy 
classes of G. Then the character table of G determines the ets of primes 
1tj.! ~ n(o.u) for gl~ E X II" 

I'r04 Let Irr(G) = (X,II :5 i:5 k). We are given Ihe complex numbers 
aill = 'XI(Y/-I) for gil 5 f.1J.' If 1 E Jf"~! then v is the unique integer 1 $ v $ k, 
such that a" € Z and a,. ;;, la" I for all i, ~ and hence we know", = 0. For 
notational simplicity, we now assume 1 ~ fl' 

Next we compute LI (a,,)' = IGI and let R be the ring of algebraic in­
tegers in 0["), where 6 is a primitive IGlth root of 1. For each prime. piIGI, 
we choose a max.imal ideal of R. I j! '2 pR. Construct the equivalence re­
lation - p on {p11 :5 J' :;: k} by setting /J. ...... p v jf a,/I. 6 a/v mod I p for all 
i, I " i " k. By Theorem 8.20. I' - p v iff the elements of .1f', and X, have 
conjugate p'-parts. In part.icular, if Jl ..... p v, then 1C~ v {I>} 'IlnI 1rv U {pl. 
Furthermore. given Il, there exists v, with p ¢ 1lv! such that jJ, - p v. To sec this, 
take g E X j.! and choose v sO that (J p' E ;X'\ .. 

Let:7r be a sct of prime divisors ofG. Using induction on Inl, we show how 
to construct the set [1'. = (1,1 ", ~ 1t). We have 9'. ~ (1). If" # 0. write 
" ~ "0 u {p}. where p ~ no. By the preceding remarks. it follow. that 

9',= l!d~¢.9'.o and I'-,v forsome V5.Y' .. }. 

The proof is now complete. I 

Tran,fer theory is • tool commonly used for producing normal sub­
groups of a group, especially normal p~complements or normaln-comple­
mcnts. Many of these transfer thl;orems can also be proved using character$, 
and in particular using Brauer's theorem. An example or a typical transfer 
theorem is the following: Let H be a Hall subgroup ofG(th.t is, (I HI, IG: HI) 
== I) and suppose that H is nilpotent and that if x, y E H are any two ele­
ments which are conjugate in G, then x and y··are nlready conjugate in H~ 
'"hen H has a norma.l complement in G. 

In the above :!'ituation~ let 1t be the set of prime divisors of 1 H I. Using the 
assumption that H is nilpotent, it is not. too hard to prove that if U ~ G is a 
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nilpotent ,,-subgroup, then U is eonjugate to a subgroup of H. Because of 
this, the following result is a generalization of the above transfer theorem, 

(8.22) TH"P.ORr?M (Brauer-Sl1zuki) Let H be a Hall Subgroup of G and 
suppose that whenever two elements of,., are conjugate in G, then they a.re 
already conjugate .in If. Assume ror every elementary subgroup E ~ G. that 
ifIEIII11I, then E is conjugate to a subgroup of H. Then there exi,ts K"'" G 
with H K = G and H " K = 1. 

Proof Let 1t be the set of prime divisors of 1 JJ I, '0 that by hypothesis. 
every elementary n-subgroup of G 1S conjugate to a subgroup of H. Let \9 
be a c1as. function of H. We define a cl,$' function .~ on G as follows. For 
9 E G, (g.) is an elementary ,,-group and hence g, is conjugate to some ole­
ment x" 11. Set /J(g) - ,9(x) and observe that thi, is well defined since if 9. 
is also conjugate to y e H, then x and y are conjugate in H by hypothesis and 

''i' ,9(:<) ~ .9(y)'" ' 
For x E N, let I'(X) denote the number of elements 9 E G with g. conjugate 

to x. Letx l , Xl."" X, be representatives ror the conjugacy classes of H. If \9 
and ({' are class functions or H. we have 

(0) 
l' --[9,.pJ ~ Wi J, ,9(x,)Q>(',)I'(x,), 

Now.let R be a (ins with Z !ii R !ii C and suppose that ,9 is an R-gener-
ali, .. d character of H, We claim that II is an R-generalized ch.racter of G. To 
prove thi •. let e SO G be elementary. W. show that (9), is an R-gencratized 
character·of e. Write E ~V ,x V, where U is a n-group and V is a "'-group, 
Wcmay: •• sume that U so, H, ' "., . 

If U E U and v" V, then (uv),,';". and· hence ~.v) = .9(u~ Since U ,-;; H, 
we may.write ,9" ." L a~ljIfof,,"'e lrr(V) and a~ e R. It follow. that (Ii), -
L. a~("" x I v), which i. an R-generallzed charaet., of E. Thus ~ i. an R­
generalized character of G by Br.uer'. theorem as claimed. 

Now let R be the ring of algebraic integers in o [G), wher., is a primitive 
\ H I th root of 1. For I :s: I :s: t, define 9, .. I..'u,U) ;;;rx;)<p, so that .9~x,) ~ 0 
if i ¥'hind ,9~x')''''IC,,(i<i)1 by the serond orthogonality relation. Also, 9, 
i. an ROgeneralizcd character of H and hence [,9" IG] 6 Rand 

I ' I [11 1.] _ - '(' ij IX )"(x) ~(x,) C,,(x,}I 
,. IGI)"=', "Jr J- IGI . 

; 'I ,.1 • 

We conclude that ~(x,JlC,,(x,)I/IGI i. a positive rational number which 
is an algebraic integer. It follows that it is a positive rational integer and thus 

; I d· ~1.1· . 

l'(x,)IC"(>,,II/IGI;;, I 
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I ,.:~::.(;'i 

'i'il.fi.. 

Therefore. equality holds throughom .an~·l'!x·J.~ ,I~I(I~.,,(~,)I. T~~, 
Equation (0) yields , . ',. , 

"',' 

[9.1)i]- _I t .9(x,~IHI a [9.'P]':" 
IHI", .ICall',),I., .,,,,i,,,.,·, I '. '·F" , 

',," , )' \ I "', I \," ' '. '\ ~"! 
Now SUppoIiC X E Irr(H). By taking R ~ Z. ':'Ie c0I!.~lu,~~ Ihal2 IS a gener~ 

ali~ character or a, Since [%. 2J-~;'~J~,:\:,a~~,~,(!),~X,~I):::- ~bW . 
follciws that 2elrr(a), . , "!"':'''''' ' ,:, 

Let K;" n(ker(mxe1rr(H)), Then K'.., G. If'ueH 1'\ K'.'then xlu)'" 
~(u) 5 :W) - xii) for all X" Irr(H) and thus,u ~ 1. ?n the olher h.n~. if 
p~~. PESyl,(G), alld ilGI'. then iI.~l and ~(iI),~X(l)~;!(1) for all 
xelrr(lf). so that ilGK, Thus p,; K and hencelKI:1: la:HI. It follows 
that 11K ~ Q. I 

To demonstrate the power of Theorem 8,22. we ,how how easily Burn­
side's transfer theorem follows from it. 

(8,23) COROL~ARY Let /'" Syl,(G) and suppose P ~ Z(N(P». Then ther~ 
existsK<lGwithKPm.GandK"P~I.· , .... ': """.: 

; ,I, : ,I I J ' " 

Proof If £ ;;; G is a p-group. then £ is conjugate to some subgroup 'of P, 
by Sylow's theorems. It thorefore suffices to assume x. yEP are conjugatei" 
G and show that x and yare conjugate in P.'· . ,.:. , , . ,.. : 

We have then. y ~ x! fot some g" G. Since P is abelian, P .!;;. CdY) and 
P" • Co("') = CG(y). Thus PI!' ~ P for some C E Calx') . and hence 
@c6N(P) s;; C(x) by hypoth.,.i$. Now y ~ x' ~ (:>:'r ~ x". m .. and LII. 
proof is complete. I 

We also remark thal Theorem 8,22 provides an allernate proof of 
Frobenius' Theorem 7,2.1l is routine to check that a Ft(lbenius complement 
ne.:esnarily satk.fi.s the hypotheses of Theorem 8.22, 

Our next result. depend on Corollary 8.13 where we restrict aUention to 
p-elementary subgroups for some fixed p. . , .:.: .'. 

:1 ,,', " ", :,1 

(8.24) 'I'''OOIi.£M (Dade) Let N ..; G with GIN a p-group. Let 8 E lrr("') 
be invariant in G. Then there exi.ts a p-.lom.nlary subgroup £ SO G, and 

Bnll.ler's theor~m 

'P e lrr(E ('\ N). such that 

(a) Nt .. G; 
'(b) : i{) is invariant in E; 
(c) (8£,,". q>] is prime to p, 

I Proof By Corollary 8,13. we ha ve 

(0) miG = r a.",c. 

• 

13. 

where '" runs over irreducible characters of p-elementary subgroups. a. e Z 
,and pt~. If E I, p-elementary and", E Irr(E). we compute (Ji. (",").J for 
. G'inv.iiriant class functions P of N. Now (fIG)." IG: NIP and (P'.). = 
IEN:NIP. Since #G and P·· both vani~h on EN - N, we have (In •• 

. -IG:ENlp·N,Now 

[Il. (",G).] ~ [po. ",0) = [(fIG)E., ",EN]. 

where th. latter equality follows since "," " (",EN)". This yields 

(Ji. (",G).] ~ I G ; EN I (jiB •• ",'N] I G : EN I [fl, (\II"').J 
I G: EN I [P, (\11£0')"). 

where We have used Problem ',2 to obtain the last equality. 
. We apply this with P .99. For each \II in Equation (*), write '" ~ IrI'(E.) 

for p-elementary l!.. S;; G. We obtain 

m ~ [.9~. ml.J ~ L " .. [9.~. (",G).] 
',tt, .; 

~ Z>.IG:N£.I(.99,("',.oN)"]' .. 
Since pt ... ,there exists", such that p docs not divide I G: NEI (.9~. ("'''eN)N]. 
'wllore ",e'have written E; a E., Since GIN i. a p-group and ptlG: NEI, we 
conclude that N E .. G. nd (a) fOllows. 

Now write I. ~ E " so that 

[89. ( jNJ = (.9.9, •• "'J = [.9 •• ",".9.] 

is ~rimc to p. Sinc;:c.9 is invarl tin G we have .9L is invariant in E and we: may 
, write a. m r. e.A. where A cUI' Over sums of orbits of the action of E on 
!rr(L) and e. E Z. Write r ~ "'L.9L so hat y is invariant in E. We have 

[8L • "'L·9J = r e.[A, y] 
• 

to p. Choose A such tha~ p.re.(A. y] and write A ~ q>, + .. , + i{)" 
the 'P, E Irr(L) and are conjugate under E, 

i 
, ~ ): , 

i 
I 
I 

, ! 
, , 
I 
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Since l' is invariant tinder E. all r<p",~] are equal and Ell. y] ~ r[<p" y). 
However t i:<: a divisor of 11£ : L I I G : N~nd so is a power of p. Since 
pHc-, r), we have r 1 and 'p, = <p i> inva~nt in E. This is (b). Finally, 
[,9L , <p) ". is prime to p and the proor is coml>~te. I 

An interesting special case is when N to a. 
(8.25) COROLLARY Let X € Irr(G) and let p be a xed prime. Then there 
exist' p.clementary E ;;; G and <p ~ Irr(li) with [Xp" ] iii 0 mod p. 

Examples exist which show thai in Corollary 8.25, Il cannot alway, be 
laken to be a p·grO\lp. 

I)i.ldc's Theorem R.24 has a nice application to the qu~stion of character, 
cxlcndibility. 

(8.26) THEORE,. LeI N." G wilh GIN a p·group. Let p" Sylp(G) and 
assume that P r. N S Z(P) and that every linear character of P ('\ N is 
extendible to p, Then every G-invariant irreducible character of N is ex~ 
tcndible to C. 

Pro(!f Let ,9 .lrr(N) be invariant in G. By Theorem 8.24, choose a 
p-elemcnlary subgroup E;;; G, with EN ~ G, and '{J E lrr(E n N) such 
lhat Pt[,9"oN' '{J]. 

We have E ~ Q " C, where Q is a p-group and C is cyclic. We may 
assu%c that C is a p'-group '0 thaI E r"\ N ~ (Q r"\ JIl) x C and we write 
<p = ~ " ,\ where ~ € Irr(Q r"\ N) and ,\ ~ Irr(C). We may assume Q \;:; P so 
that Q n N S P n N, which is .belian. It follows that. is extendible to 
P r"\ N and thence to P by hypoth .. i,. Therefore ~ has an exteMion Ii E Irr(Q) 
and I~:::;t &: x ). is an extension of q> to E. 

Now since EN = G, we have (.po). - (.p.,,")' ~ '{J" and hene. 

[(4)")",8] c [(p', ,9) ~ ['p, ,9(.0']' 

which is prime to p. Therefore, there exists an irreducible constituent X of 
<p" with P,j'[XN' ,9). Since ,9 is invariant in G, it follows th.t x. ~ eO with 
p,j'e. Now e divides IG: NI by I'roblem 6.7 and since GIN is a p·group it 
follows thaI e I and xcxtends ,9. (Note that Problem 6.7 follows immediate­
ly from Corollary 6.19 by induction.) I 

We remark lhat in the notalion of Theorem 8.26, the hypothesis on P will 
automatically be satistled if " is abelian. More generally, it suffices for 
P'nN~1. 

II has been mentioned that if N <l G and ,~ E Irr(N) is invariant in G, then 
it .umetS to show that ,9 is extendible to the inverse images in G or the Sylow 
subgroups of GIN in order to prove that 8 is extendible to O. It i. ror this 
reasOn that it is useful to obtain results like Theorem 8.26 which give sur-! 
fieient conditions for extendibility when the factor group i. a p-group. '" 
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l'robklll3 

(8.1) Let l s; R £; C. where R is a ring and the additive group (l, +) is a 
direct:sulI1nland of (R, .+). Let :If' be a family of subgroups of G. Show that 
.I.IO,;W') n l[Irr(G)] - .I(G,:If'). 

Hint Write R ~ l + S. Ir.9 ~ L •• ",G, where all fI_ € S, then [,9, X] 0:; S 
for all X e Irr(G). 

Note The Brauer-Tate proof of Brauer', theorenl"'.; this fact applied 
to R _ lee), where r. is a root of unity. 

(8.2) Let ,111 be the collection of abelian subgroups of the group G. Show 
that lhe following statements are equivalent; 

(a) lG 0 .l(G, d); 
(b) ilI(G, d) = l[lrr(G»): 
(e) evel'Y SylOW subgroup or G is abelian. 

/lint If a Sylow pasubgroup of G is nona bel ian, consider the function 
,9 ~ (l/p)p, where p is the regular char.cter of G. 

(8.3) Let X be a character or G. For 9 E G and prime p, write 9 ~ y,g" in 
the notation introduced rollowing Lemma S.18. Define the class function X, 
by X;(g)'~ X(g,·)· Show that (X,). is' a character for every nilpotent N ;;; G, 
Show that if G i. not nilpotent then X, is not a character of G for some 
X E Irr(G) and some prime p. 

. N~t. In fact, Xp i •• character for every X G Irr(G) iff G has a normal 
Sylow .. I'~subgroup. Ofc()urse,by Brauer's theorem, X. is always a generalized 
ch.rac·le~. 

(8.4) Let X and'" be characlers of 0 and supposeJ G J = mn, where (m, n) = I. 
Let" . 

~ = L x(y)if(gj, 

where'the sum is 18kenover those 9 E (J stich that o(g)Jm. Show that ./m E Z. 

(8.5) Let X e Irr(O) and suppose J G I mn with (m, n) & l. Assume that 
xIx) - .0 for all I .. "e G such that x" ~ t. Suppose .v" G and ym ,. I. Show 
that x(y) - o. 

a.and H begrollps with .classes Jt', and !i', respectively and ir­
chiltaciCrs xi and "',; respeCtively. Assume that whenever 9 e Jt', 

we have ~j..g) - 1/1 J,h) for all i and }. (In short, G and H have 
idCl~fical character tablos:):1leI xl! Z(p)where P e Sylp(G). Suppose x G Jt',. 

y e:il',. Show 0(,,) .. o(y). 
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Hint If o(y) > o(x) and H H, with (y) ~ (z) and y' = I'. show that 
z • ..If, and conclude that pll..lf,l. See the h~nt fo, Problem 2.12. ,,',: 

(S.7) Suppose e and H have identical character lables and tha! e'is solvablo 
and has an abelian Sylow p-.ubgroup. Show that e and H have i,omorphic 
Sylow p-subgroup •. 

flint If e has no nonlrivial normal p' -subgroup. then' ils Sylow p.: 
subgroup is normal. Use Problem 8.6. 

(S.8) (Dade) Let N """ H "' e. Assume Ihe following: 
i·!~.~) 

(a) (lH:NI,IG:HI)= 1. ',' 
(b) If x. X'" H for some g e G, then Ihere e"ists he Hand" E N wiih' 

x' lOIII xhn. ":',1 ~ 

(e) If £ >;; G is elementary and (1£1, I(;:HI) = I, then FJ ~ H.f!'r' 
somcg E G. 

Show that then: exists M <l G such that 11 M·!iII G and H II M = N. ' , 
Hint Mimic the: proor of Theorem 8.22.' Consider only those class 

functions .9 of H which are constant on co'sets of ,N. :. 
... ,/,. i:, 

Note Many of the imporl.nl."(ransfer~lheorellli follow from~oblC1>1: 
8.S. for instance. the Focal Subgroup T~",.m;~" "-('iit! 

leI P e Syl,(G) and let N ~ (x~ 1 ;<"Ix E P. X'" P" g,. t. i),,~rh'OIlJlr((i) ,,")1), 
:l!!!!N ,'.'" 

Here. A'(e) 'denoles Ihe normal subgroup'of Gmi';imal\iich 'h"i'II;~',c, 
factor group is an abelian p-group; Problem 8.8 yield. 'M '.., G with 
and M " P ~ N. It follows that M '" A,(G). The lOve...., inclusion 
fromN~G'Siii:A'(G). 1,,< I"~'~/I':' ",f t 

(8.9) Show thaI a group e is quasH:lemenlary iff IG cannol be written 
form 1: an<IH)G for proper subgro~ps H, with aH E Z. ' 

Hint FOf "only if": Assu.me 1(1 :;;F L QH(lH)(J. where the H run 
representa.tives for the conjugacy classes of proper subgroups. Let C 
cyclic normal p-complemenl for e. Choose Ho minimal. such 
p.t(aHoIG: H.I), and let A be a faithfullin .. r characler of CI(C ,., Ho)· 
.ider the numbers [(an< I H)G)C' n 

Notl! Problem 8.9 essentially says 'that Theorem 
possible. ' 

(S.IO) Show that Ihe integers min Theotem 8.10(b),and CorollarY 0 • .,,_ 

belakento belhep·-partofIGI· , .. ,:"., ,,, .• ,, 
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(8.11) LeI X .Irr(G) be a character of defect zero with respect to the rime 
Let Q SO G. WIth P{IQI and let P6Syl,(CG(Q». Show that (I/IPIP

) ,p. 
~haracter of Q. - XQ IS a 

lS.12)p leI P <l G, where P is. p-grouP. and let X elrr(GII') be of defect Zero 
iJYGI wllh respect to p. I.et ,9" Irr(P) be invariant in e Detil, th f . 
'" on G by . !: C unctIon 

"'(g) =0 if g,¢P 
"'(U)=·9(g,)X(u,·) if u,eP. 

(a) Show Ihat '" is a generalized eharacte, of G. 
(b) If G = PCa(P). show Ihat "'" Irr(e). 

(8.13) Let N """ G be. Hall ,,-subgroup. Definelhe function v On N b 
IIY e CG(x)ly is of ,,'-order) I. Show that v is a generalized char.cte/o;(~. z 

. Hilj~ 1f.9 is a G-invariant character of N (whl'ch . 
Irreductble). defi~e il on e by IS not necessarily 

·~(u) = ·9(9,). 

Show lhat,~ i, a generalized character ofG and compute [.~. 1
0
). 
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9 Changing the field 

So far we have restricted our attention almost exclusively to characters, 
representations. and modules over the complex numbers. In this chapter we 
digress from our study of the properties of Irr(.G) to consid~r irred~cible 
group represenultions over arbitrary lidds. (In prtme charactenstlc. thIS ralls 
far short of the general case, since not all representations are completely 
rcducihle.) In particular. if F s:; E is a field extension we explore lhe connec· 
t.ions between the irreducible E-reprcsctHatiollS and F~reprcscntations of a 
group. In prime characterislic, we shall see thaI this situation is (surprisingly) 
und~r ~omcwhu t better contT't)j than it i$ in characteristic zero, which wilt be 
more flilly considered in Chapter 10. 

Let l' 5;; E and let I be an F·representalion of a group G. Then X map. 
o into it group of nonsingular matrices OVer F that. of course. are also non .. 
::::ingular over E. We maYl thereforc, view I as an t .. reprcsc:ntntion or G. ~s 
,uch we denote it by IE. (The ,uperscript thus merely indicates a change In 

point of view.) If XI and I, are similar f·representation" then II' and iE/ 
are similar and it follows that if iE correspond, to the F[G}module V, then 
there is a uniquely defined (up to i,omorphism) E[G}module V· that cor· 
re.ponds 10 iE". (For those read.rs familiar with tensor products, we remark 
that V· ~ V ® FE.) We .hall not, however. need to refer to V· again, since 
it is u.ually easier to work wilh the representation IE. 

The F·representation iE may be e.lended by linearity to obtai~ are· 
presentation of F[G]. which we shall conlinue to call l. Under thiS con· 
vention. the E[G}repr.,entation X' is an exten,ion of the f(G}repre,en. 
talion I. 

CbAng1ng tho fiold I.e 

If I! is irreduciblt, then clea"rlyso is:1. However.11r may well reduce. even 
if I is irreducihle. To illustrate what can happen. we consider two .xampl.,.. 
both forthe field extension R ;; C. Let G ~ (@) be cyclic of order 3 and let X 
be Ihe R·representation delined by 

I(g) - (_~ :} 

Then i£~ affords the character A + X. where A is a faithfulline.r Character of 
G and so i£c is reducible. Since A is not real valued, it is not afforded by any 
~·repres<:ntation and it follows that X is irreducible over A. 

Now let Q, = (a. b) be the quaternion group of order 8. where o(a) 
= 4 _ o(b). Define 

!. (0 
-I 

I(a) = () 
o 

I 

o 
o 
o 

° 0) ° 0 o -I . 

I 0 
(

0 
o (I 

lib) = _I [) 

o - I 

o I 

o 
o 
o 

It is not hard to check that thi, defin.,. a representalion of Q •. (In ract this is 
the representation whose module is the qualernion algebra 011 ~ " + RI + 
Rj + Rk with respect to the basi. (t. i.j, k), where a = land h = j act by 
right multiplication.) Now XC affords the charaCler 2X, where X E Irr(Q,) and 
x(1) a 2. By Problem 2.S(b~ X is n<)lafforded by any R.representation of Q. 
and thus l is irreducible over R. (This can also be deduced from the fact that 
011 is. division algebra.) , 

, 

(9. I) DBFINITION Let I be an F.representation of G. Then I is ah .. olur.ly 
Irreducible if lB is irreducible for every field e iil F. 

(9.2).,' THEOREM' Let X be an irreducible P·repre.entation ofG with degree •. 
The following are equivalent. 

• (a) l is absolutely irreducible. 
(b) I" i. irreducible for every finite degree e.ten,ion E ;;1 F. 
(0) The centralizer of i£(G) in the matrix ring M,(F) consists of scalar 

matrices. 
(d) ;f(F[G)) .. M,(F). 

'. Proof Th.t (a) implies (b) is trivial. Now a~,umc (b) and let M. M.(F), 
with "Ml(g) 5 l(g)M for all g e G. Let II be a finite degret: eXlension of F, 
choSen so that M has an eigenvalue, A E E. Since iE' defines an irreducible 
representation of £(G] and M - AI is a singular motrix centralizing it. 
image, it follows fron! Schur's Lemma I.S that M - AI _ O. Thus (c) follow~. 

That (c) implies (d) is immediate from the Double Centralizer Theorem 
1.16. Finally. aBlume (d) and let L " F. Since every M E M,(L) is an L·linear 
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combination of matrices in M,(F),.it follo",~"tbal.l(L.[GJ)il"!,M,(L.). Thill 
for every L. repreaentatiQn 'ilsimilar, 10 ~, ",e h!l:v~,il(L[9]),~M,(L). an4l1)l , 
il,canpOI be in reduced Jorm.. Thill ~.iII irreduqible.,9~.L,~tlIeprQPl.-!I 
com.plete. I ''; ','o,fl, ,;, i!+AI!:.,f"j'~;'Ir:, ..• :',:' ';rb';:::)d 

(9,3) DllF1NITION The field F is • . ,plitting firld for 0 ir .very irreducibl~ 
F-representation of 0 i. absolutely. irreducible. , 

(9.4) CORO~LAl\Y If F is alBebr~ically closed, then 1. iiil splitting tleld,for 
every group. ' '. "n!"': ,~",:I:!!~I,I?I,i;1 '\,:.l~, 'IH\:,~'I ' 

Proof Since F has no proper finite"d~F_i~eit~n~i~n:iC?n~i'd~,~ ,(b) ~f 
Theorem 9.2 holds for every irreducible F-representaliM or ,0 .. 1 " 

",il".,O I ,'.J', 

Suppose F i. a splitting field for 0 and E .. F. Then every irreducib~e 
F-rcpr.senlalion '*' delermin.,. an irreducible E-representatiOD ]if. If {ltl} 'S 

a •• t of representatives for the similarity classes of irreducibl" F-represen­
tations of G, then (11:/) is a complete set of representatives for the irreducible 
E-representations of G. In order to prove this, we need to discuss the "irre­
ducible constituents" or a possibly reducible representation. , ' 

If V is a~ F[O}modulc, then a cQmj'JQ,itiq," series r~r.~ i.~ a shain ~f 
submodules "". "<~ j'~ ,:,~j\" :' 

V-V.:> VI:>' ,,> v. ':'I,CI ,,,,,,,,;;,I.;i:.: 

such that each v,-.;v, is an irreducible module, The modules 'v,- ;/v, aroth. 
[actors of th. serie •. The Jordan-Holder theorem assert. that the factors of 
any two composition series for V are the same up tQi.omorphism (and 
counting muhiplicities). An irreducible module W isomorphic to a factor of 
some (and hence all) composition series for V is called an irred""ihle CO~­
sriruenl of V. If W is isomorphic to an irreducible submodule of V, then W,tS 
a constituent of V. We call it a bottom constituent in that case. Similarly any 
irreducible homomorphic image of V is a constituent. These are the lOp 
constituents of V. If V is completely reducible [e.g., if char(F),t1 G I]. then 
every irreducible constituent of V i. both Ii top and a bottom constituent. 
(Caution: the converse is false.) .' . . . 

All of the preceding remark. may be translated Into the language of 
representations. If,*, is an F -representatioo of G corresponding to the F[O]­
module V, then'*' is similar to a representation 3 in triangular block form 

~)-C) ~.) ". J" 
where the irreducible rcpresentatioos31 correspond to the factors v,- .t.v,. 
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'Ropresentations similar to the JI are the irreduCible constituent. of it:: those 
'similar to 3, beins top constitu~nts and those similar to 3. being bottom 

j;'~:.,~::,::~' ~":';~:: (Of cou",e some of the other irreducible constituents of 11: may 
ii.~. be top or bottom constituents since ~l is not necessarily the only rep­

,.ntation in triangular block form to which 11: is similar.) Note that the 
dlaract.r afforded by a representation is the sum of the characters of all of 

". " .the irreducible constituents (counting multiplicities). We emphasize that 
'. by the Jordan-Holder theorem, the representation 11: has only finitely many 

'.< in:educible constituents (up to similarity), namely those which appear in any 
.1:'! 8ioaJo triangular block repr ... ntation similar to X. 

(9.S) , CORO~LARY Let F be a field and G a group. 

(a) Ev.ry irredUCible F·r.pre.entation of G is a top coostituent of th. 
regular F-r.pre.entation 91. 

(b) There exist only finitely many similarity class.s of irreducible 
I'.represcntations of O. 

,. (c) If E :1 F and'll i. an irreducible E.reprosentation of G,then 'V is a 
. >!constituent of IE for some irredUCible F-representation iii. 

Statetnent (a) is immediate from Lemma 1.14 and (b) follows from 
Jotdan-~Hilder theorem. Let 3 bc any F-r.presentation of G. The 

::!o:':irr'ed~lcil))e constituents of 3' may be found by taking the irreducible con­
,tiltue:ntslt, of 3 and then finding the irreducible constituents of the 1(/. Now 
(c) follows by applying this remark to 3 ~ 91. I 

, ' The following result is a useful tool for establishing the similarity of two 
.. : F-representations of G and for Olher purposes. 

I (9.6) 'IlIOOR~M Let 11: be an irreducible representation of F[O] and let 
fa e F[GJ. Then there exists b" F[G] such that X(b) ~ X(u) and 'D(b) ~ 0 for 

" ),every irreducible F[O}reprcsentation ~l which i. not similar to X. 

. '.. Proof Let (XI) be a set of representatives for the similarity classes of 
; irredUCible F(Gl-representations. Let I, c Ix e F[G] IX,(x) ~ 0) so that /1 is 
, ideal of FrG] and in the notation of Problem 1.4. J(F[G]) ~ nIl' Let 

F[GJ/(n/l), so that e oh II may be viewed as a representation of the 
a'il.Olra A. As SUCh, the I( ore irreducible and pairwise non'imHar. In par­

~ 0 and by oblem 1.$, A is semisimple. By Theorem 1.15, A 
mlllim.al ideals M,. sU h that ,*,~MI) = 0 if j '" i and ,*,~M,) = ,*,/A) = 

•• "' .. II "". Now suppose 11: = ',. Choose h in the inverse image in F[G) of M I 
~ l(a). The result lows. I 

COROLL4RY Let X and 
~i',!,up,poJieF 50 £ and that X' and 'D 

I is similar to 'D. 

be irreducible F-repres.ntations of G. 
have a common irreducible constituent. 

I: 
1.':1 
I! 

II 
i j 
I r II !: : 
,Ii 
, 'J 

1 i 
i r 
! .: 

i i 
I " 
j I 
I I . , 
! ! 
" i r 
r 
I i 

! 
iI 
: j 
. I 

I 

I 
: I 
I' , 

. I 

i I 
Iii 
'j 

i 
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Proof Let 3 be an irredudble constituent oLl nd of 'I)'. If I and 'V are 
not .imilar, view them as representations o( F[G] an choo •• b e F[G] with 
I(I» = l( I) and '!lib) ~ O. It follows that if U is an E[G}rcpre:lentation 
similar to IE, then tI(b) i. the identity matrix and he e 3(b) Is the identity 
matrix. A similar argument, working with 'V', shows hat 3(b) s 0 and 
contradiction prove. the resliit. I 

Note that Corollary 9.7 a •• erts that the representation I in ro"mtl"·.'·';; 
9.5(0) is unique up to similarity. 

(9.8) COROU,ARV Let F be a splitting field for G and let (l,l be a set o( 
representatives for the similarity classes of irreducible F·representations,·. 
Suppose E ;;2 f' Then E is a 'plitting field and (I,') is a set of repr.sentatives 
for the irreducible E.representations of G. 

Proof Since the .11, are absolutely irreducible, the It arc absolutely 
irreducible. They are pairwi~e non.imilar by Corollary 9.7. Finally, suppose 
'Il i. any irreducible E.repre<entation. fly Corollary 9.S(0), 'I) i. a constituent 
of 1.,' for some i. Since l,' is irreducible, it is similar to 'll and the proof is 
complete. I 
(9.9) TH'JOkEM Let E be a splitting field for G and let F 5 E. Then F is • 
splitting field iff every irreducible E-represcntation of 0 i, similar to 'Vn for 
some F"representation ~. 

Proof Suppose F I. a .plitting field. Then by Corollary 9.8, every irre­
ducible E.representation is as desired. Conversely, let ~I be any irreducible 
F-repre,entation and let l: be an irreducible constituent of ~I·. By hypothesis, 
there exist. an irreducible F-repre'entation ~), such that ¥)' is similar to I 
and hence 'll£ and 3' have an irreducible constituent in common. By Corol. l · 

lary 9.7, 'V I .. imilarto 3, and thus 3" isabsoilitely irreducible. It '" 
~! is absolutely irreducible since the only F·matrices which e.ntrali"e aIl3(g) .. 
arc scal.r. The proof is complete. I 

(9.10) COROLLA~Y Let f be any licld and G a group. Then some finite'. 
degree extension of F is a splitling field for G. 

Proof Let F be the algebrnic c1o,ure of F, so that II is a spliltirlg 
Let (I,) be • set of repre,entative. for the similarity classes Ir.'<~u':ib!e:+ 
F.representations. By Corollary 9.S(b), I {I,ll < "" and hence only .. • .. ···i'. 
many elements o( F occur as entries in any of the matrices X,Vi) for 9 e 
Adjoin all of thc,e .Iements to F so as to obtain the field E. Since F i. 
braic OVOI F, ;t follows thot I r:: : F I < 00. Sin~e each I, m.y be viewed as an 
E-repre,entation ofG, it follows from Theorem 9.9 that H i, a 'plittingfield,. I .• 
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(9.11) COROLLAkY .Let Q ,;;; F S;C. Then F is a splitting field (or G iff 
'.'. eve~y.x e Irr(G) is afforded by some F.representation. 

Proof l( F is a I!IpliUing field and X E! lrr(G), chQose:: a C~rel'resentation 
I that affords X. By Theorem 9.9, I i. simil.r to 'Dc for ,orne f' .representation 
'/). '!'hen 'I) alford. X.' . . :. . . 

Omvetoely, suppose that every X 6 Irr(G) i, alforded by some F.repre· 
sentation. Let X bean irrtducible C·r.presentation and let'/) be an F­
representation which affords the same character. Then by the linear inde. 
pendence of Irr(G) and u.ingthe fact that C has characteristic zero. it follows 
that l! is the unique irreducible constituent of 'lie and o<:<:"rs with multi· 
plicity l. Thus 'Dc is similar to x. The result now follows (rom Theorem 9.9, I 

.",:,",holl now discuss .the chQrQ~ter theory of a group oVer an arbitrary 
spiriting field. The followmg result IS actually true without the assumption 
that E; is a splitting field. We shall prove the more general fact later. 

(9.12) LEMMA Let E be. splitting field for G. Then the characters of non­
similar irreducible E·...presentations of G are non7.ero, distinct, and linearly 
independent Over E. . 

, ,\ , 

P1'()()j Let {X,} be • SCI of representatives for the similarity cla ... s of 
ir~educible E:repr.sentations, and let X, be the character afforde? by X,. 
VIew X, as being defined on all of E[O]. Since I~E[G]) is a full matrix ring 
over·E, we may ehoolle all! £[0] with l~a,) ~ 1. By Theorem 9.6, we may 
assume that xja,) - 0 if j ,'I' j. The result is now Immediate. I 

• ' "I : ' 

If E i •• splitting field for G, we shall us. the notation Irr.,{G) to denote the 
set of, 9haraeters ofth. (abSolutely) irreducible E-representations of G. The 

. pointorthe next result is that in some sense Irr,,(G) i. not as dependent on th. 
parti':I!.lar field e .as the notation would indicate. 

(9.13) \EMMALet.E be a splitting field for G and let X "lrr,,(G). SUPPO:le 
K !i:' E is a subfleldwhich contains1,(g) for all g E G and let F ;2 K be another 
splitting field for G. Then X e Irr,{G). 

Proof We may replace F by a K·isQmorphic copy and assume that E, 
F !:·L (or some field .L. By Coroliary 9.8, L is a splitting field for G and 
Irr,(G) .. IrrdG) .. Irr,,(G), The result follows. I 

. .ri;~\nexi rb~~I!is of 8"";t imPo~tanoe in studying representations in 
. pnme,characterrsllc. It, proof depends on Wedderburn's theorem which 
8sserts:~hat finite,division nng. are commutative. As the quaternion group 
of order 8 shows, Theorem 9.14 would be false in characteristic v;ro. 
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(9.14) 'l'HliOREM Let:E be an absolutely irreducible £.representation of G,' 
where E is of prime characteristic. Suppose that .t affords the character rand 
that X(g) e F for all 9 E G, where F is '1"~e su,b/ield of £. Then X is simil!'f to 
'DE for some absolutely irreducible F.~epresentation .~:" '. ., .;'il i). 

Proof First we consider the crucial special case th.tl~1 < <Xl.'WorI<l.ili' 
by induction On I El. it is no loss to'a.ssume that F IS a maximal subfic:l~ of E. 
Let A be the set of.1I F·lino" combination. of the matriceS for 
Then A is an F ·su balgebra of the matrix ring M ,(E); where', d .. "",,;·ofZJ 
If a E 7..(A~ then a is' a matrix over £ which·commut .. with 
absoluttly irreducible, a i. a scalarlm"'"" ·and thus' F .. 'I,g' 
It follows that Z(A) is a finite integral domain, andhcnce is a field. 
a nlaxim.lsuficid of E. we conclude that either Z(A) .. F· I or 

If Z(A) - £. I, then A .. £. A .. ~E[G]). Since:E is a~~!:)~.~,Wo:;:(~ 
ducible. we concludelnat A- M.(E)'~nd thus i(<<e'£:,,:,p:we' " 
a E A with tr(a) Iiid Ct.. However, a is an F .. linear combjnation , 
form X(g), each of which has trace in' cF:, This ',,?ntradiction ,shows , . ' 
Z(A) ~ F, 1. " , .' ,c, I "I .. :, 

Next 'We claim Ih.t the F·algebra A i.algebra i.omorphic 10 the, full 
matrix aigebra M II(F} for some integer k. To' show this, we \fi~st est~~l.i~~. f~\~; .f: 
A is semisimple. By Problem 1.5, it suffices to show tbat A has no nonzero,,:.' 
nilpotent ideals. If J is. nilpotent ideal of A, then,E ./.i. a nilpolent ideOl in .' 
£.A ~ :E(£[O]) ~ M,(£).,1l follow. luI 1 .... 0. (ADY nonzerO 
muitiple which. is not nilpOtcnt.). "r \j.~F~ :" ·1', ~!.II ,.,,~j.l!l:Jt.' .. 11 ... i 

By Theorem 1.15, th .... mi.impk F.:lII.qb{~:A;"," , . 
ideals. Since dim,,(z(A)) ~ I, it followslballhera 
and hence in the notatiOn of 1.15. ,A.~M(A);': 
A-module M. LeI D = E.(M). so thaI DIS. dl>:iSii," 
1.5. Since dim,(M) < <Xl and IFI < "';lVe have ,,<Xl and Ihus D 
mutalive by Wedderburn's theorem. "':". ",', ,,' " .. I." • 

Dy the Double Centralizer Th.oronl1.l6; w.'haVc,jt" .. 
thus D s:; Z(A AI) .. F. Since D con,ai91litll~,'!C'iliu' .multipli\:.~tions" 
on M, We conclude that D ~ I· F. 111 ... iU'" dim,(~;.t\)\'" A ,"~r''',A; 
E,,(M) _ E,(M) '" M,(F) and we have an: J:,aigcbr.a .i·son"'1l'~"I~i3 
.9: A _ M.(F). Thus ~) ~ XII: F[G] - M,(F) is a representation of 
It is absolutdy irreducible since it maps onto M ,,(Fk '~" . , .. ' 

We claim Ihat 'DE is similar to X. To see Ihis, 'let 3 'be an irreducible 
represenlation such that :E is a consliluent of 3": If,3·i. not simil..,., to "':1"",(11 

Theorem 9.6 to choose b "F[G] such, '.' ," ,'., ' ". 
X is a conSlituent of 3', we have X(b) -
contradiction shows that ~ is 'similar to 
Since'll is absolutely irreducible, the cla\1lI foll:ow·.·.:tidlhe Ihleorenl 
when E is finite, 

. --~---------------
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We now consider the general Case where E may be inflnitl!. Since we may 
replace E by a larger field, it is no loss to assume that £ is algebraically closed. 
LeI K ,;; £ be the prime field and let L., K be a splitting field with 

. XI < <Xl (by Corollary 9.10). Since E is algebraically closed. we may 
t':,'", ... 'Ullle L s:; E. Since L is a splitting field. :E is similar to 3" for some L. 
,. ,- representation 3 and ~l affords X which takes values in L n F. 

Since ILl < <Xl. the first pari of the proof yields an absolutely irreducible 
(,.,,1 r; F)-representation V. such that 't)L is similar to 3 and hence 'VI! is similar 
\l>,,:E .. Now 'llF is the desired F.t<presentalion and the proof is complete. I 

Theorem 9.14 remains true if .f is irreducible but not absolutely irre-
fducible .. This will be pro>ed in Corollary 9.23. 

By. the exponent of G we mean the least positive integer tI, such that 
I for all 9 EO. Clearly n IIG I. 

",.1"",1,'''.'' COROLLARY Let G have exponent n and assume the polynomial 
~ 1 splits into linear factors in the field F. If F.has prime charactedstic, 

it is a splitting field for G. 

Proof Let" 2 F be a splitting field and let XE Irr,.{G). Then x(o) is a 
.Unl of nth roots of unity and hence X(y) E F. The result follows by Theorems 

and 9.9. I 

entirely different proof shows thai Corollary 9.15 also holds in char· 
:ac:re.';"lic :<oro. This result of R. Drauer depends on his Iheorem on induced 
i;~,.r.,cters and will be proved in Chapter 10. 

be any field, (/ an automorphism of E, and l an E-reprcsentation of 
'6:',W'o""" apply" to every entry in the matrix l'(g) for every ge: G. What 
:*;\I1~.";·i. a new representation, denoted 1"", which mayor may not be similar 

Similarly, if II: G ... £ is a function, we write .9'W) = (11(0))'. Suppose.'€ 
~:~~~~i~:,;£,ch.,aeter X and that X takes values in F ,;; £. If. E Aut(F), it is 
::~ that x' is an E-character of C. 

L"MM~ Let £ be a ,plitling field for G and let X~ IrriG). Suppose 
e F s £ for 811 9 e and let '[€ Aut(F). Then X'" (rr,{G). 

;', !"O(Jf Let E be an algebraic closure for £ and let F s; F. be an algebraic 
, for F. Then 1ft {G) = lrr.(G) ~ Irr,(G) by Corollary 9.8. Since < is 

"'!t~nlji'ble to an autom hism of F, Ihe result follows. I 

K "" £ be a field ex nsion and suppose X is an £·character of G. We 
~"j'!"n.C(lto denote the subfi d of £ generated by K and the character values 

for 9 " G. Note that K(x) is ontained in a splitting field for a polynomial 
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of the form x' - lover K. Since this polynomial yields a Galois extension 
with an abelian Galoi, group. it follows that K(X) is a tinite degree Galois. 
extension of K and the Galois group (1(K(x)/K) is abelian. 

Assume that Ii. is a splitting field for G and that F S;; E. If X. ~I E Irr,;(G). we 
say that X and >/I arc Galois conjugate o"er F if F(X) = F(>/I) and there exists 
(f <; (1(F(x)/F) such that X· = >/I. It i, clear that this defines an equivalence' 
relation on Irr.W). 

(9. t 7) LE),I),IA Let E be a 'plitting field for G and let X e Irr.(O). Let fI' be' . 
the equivalence class of X with respect to Galois conjugacy over F where 
f S E. We have 

(a) If K ~ E.. K(X) ~ K, and (f € W(KIK ,.., Fl. then X' e fI'. 
(b) If F 0 ;;; F and >/I E fI', then >/I is Galois conjugate to X over F o. 
(e) IfI'I= IF(X):FI. 

Proof (a) By 9.16. X'elrr.(G). Now (K n f)(X) i2 K n P is a norm~i 
extension and so (K ,.., F)(X) "' K is invariant under fl. It is thus no 10 .. to 
assume that K ~ (K ,.., F)(X) and so K ;; F(X) and no proper subfield of F(x) 
contains both F and K. It follows by Galois theory that restiction maps 
¥J(F(X)/F) onto 'lI(KIK n P) and so x' ~ x' for .ome te'll(F(x)/F). Now 
F(t) F(X) and so X· ~ X' e fI', 

(b) This is immediate by applying (a) to 1'0 and taking K ~ F(X)' '" : .:'. 
(e) We have that [I' i, the orbit of X under 'lI(F(x)!F). lIy definition of ' 

F(x), the stabilizer of X in this group is trivial and sO IfI'I s 1¥I(F(x)/F)I' 
= IF(x): Fl. I 

Now let P be any field and let l be an irreducible F·representation of G) 
Let E :! I' be a splilling field for G. What docs I'look like? We shall prove' 
that it is completely reducible; that all irreducible constituents occur with· 
oqual multiplicity; that the characters of the •• constituents constitute 
Galois conjugacy class over F and that the common multiplicity is I "''''1''';,,', 
possibly when F has charactetistic zero. 

(9.18) I,RMMA Let F ~ Ii: with I Ii: : f 1m" < <Xl and let V be an irro,du.cib'le 
E(G}module corresponding to the ".representation I. Then V may 
viewed as an F(G}module and as such let it correspond to the P.repI'Cllen, 
tat ion 3. Then 

(a) deg 3 D n deg l. 
(b) 3 has a unique (up to similarity) irreducible constituent. It is 

F ·representation '!l such that X i5 a constituent of '!lE.:', 
(c) If I affords the E·character X and F(x) ~ F, then 3 afford, nx. 

Proqf We may certainly view Vas an F-spacc. Let VI. 1)2 • •••• tim t,e , 
E .. basis for V and let e j • ti."" e" be an F-basis for E.Jt i~ routine to _L_.'l:/I' 
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that {v,e}l is an F.basis for V and so V is finite dimensional over F, 3 is 
defined, and (a) fOllows. 

Let '!l be a (unique lip to similarity) irreducible F-representation of G 
ouch that l is. constituent of 'DE, 8y Theorem 9.6. choose h E F[G] s E[G). 
.".hthat '!l(b) 2 '!l(I) and 'D.(b) ~ 0 for every irreducible f·representation 
'!lo not similar to 'D. Since l! is a constituent of '!lB and 'I)(b) i. an identity 
matrix. then so is lib) an identity matrix. Thus b aClS as an identity on V and 
hence 3(b) is an identity matri~ and 'I)~b) .,. 0 for every irreducible con· 
stitUent ~)I of 3. Thus every 'I), is similar to '!l and (b) is proved. 

For(c\ ietgeG and writev,g ~ Li t'i~Ii' where~'ie Eand ;.:(g) ~ L' «". 
Now write . 

for 1 :s; 1', v ~ rI and flu" e F. Let 3 allord the character >/I, Then 

and >/I(g) = ~ /ill,,· 
'oil 

We have 

(r «,,\ •• = :£ ",Ii"" 
. I f I,~ 

and since we are assuming that r, 0" a xf.g) e F, we conclude that 

for. each p. lSI' :s: n. ,The relIult now follows. I 
(9.19) COROLI.AtW LetF so; E with IE: FI ~ n" 00. Let .f be an irn:· 
ducible E·n:presentation 'of G and let 'I) be an irreducible F·reprcsentation 
such thatl! is a constituent of 'I)". Then deg 'l.l divide. n(deg X). 

ProQf leI 3 be an F.re"r ... ni~tion obtained by viewing an E(G} 
module corresponding to l u an F(G]·mooule. 8y Corollary 9,7 and Lemma 
c9.18(b); we conclude that\f) is the unique irreducible constituent of 3 and so 
dell''Il dividC3 deg 3. The reault now follows from 9.18(0). I 
ii''''':':.'''''''' fOIlOwi~g'~i;~lIaryis "~'h~(lurvives of Theorem 9.14 when the 

i:liyp<)i~i',:s' il of prime chaiacteristic is dropped. 
, , ",,> ~ 'I ' " .,' " , ' , 

.:,,, ...... ,...'CoROLl.A!l.y"'b!·:!,be'.i,'absohitely irreducible /l.r.prescnt_tion of 
(j"whi'oh"ffolrdsihech,',r', acter X: L<it F !<i E be such that F(X) - F. Then there 
exiswan Irreducible' F-representation '!l. ,ueh that l i. the unique (up to 

, *lmlJanty) irredlicible constituent of 'I)". In particular. 'IJ allords "'X for some 
integerm. ' 
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Proof If F has prime charactersitic. then by .Th09rem 9.14, there exisl.$ 'P 
such that 1)£ is similar to J and there is nothing to p~o.vc. Assum~ thcn,th»:t 
char(F) ;;;;;: 0, . ," I '"!I' '. :;;~/" ' . I' ! . 

It will suffice to shOW for some positive 'integer,,... that the cha.::actet ,nX' ,lS 

afforded by some F-representation 3. This i ... ufficient,sin<:e,by theJinear 
independence of Irr.(G) for a splitting field Li<E, it follows that ."ery 
irreducible constituent of ai, affords 'X. and &O~ is 'iml~~r. to ,IL

, We may thlls 
take 'lJ to be any irreducible constituent of 3 and qUl)te(:orollary 9.7 ,to 

compiete the proof. "'" .. ".! .', ':';:" 
To produce ~~, let K 2 F be a splitting field witb, •. I,!(:fl!'"" <,oq. By 

~mma 9.13. XE Irr.(G). Let ~l be the F-representallon whtch re.ults by 
taking a K[G]-module which atTords X and "iewing it.s an F[G]-module. 
Then 3 affords nx by Lemma 9.18(c) and the result follows. I 

Of course it follows in the a.bove situation that if 11o. is ~ny irredu,cible 
F-repre .. ntation such that X is a constituent of('lJo)",. then 'Po is similar to 'P 
and hence X is the unique irreducible constituent of ('lI.)', • 

(9.21) THOORliM Let F S E, where E is a splitting field fOf G. ~t 'P be.an 
irreduciblc'F-representation of G. Then 

(a) The irreducible constituents of 'Di' all occur with equal multi­

plicity m. 
(b) If char(E) '" 0, then m ~ 1. ," .,." 
(c) The characters X, e Irr,fG) afforded by the irreducible constituents 

of 'lJF. constitute a Galois conjugacy class over F and so the fields F(x') are all 

equal. 
(d) Let L ~ F(X,). The irreducible constituent, of 'PL occur with 

multiplicity I. ,'. ' 
(e) If J is any irreducible constituent of 'lJL then.3' has a unique 

irreducible constituent. Its multiplicity is m. 
(f) 'D" and 'lJ< are completely reducible. 

Proof Let X be an irreducible con,tituemor 'P"IIDO .suppose X, ~I~:'~,,:: 
X e Irr .(G). Let L _ Fix) and let 3 beanirreducib~conatiMnt of'll 
that X is • constituent of 3'. By Corollary 9,20. ;E. IS the ,Unique ir"edljcjl,\.',: 
constituent of 3'. Let m be its multiplicity, so that 3 affords the ch,or."ter 
If char(E) '" O. then Theorem 9.t4 Yields.m~r~~)li~,. , 
duelhle. 

Let X l1li XI' X2 •..•• x" be; the di~tinct Galois conjugatetl: ofX over F ~o that' 
n ~ II.: F I by Lemm. 9.17(c). For" e fI(Lln forlll tho L-representallon 
defined by 3"(11) ~ 3(0)". As" runs over fI(L/F) we obtain 1\ representations 
3~ affording the characters m;( •• 1 ~ ; :5: n. Since m .~ ,~ when ~h~r(E) 
the mXI ate distinct in all cases and thua the 3- are paJrYnse nODldmilar. 

-
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each (30')£ has a unique irreducible constituent and it occurs with multiplicity 
m. This follows from the characters if ehar(E) = 0 and it holds ill prime 
characteristic since then all of the 3"" are absolutely irreducible. 

We claim that the n = jL: Fj representations 3° are exactly the irre~ 
ducible constituents of V'· and that each OCCUrs with multiplicity 1. Since the 

(irreducible constituents of(3°)£ and (:~T"; arc nonsimilar if (J ¢ t. statem!;nts 
(a)-(e) will follow when the claim is establi,hed. 

Since 3 is a constituent of 'lJL and (~IL)" ~ ~IL for (J E '§(J./F), it follows 
that 3' is a constituent of ~II. for e"ery (J. Therefore n(deg 3) ,,; deg 'II sillce 
n m 1(f(L/F)I. By Corollary 9.19, deg ~I divides n(deg 3) alld we thus have 
equality. Therefore the 3" are the only irreducible constituents of Vi. and 
each has multiplicity I as claimed. 

All that remains is to show that 'lJL and IV' arc completelY reducible. This 
fOllows from Maschkels Theorem 1.9 if ch;:tr{E) = 0 so we: assume: char(.~) =1= o. 
We may assume without loss that ~i is a bottom con:-;tituent ofVl. (since some 
c~nstituent certainly is). Since (tll-j' = 'lJ". it follows that 3' is a bottom 
iconstituellt for every tfEfI(L/F). Now let V be an L[G]-module corre­
sponding to tiL and let W be the sum of a II of the irrcduciblcsubmodules of V. 
!Jy Theorem 1.10, W is completely reducible and it suffices to show W ~ V. 

Since every irreducible const.ituent of "lY is a bottom constituent. every 
co.ll.Iposition factor of V OCCurs as a composition factor of W. Since the com­

.position factors of Vall have multiplicity II V/W is necessarily trivial. The 
prooffor VlI' is similar since 31:: is irreducible in this case. I 

We obtain some cons,equences now. The first generalizes Theorem 9.14. 

(9.22) COROLLARY Let F be any field. Theil the characters of nOllsimilar 
irreducibJe F-representations of G arc nonl..erO I distinct and linearly in­
dependent o".r F, 

., 'Proof ~t E 01 F be a splitting field for G. By Theorem 9.21, the char­
.. ofoonsimilar irreducible F-representations ofG are nonzero multiples 

. ~ums of disjoint subsets of Irr.(G). Thc result follows from 9.12 I 

COROLLARY Let F !ii E be fields of prime characteristic. Lei ,I. be an 
;~f~~~i~:~ E,representatioll of G which affords the character x· Let 'D be all 
:, . F-reprcsentation such that X is a constituent of ~IE. Then deg 'lJ 

I!'(xl: FI deg X. In particular. if P(xl ~ F, then X is similar to 'DE. 

Proof Let L "l E be a splitting fi<id for G alld let {E IrrL(G) be the 
of an irreducible constituent of .£'". l...et .:1' and § be the Galois 

.:~~;:~:~: cta~scs of, over E and F respectively. Since E has prime char-
;:' it suffices by Theorem ~:w th~I$"1 ~ IF(X): FIIYI. 



T 

1 
T , 
1; 
l 

11 
'! 

1\ 

l! 
! 

11 
; : , , 
Ii 

1: 
Ii 

T 
L 

l 

ISS 

By Lemma 9. 17(b). we have.Y !: §' and thus X ~ L.Y lakes on valu,," 
F«()andsoF(x)!: F(').Sincel§'I_IPm:Flby9.17(c).wemustsho'WI~'1U 
1.91 ~ IF«():F(X)I. Let (f ~ 'if(F(C)/F(X))' If~c(ll.then 

L~~xax'~ L~' 
",.Ii" !'Ie.Y 

and it follow. from the linear independence of IrrL(G) and Lemma 9.16 that. 
(lI permutes.9, Since only the identity of (4 can fix C. this yield. WI ~ I~I ~: 
IFm: F(x)I.However,F(x)!: E" F(C) and Ihu. ' 

1.9'1 ~ 1£(0: EI ~ 11'(,): E n 1'(01 ~ IF(C): F(xll 

and the proof is complete. I 

Prohl ..... , 

(9,1) Let I' !: E be fields and let V be a finite dimensional e-space,' • ::. 
W ~ V be an F-subspace. We write V ~ W.,E provided V ~ WE anC!' 
dlm,<V) ~ dim,.(W), ' , 

(a) If V W', Il and U W is an F-subspaee, ,how that' 
U',£. 
(b) It X is an F-representation of G, show that dim'{X(F[G)));:' , 

dim'<X"(EEG))), 

Note The symbol " denotes an internal tensor product. 

(9,2) l.et X be an F-representation of G and let E ,. F. I.e' V be an Il[G} 
module corresponding to X,, 

(a) Show that V ~ W" e for some a-invariant, F-subspace W ,; V,,:" 
such that thc F[GJ-module W corresponds to I, ,'" 

(b) Lct U " W bc an F[O}submodule. Let U and W/U correspond to 
the F-represenlations V and 3. respectively, Show that U E is an ' 
submodule of V which corresponds to V' and that V/U E corresponds to 

(9,3) Let W be an F[G}module and lel F !: E with IE: FI m n .: 00. 

W· be an E[G)-module corresponding to "'. where X is an F-r.prescntalloI1'::' 
corresponding t~ W, No,,: view W' as an F.space, Show that resulting 
F[G]-module IS IsomorphIc to the direct sum of n copies of W, 

Note It follows from the Krull-Schmidt theorem that if V and Ware 
F[G]-Illodulcs and V $ V $'" $ V ., W (£l W $ ." (£l W. where each 
dIrect sum h,,," terms. then V ~ W. We conclude via Problem 9,3 that if X 
and ~ll are F-representations of G and I' is similar to ~)', then X is similar to 
'll. provided 1£: 1'1 <:: 00. 
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'(9.4) UtI,; E be a field e~t.niliort·(>fpossibly infinite degree. lei li and 'lJ 
be r.rep_tations of a .ml.....-'~·al1d 'l)t are similar. 

", , (a) ;',Sbow.that the,' exist matricesM,.M , •...• 101, over F and .Iemertts 
e"t"",.",~E5Uchthatli(g)M,,~.M,'Il(g)foraligeOand lSi ~ kand 
such that .,M, + ... + •• M, is no""ingular over E. 

(b) If! FI > deg li, show that it is'Mmnar to 'I). 

Hint [For (b)] LetfO<h x, • .... x,) be a nonzero polynomial over F 
and assume that the degree of/in x, is"< IFI for each i. Then there e~ists 
atoall.~,q iJlt:eF such thatf(at. al t ".f 0,,)" O. 
(9.S) Under the hypotheses of Problem 9,4, show that land'll are similar 
without assuming anything about 11'1 or IE: 1'1, 

Hint Combine the results of Problem 9.4(b) and the not. following 
Problem 9.3. 
(9.6) i..efF!;; E an\;\'ltt'\l'bIi aniiTeducible E[O)-module whiCh affords tbe 
character X. Assume thai E ~ F(X). Show thai V is irreducible when viewed 
as an F[G}module; 
(9,7) J.l!t I' have prime characteristic arid let if be an irreducible '-repre­
sentation of G. Let D be the centralizer of I(G) in the matrix algebra M,(F) 
where n D deg "'. Show that D is a fleld. 

Hint': Let E ;,'l F be a splitting field and consider the centralizer of X· 
in M,(E)"Use Theorems 9.21 and 9.2, 
(9,8) In the situation of PrOblem 9\ let X be the character of an irreducible 
eonstituent of "'. where E ;;J' I' is a splitting liold for O. Show that the natural 
isomorphism between F and F· 1, the """I.r matrices in M ,(F), extends to an 
isomorphism F(X) :;: D. 

.• ' ,'I 
Hint Let L & F(X) and leI V be an L[G)-module .il'ording X' View Vas 

an F[G)-module, Then D a; Enol( V), Use Problem 9,6, 

(9.9) ,Let l be, an ,-representation of G and assume I" is completely 
reducible for some E ;; F. Show that l is completely reducible. 

.,:': ' ' ' ' 

Hinr Consider l(J(F[G])). UI<: Problem 1.10. 

(9.10) LeI it be a completely reducible F -representation of G and let E ;,'l F. 
Show that iE' is completely reducible. 

Note The an.logous $tatement for algebras other than group algebras 
does oot hold, in general. 

(9.11) Let F S E and vicw F(G] S;; E[O), Show that J(E[O)) = 
J(F[O])" E (in the notation of Problem 9.1), 
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Hint To obtain J(E[G) .. (J(l'[G])E;use Probloms'.9.2(b). 9,1O •• :and 
1.10 to argue that E[G)" I(J(F[G))E in oomplctcly feducibl.<E[G~,modulO. 
(9.12) !C 1: is an l' _reprellCI\tation Icia'\eI·,:.(%) 'denhtii d;m,<~l'[ G)) Lei 
'D, •...• 'I), be Ihe distinct irrcducibloconStituent.'.of :l)Show that .• ,' 

'" I!~)! I . , i,,, Ii ~'J% 

I S('D,) :$ s(1) , 
withequalityil1:i,completelyroducible,., ," .,,; "I. ,. ;,:' 

o ' I 

(9.13) LeI 1 be an irreducible F_rep,,,,,,,,,tation 'or 'G:' LeI' 'D be an'irre­
ducible constituent of 11' • where E ;;. oFia .'.plitting&¥o,sbow that ms(1) = 
deg(1:) deg('D~ where 5(1:) i. as in Prob\ul9.l2 aod mi.,!he· multiplicity,of 'D 
as a constituent of :£B, I '. I' ( .. 1..: 1,1,,1","\ 'hi.;: .. ", ... 'Jill '~I"\i.>· •• I ,,\1 

(9.14) Let 1: be an irreducible F-representation of G and let D be· the cen­
tr.al;'" of 1:(F[G]) !en th~ ~tril.~i.".II. !rfIDlwP.'mF:!U" ..•• ~ll(H,I,-et!~,\"f 
d.~,(D~ Show t~at ~X) ... n /d. ":. ,",." I ('. "\. \~'\I. ·'_i~,""':"': \ i JI.;t~fI)11·1 

Hint .let V be an F[ G)-module corresponding 10 110 that J/ becomes a 
vector .pace over the division ring D'lOxpre"'ls(l), '" <;\i1l),.(:£(F[G)) in I!'rms 
ofdimJV)andd. useTheorem1.l6. II,; '," ""c",.' 

Note Applying Problem 9,14 in the ,","Rlion'of Problem 9.13 we obtain 
"",'id ~ ms(I) = n deg('lJ) and mn .. ddcil'D~,Sincen" mdeg(il)IFu):FI. 
where X .lrr,.(G) is afforded by 'D. we obtain d '" m'.IF(x): Fl· Compar~this 
wilh Problem 9.8, This formula can be used to generalize Problem 9.8'to, the 
characteristic 7.erO case, ,:1 ,,'j ,I.: 11

1
,;,11.,'" ." .ii' /.. .. ~'" : 

I I.af·:,',,-

(9.15) Let I,be an irreducible Forepresentation of G and let Xbe the,char­
acler afforded by an irreducible conslituent 'D of IE. where E ;2 Ed. a 
.plilling field for G. Lei D be the centralizer of I(F[G]) as in Probl~IIl,9.14. 
Show Ihat the isomorphi,m F;. F· 1 >; D; .. lends ,10 an. isomorphism 
Fix) '" ZlO). ' ,., . , .' , ' , , 

. r ,r.';' 

l/ints Let t ~ F(;() and let 3 be Ihe irreducible coristituent of I" 'such 
that'D i. a constituent of 3'. Let V be'an t[Gl-module corresponding 'to 3· 
let Do ~ E ... "~V) and 0, - E"GtV). Check Ihat Do .. 0 , '" O. Use the 
nole following Problem 9.14 to showtha,tDQ "" 0,. '.:, .' , ;, 

Let Z ~ Z(Do) ;;;0 t· L Observe that Do co. EZlO~V), Let \lll ~, I,¥. Z· 
represenlation corresponding to V viewed as a Z[GJ'modulc. and compute 
the: multiplicity of 'D as a constituent of mB

, Now use the note following,; , 
Problem 9.14 again to show Z 1m L .1. 'II" 

(9.16) Let I be an irreducible Forepresentation 01 G and let E ;2 F. '. " 
that 9 E G lies in ker(I) iff 9 • kef('D) for every irreducible constituent 'lJ of lE.' , ' 
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(9.17) leI l' have prime cha~acteristic p. Show that O,(Gj (lhe largeSI 
,normal p-subgroup of G) is the Intersection of Ihe kernels of the irreducible 
, F-represenlalions of G. " 

'(9.18) Lel k ~ char(F). 

; (aj. If k .;. 2. show thaI Q. has a unique (up to similarily) nonlinear 
irreducible F-representation. 

(bj If k .;. O. show thaI Fis a splitting field for Q •. 
(e) If k m O. show Ihal F" a splitting field fo, Q iff -1 is a sum of two 

aq uarcs Ifl F, II 

'. (9.19) Let F <; E. where E is a splilling field for G. Does there necessarily 
" ' .•••• t • splittmg field K such that F '" K .. E and I K : F I < oo? Consider 
"> zero and nOnzero characteristic separately. 

Hint Consider F = 0 and E = Q( •• {i) <; C. where " fJ arc suitable 
Take G: Q •. 

, (9,20) _Let G be cyClic. of order.,,:nd let l' have characteristic not dividing", 
~t E - F«)~ wher7 r. .. a ~C1mttl1l< nIh rool of unity. Let iii = IE: Fl. Show 
that e.vcry lallhfullrredu~tble F-representation of G has degree m and that 
~~~re are exactly t.p(n)/m slmllarlty classes of such representations. 

'.:' Not. If IFI = q < 00. then m Can be characlerized as Ihe least positive 
tnlcger such that n I(q" - 1). 

':',(9.21) Le! G ~ Ol(n. p') be Ihe full group 01 nonsingular " x " matrices 
:;v:~r.~(p ). Show that G has an Irreducible represenlation of degree"e over 

(9.22) LeI F "', E be fields of prime characteristic and leI X be an Eorep­
reStntatIon of Cr. Assume that ,I' affords a character X such that F(xj = r­
Oo not assume .I is irreducible. . 

'c" '(aj S~ow Ihat X is afforded by SOlne F-represenlalion. 
".' (b). Find an example where X is not similar to 'i)l? for any F-I'ep e-

senlallon 'D. r 
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10 The Schur index 

1','., 
, " 

The main question considered in this chapter is the fonowing. If x: e lrr{G~ , 
then for which fields F ~ C is. X afforded by an I'~-rcpresentation? If F ~ C is 
not one of these fields, WI; wish to meaSlll'e the extent to which l: fails to be 
afforded over F. Thi, and the results of Chapter 9 (and. in particular, Theorem 
9.21) ,uggest the following definition. 

(10.1) DEFINITION Let F S;; e, where E is any splitting field for Q, Let 
X E Irr,(G). Choose an irreducible B-representation l! which afford. X and an 
irreducible F-represelltation'!J such that .t is a constituent of'll". Then the 
multiplicity of X as a con,tituent of~I' is the Schur index of X over F. It is 
denoted by .. "(x). 

Note that given X as above, representations l! and'll do exist and are 
uni'lli. up to similarity and so m,(x) is well defined. Actually, m,{x) does,no( 
really depend on E. If L ;:;) F(x) is another splitting field, then X 6IrrL(G) by , 
Lemma 9.13. A routine argument shows that m,(x) is the same when tom­
puted in E or in L 

By Theorem 9.21(b), Schur indice, .re alway, trivial (that is, equal to I) 
in prime characteristic. for this reason we now restrict our attention to the 
characteri~tic zero .;:ase. In faot. it is really nO I()~r.; to (;on!)ne ourselves to 
subliolds of the complex numbers, C. 

Many important result, abollt Schur indices appear to depend on deep 
facts about divi,ion algebras and number theory. Nevertheless, as this 
chapter will dl:monstratc, much can be done by eleml;ntary means. In partic .. 
ular, ,ome of the r.sults of Chapter 8 will prove invaluable. 
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We collect some facts. 

(10.2) COIl.OLl,ARY Let X E Irr(G) and F s; C. We have 

(a) m,,(x); m,,,,(x), 

lSI 

(bl, Let II' be the Galois conjulllICY class of X over F. Then m"(x)(L: 11') 
is the',eha'aeter of an iri'educibl. F-repr<*lltation of G. 

(e):' If E is the' ctiarnCter' of anyt-representation, then m,.(x) divides 
[Sd~].i ", J,' ,.\ " 

(d) 'm,.(x) i. the smallest integer m such that mx is afforded by an F(Xl-
representation. '" 

(e) m,,(x) is the unique integer m such that mx i, afforded by an irre-
ducible F(Xl-represenlation. '." , ' 

(f) ,If F !;; £ S; C: then .. .Ix) divides m,,(x). 
(s) "If F !;; B !;;C and 1£: FI ,;" " < 00, then m,,(x) divides "m.,(x). 
(h) m,{x) divides X(I~ 

Prooj Part (a) follows from Theorem 9.21(&) and part (b) is a conse­
quence of9.21(., c). Let '!l be the F-representation in (b). Then~) is (he unique 
(up to similarity) irreducible F-rcpresentation whose character 1/1 satisfies 
[>/!, X] ;;'0. Since m,{x) - [.p, X), p8rt (c) follows. 

To prove (d) and (e), we may a.sume (by (a) that F = F(x). Now Y - {x} 
and the representation 'D of the preceding paragraph affords mx. Parts (d) 
and (e) ar. now immediatt. 

Now let F !; E ... C. Any character afforded by an F-representalion is 
also afforded by an E-repr,esentation, Now (f) rollows from (b) and (c). 
Assume IE:FI ~ n < 00, Then no ~ IIl(X):F(X)1 = IE:B" F(X)I which 

" divides' •. Since m.{x)x is ,afforded by an B(xl-representation, we conclude 
rrom Lemma 9.18(c) that .om.(x)x is afforded by an F(xl-representation, Now 
(c) and (a) yield (s). ' 

FinallY,let p be the character ofth. regulllr F'representation of G. Then 
[p, X] - x(1) and (h) rollows from (ej. The proori. complete. I 

A useful method for obtaining infonnation about Schur indicOjl is to use 
induced representations. Let F !;; C and H s;; G. If 9 is a character of H 
which is afforded by an F-represC1ltation of H, then 9" is afforded by an 
F-representatiQn of G. (See Theorems S.8 and $,9.) Thi. ide. underlies much 
or the ,remainder of the £hapter. We use it to prove the fo\lowing celebrated 
result. ' 

(10.3) THeOREM (Brauer) Let G have exponent n and let f m l\:I(e""'). 
Then F is a splitting field ror G and every X" Irr(G) is afforded by an F­
representation. 
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Proof The twO conclusions are equivalent by'Corollary"9.\I/il.et 
X ~ lrr(G). Since F(X) ~ F. it suffi~ ~Y }~.?f,d) H'. shoiw t\lat m,.(x) ~ \" ~y, 
Brauer's Theorem 8.4 we may wnte ;. -,' 

X ~ 1: a,).G, (I)j" 
• 'I., : I' I',. : ,. I I, '., [: ~ •• :1 I .' ( rl \ 

where .il runs over linear characters of subgJ:o,",:ps 0.( G and aJ. E Z. ~'?;W a 
linear). e lrr(H) is obviously afforded by an F.-repr~'1t~tio\, of H and hence 
)." is afforded by an F_representation of G. By 1O.2(e), we have m"(x)l[).G. X] 
and since 'I'~\ 

I ~ [X. X) 5 1: a,[).G. X). 
,.I., 'il 

'I":,i':r l 

i:.1 

it follows that m,,(x) ~ I and the proof is complete. I 
We wish to e~ploit the ideas in the above pro~f i~ ordcr:to obtain :,sqme 

more delicate illformatil,)n about the Schur indt:x.. 
(lOA) L~M"A LeI H ., G and F <;; C. Suppose.p E lrr(H) and X E Irr(G). 
Then m,,(x) divides m,{",IIF(x. "'); F(x)I[(/I". X]·' ' 

Proof We may replace F by E "" F(X). This is SO since m.lx) "" ,;,,,(x) 
by 1O.2(a) and m.l.p)lm,{l/l) by 1O.2(f) (and of course F(x. (/I) '" E(",»,<Thus 
we assume F :s;;;: F(x). ",J "i. i" " , . 

Let Y' be the Galois conjugacy das,s of (/I over, f so that m,,("') 1:,9', is 
afforded by an F_representation of G. Therefore m,{x) divides ,',; ,; 

f.' ;L' 

by 10.2(0). 
Now if ~ E 9'. then ,p ~ ~"for some <1 e <J(F("')fF~ We h~v" X ~ X" and, 

[.,G. X) "" [(~o)". X") ~ [",G. X] 

and thus mAx) divides mM)WI[.p". X]. Since 19"1'= IF(,p): Fl. the proof is 
~~I" " 

The ne)(t theorem is a variation on a result of Brauer and Witt, It allows 
us to analyze m~x) one prime at a time in terms of cenain sections of a group 
with .harply defined properties. (A /lec.Wnof,G. is'. factor group. H//(.; 
whereK..0;4H~Gj ." ',1 'L L •• .'i 'L,";' ,.1 

I .', ," • ,I "''''~':~ I;';:. 

(10.5) D"F1NI'f"'''' Let F .. C. Then (H. X. 9) is an F-Irlpl' provided :11 •.. " ~ 

(.) H is • group, X <l H, X ~ CnlX ); 
(b) 9 E Irr(H) is faithful; .', 
(c) the irredudble (linear) constituents 

over F(.9). 

of '9,.' art Galoi. conju'gatc 
:11,j.·1 .'-' 
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(10.6) CO~OLLARY 
stiturn! of .9x . Then 

Let (H. X •. 9) be an F-lriplc .nd let A b I' e a loear COn-

(a) ,l i. faithful and X is ~yC\ic' 

(~» / nl~) '" xy '" 9 and F(.9) <;; F(,l) 
.9, IS afforded by an irrcd 'bl • 

(d) II/X", <J(F(,llln9». uc, e F(9)-representation; 

Proof By part (e) of the delinition II r . 
same kernel. Thus ker,l <= k 9 _ I 'da Incar COIl.tltuen" of .9x have the 

I - er - an (a) follow S' 
Va ues at distinct clements of X it [.)11 ' !' mee.:t takes On distinct 
Thus X = [H(A) and ).0 is irrcd~ci~le ~ws that If A ",.1.. then h" qX) ~ X. 
Also 9x is the sum of 9(1) ~ H' .~ Theo~em 6.11(a). Now (b) follows. 
cOllstitutcthe full Galoiscon'u l ac' XII ~,Istmct linear c~aractcrs. These must 
then [,(" •• 9

x
] 5 [,ll/l;'OJsg .yc'''OfAoverF(9)smceif'''E~(F(..\)IF(9» 

1/ . ffi' 'x. . Ince m",.<).) - I Coroll 10 2 . • 
x IS a ordcd by an irreducible F(9) , -'.' . ary . (b) as~erts that 

Finally, for each he H t ~rcpresent.allon and (c) is proved 
111 .- I __ )'';;'', Now All' II; _ I =' (:,,~)r; ~ ~X~t(S.~_ ~nique (fit e "§(f~(A.)fF(9» s~ch thllt 
and we have a homomo h' - It )"1, ~ ),lJ'k+1", Therefore (J - .... rp Ism a' H _ W(f-(')/ " • ,,- v,u, 
Now ker ~ ~ [ (..\) = X S· .'. . A F(o I). defilled by .(h) 5 17 
l ' H ' mce It waS shown aho hi" 

,It constitute a full Galois conj I . vc t at t le lI-conjugates of 
'1(F(.1.)/F(9» and the proof i. ~~~~~~;s o.er F(II). it follows lhal. maps onto 

(1.0. 7) ~EO"EM Let X E Irr(G) and F <= ., , •• 
some prJme p. Then there exists an F-tripl e(H' AX'"UOm) ~ p dIVIdes m,(x) for 

, C I ,t7 such that 
(a) H IS a section of G' 
(b) p'lm,{9); • 
(e) H/X is a p-group' 
(d) p,/'I F<X. II): F(X) I.' 

Proof By Lemma 9.17(b). it follows tho 'f . 
.ome E '" F. tholl it is an F-triplc. By 10 ;(~ I.I

H
• X • . 9) 's an E-triple for 

F by F(x! and so we .ssume F ~ P(x). .• a we may therefore replace 

Use Induction on IGI If h . "[.1." . t ere eXISts K - G d p" " .x]andp,/'!F(",):FI.thenb Ler' "'. an ",Elrr(K) such that 
we may apply the inductive hypo;h s' nma 10.4It followsthatp"lm,{,p) alld 
an F-triple (H )( 9) which . fie. IS to K WIth respect to '" an obtain 

"p,/'IF('" II) •• • salls es (a) (b) and () d ,:, .... :F«(/I)I.SincealsoP.I'!F("'J.PI" c an S eh that 
, proof is complete in this caSO We t'; we~conc\ude that p,/'IF( : Plond 
" (K,I/I) existli. ,ere ore: assume that n such pair 

By Solomon's Theorem 8. 7 we can write I 
QrunsoverJt',thesetofquasi-elem t G ~ [aQ{1 ,where aat;Z 

en ary subgro of G. It fOllows that 

X ~ Xl" ~ 1: aQX(lQ)G ~ I aQ(Xo)(; 

I 

• • . ' 
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\ and thus 

I = [x. X] ~ I "Q[(Xa)". x]· 

Choose E Jt' such that p does not divide ((XQ)o. X] ~ [Xa. Xa]. If t/J is any 
irred ible constituent of Xa' then since F(X) ~. F •. ~v.ry .Iemen~ of the 
Oal 15 C;()t\jugacy ehu.;fl of iJi ovc::f F has equal rnuluphclty 9.8 a. constItuent of 
X and we may write Xa = I /,.A, where b." Z and A runS over sums of . 
daloi. conjugacy class.s over J' in Irr(Q). 'rhus p does not divide I b. i[A, A) 
and we choose A such that p.!'h.'[A, A]. Write 6 ~ L.Y. where !1' is a 
Galois conjugacy class over F and let t/J G'!(. Then ? ~ [XQ'. ~] ~ [X, ",0] 
is not divisible by p and CA. A] ~ WI = IHt/J): Fl's not d,v,s,ble by p. By 
the result of the second paragraph of the proof, we conclude that 0 ~ Q's 
quasi.elementary. . . 

Thus G has a cyclic normal q.complement C for some pt1~e q: .By 
Theorem 6.15 we have X(I) is a power of q. Now if a = O. the result IS trIVIal. 
taking H ~ X = I. and so we assume a;;. 0 and plrn,(x). Since m,(x)lx(l) 
by 1O.2(h). it follows that q = p and .GIC is a p·grollp. Let. X"" G. w'~.b 
X C be chosen maximal such that X IS abehan. Ily the Indue\1ve hypotheSIs 
applied to Glker x. we may assume that X is faithful. We shall show that 
(0 X X) i. an F-triple to complete the proof. 

, We have X C;; CorX) <l (;. If X '" Co(X). then since G/X i. a p.gro~p. 
there exists U <1 G with X S;; U s;; C,,(Xj and I U : X I ~ p. Thus U ,ubellan 
and this contradicts the choice of X. Thus part (a) of Definition 10.5 is 
established. . . 

Now let" be a linear constituent of Xx and let S = {g e (; W 's GaloIS 
conjugate to" over F). If s" s, e S, there exist ~,. 0', e'J(F("l/F) with ,," ~ 
;. ... It follows that l"" = l"'1 and thus s,s, e Sand S is a subgroup of G. 
Let T ~ I o().) ~ S. By Theorem 6.11 (b). there exists a unique ~ E Irr(T) such 
that ~o = X and [~x. A] " O. Let t/J = ~s so that t/J. = X and ,p E !rr(S). We 
claim that F(t/J) = f. 

1 •• 1 "c '6(F(,p. ).)lfI). Then X' ~ X and so [.\'. xx] - [A, Xx] " O. Thus 
).' = " for some 9 • G and .ince )" is O.lois conjugate to. ). ov", F, We have 
(/ 6 S. Since Galoi. conjugate charncter. have the same mert'. groups, we 
have T<l S and sO (~,).-I eIrr(T). Now 

and 
[((q')" 'Jx,)'] = [(~')x, !.'] = ((~·Jx.l·J to O. 

By the uniqueness of ~ we conclude that (q')'" = q and so 

"'. ~ (,n' = (q')' ~ ~s = '" 
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since 9 G S. Since F("" l) is a Galoi. extension of F. it follows that t/J taka 
valu .. in F and thus F(t/J) ~ F as claimed. By the resul! of the second para· 
graph of the proof applied to (S. t/J), it follow. that S = G. Thus condition (0) 
of Definition 10.5 i •• atisfied and the proof is complete. I 

se(or6 proceeding to. olttmajor applications of Theorem 10.7 we derive 
two eMier consequenCes whichd.';'onst,ate its power. These are included 
in Theorem 10.9. . . 

'I", ,,' , 

(10.8) LEMMA Let H s;; G and suppose 1I has a complement in G. Let 
'P .; Irr(H) and suppose 'P" m X E Irr(O). Then m,(xl divides 'Pi 1 ) for every 
F s;; C. 

, " " I r' ~ , " : " ., " , 
Proof Let U S; G with U H .:.0 G lind U (\ H ~ t. Since (I u)" is afforded 

by anit.representation, we havilni;.(x)1 [(1 v)". X]. Now [(lv)Q. X] ~ [(Iv)". 'PO] 
~ [(lv)G) •• '1'). However, ((Iv)")'; ~ (1V'H)" - PH, the regular character 
of N. Thus ((\II)G, X) '" (PH' '1'] ~ 'Pil) and the re.ul1 follows. I 
(10.9) THEOREM Let XG Irr(G) and assume plm.~x) for some F s; C and 
prime p. Then the Sylow p.subgroup. of G are not elementary abeli.n ana 
pm,.(x) divides I G I· 

Proof Let p' be the p.part of m,jx) so that a > O. Since m,lx)l x(l). the 
second statement will follow if 1"" divides IG I. Let (II, X, 9) be the F.triple 
whose ~xistence is guaranteed by Theorem to.7. Thus 3 ~ A" for some linear 
A.e Irr(X)' by Corollary 1O.6(b). Since m,.(9) > I, we conclude from.lemma 
10.8 that X is not complemented in H. 

. Since 'HIX isa P:gfotip, it' follows that a Sylow p.subgroup of H is not 
elementary abelian. Also, if P .. Syl,.(H~ then P n X ¢ I and so .'1(1) ~ 
I H: xl' '" IPI. Since".. S m,.(.9) :s: .9(1), we have p' '" I PI and so p'" II H.I. 
The result now follows. I 

There i. an important Ca •• when we can decide whether or not m,.(.9) ~ I 
for an F.triple (H, X, 8). If H/X is cyClic, the problem "reduces" to a question 
in field theory. If E :2 F is a Galois field extension lind a e E, we define 
N .,,(a)- n".'Em If. The image of this norm map is clearly contained in F. 

(10.10) TI'F.OREM Let (H. X, .9) be an F·triple for some F ;; C and assume 
H _ XC, where C i. a cyclic group. Let l be • linear constituent of .9. and 
write E ~ F(A) and K ~ F(,9). Let m - I X n CI and let f, be a primitive mth 
root of unity in C. Then, E K. Also, m,.(.9) A I ill'. lies in the image of N E/<' 

, , . \,' ~' . ", '\, :, " 

'Proof" Sinee'X nC,S; Z(H)'and 8elrr(H) is f.ithful, we can choose a 
generator y of X n C,isuch that.9(y) D 6.9(1) and thus eeF(8) = K. Write 
IK:X n CI- sandlH:XI = IC:X n CI- r and choose gcneratol'$ x and 
c for X and C such that x' = y ~ c'. Not. that '\(x)' ~ '\(y) ~ r.. By Corollary 
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10.6 we have '. '" 1'11,lj I'., , \.~.,I, ~ '; ,I ' • :.1.:,111.<'", 

_, 1.-:1' !.'E/K)fi~.;t(£;KI~I,i~~~,Ltrl.l,I,';!., ' 1·~:JJllJ~'. 
t - 8(~; J l,(~.! .\:\1 . . i,! /,\: I :1 .-!(Vr l,!.,I.,; ~"", .... 1.1. I'· jJJ::l:t;>"l,~ 

Write XC ::.:; Xl for $Orne integer.r. i; ... " :;'j ";.'1 ji:i /.-:'.Jrj' t';:'i: 'J';:-o-' ~!, r.: t~, l "~,i, \,rt!{;~~,~I"'1\',) 
By DefInition 10.5 there exists "" ~(£(l(),,~.ucht.h~t.r-·. -: ,~, I,t f'i'II,~~s 

thai the orbits of), under C and under (0-> .r~ tdentlcaL S~nce C IS trans~tt.ve 
on the I distinct linear constituents of 9x , we conclude: th~t.1 (0') I ~}~ ~, 
I~(E/K)I and thus ,#(E/K) - (,,). Therefore, 

jI'....,.~, ".1- I N ".(,) _ '.r> ~ ;'" a 
, •• 1). 

for, € E. Also. ).(xr - '\(x') ~ A" '(x) - l(x)". _ _ . 
Let V be the (unique up to i,omorphi~~) .I.treduclble K[Xl-m~ule 

which affords a". (See Corollary 1O.6(c).) Now m,(.9) - 1 Iff 9 IS afforded, by 
a K[II]-module (by Corollary 1O.2(d)) ~nd this hap~ns iff there .. !~t~ a 
K-linear action of C on V such that for v € J;'" we have ,," 

(a) v·c' = vej 
(b) (v·,c-')·,,)·c - v·x'. . 

(The sufiiciency of this condition involves an easy generators and relations 
argument on H.) ,.: ".,' '\ ,,'.' '. ,,".,\ 

View £ as an £[Xl module affording A. ~~. t~at P . ~ ~.P).(u) for u,~,?C, 
With this same action of X on E, we n~w~l~w£.~ a K[X]-.mod~~ ',of, 
dimension IE: K 1 - I. IJy Lemma 9.18(b) it foll,;>ws th~t, V IS an trred~cl~l~ 
constitu<nt of the K[X]-module £. (fhis is because ).1," constttuent ,;>f !) 
where'D is " K-representation corresponding. to V.) Since dim.(V) -:,./1(1) 
~ / - dim.(E). it follows that V 2' £ as K[Xl modules. We conclude that 
m,.(9) = 1 iff there ex.ists a K~linear transrormation c of E such that for 
all p E £ 

(a') p. ," - {Ir.; 
(b') «P' c- ')).(x))· c - {I()'(x)r. , " 

Now suppOse that m,,(.9) "" I and I.t C, be as above. ~ite.~ -·:).(x\ 
a = I . c and let n ;:,; 0 be an integer. We .howthat (o·).l = ab by.mductlo? 
on n. This is clear for n = O. For. " >.0. the i?duChv.<;hypothes~~ a~d <1:1). 
yield 

(81r).c _ (((!Xb~/j-I"").C-'I)<5).C :a:,ix6cn.-l,rJr .. ,,~ C(~nr : 

as claimed. Since ~d IIiiI {J~ we have (b")· c _ tx{l)lIt. Sin~ E ~ K(.J.) and 
'\(x). the ij' span £ Over K. Th< map p ... ~PO forp ~ /l.IS K·lmear a~d ~B,ee. 
with c On thcJ'. We conclude that fJ· Ii - ail" for.1I fl" £. Now (a) Ylcl~~ , 

Y '.'-' N () I:: = 1 - (c '1= CXC/,IIC/,II ••• IX ' - EII\1l 

as desired. 

The Schur index 
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Conversely~ suppose N YoIK(Cl) = e for some a. E E. Deline c on E by fJ· t 
- apo and Observe that c i. K·linear. Check that (.') and (b') are sati'fied. 
Thus m,,(9) ~ I and the proof is complete. I 

" , ' ~ '.! ~ 

(to.!l) LIIl>IMA Letpbeaprimeand let I of< k~Z.AssuD)ethalpl(k ~ I) 
and if pc 2, assume 41(k ~ I). Write 

fie) ~ (k'. ~ I)/(k ~ I) 

for 0 :;; e" Z. Then p' is the exact power of P dividingf(e). 

Proof Since f{O) = I, we assume e ;;:: 1 and USc induction on I!. Since 
k'--' ~ I + (k ~ I)ffe ~ I). we have 

k" - 1 + P(k ~ I )lk ~ () 

+ p(p 2~ I) (k ~ I)'f(e ~ l)m + (k ~ I)-'l(e ~ I) .. 

ror suitable integers tn, n. Thus 

[
- p(p ~ I) ] 

fIe) - f(e,~ I) p + 2 (k ~ l)m + (k - 1)'11 

and it suffices to show that the second and third terms in the brackets are 
divisible by p'. Since pi (k ~ I). this is clear if p '" 2. 1.1 P _ 2. the hypothesis 
that 41 (k ~ I) yields the result. I 

We next give our principal I'esult about the Schur index. Note that. it 
generalizes Brauer's Theorem 10.3. 

(10: 12) THEO"EM (Ooldschmid/- Isalle» Let X E Irr(O). where a has expo­
nent " and let [; be a primitive nth root of unity in C. Let. F ~ C and assume 
that '.f'(F(6)jF(X) has a cyclic Sytow p-subgroup P. Then p,j'm'{:d <xcept 
pOssibly when p = 2, P > I and J=1 ¢ F(yj. _. . '" /" 

Proof We may replace F by F(X) and assume fl}~se 
plm,,(x) and let (H. X, .9) be the F-triple Whose existence is giv<n by Theorem 
10.7 so that plm,,(a). Let ,\ be • Ii "ear constituent of ax sO that F(x) = 
F", F(.9) 0;; F(A) <;; F(e). By 10.6(0). H/X ~ '.f'(F().)/F(8)) which is a section 

. of'.f'(F«)/F(X»). Since H/X is a p-group, it must be cyclic. Also, sinc< 11(1) > I . 
. ' .we have II> X and we concludolh"t P > L .... 

. There exists a cyclic p-group C with X C ~ II. Let I CI _ p" and I C () X I 
- p' and write £ = F(l) and K - F(.9). Since m,,(a) of< I, Theorem 10.10 

'yields that no primitive p"th rOot of unity lies in the image of N ElK. but that 
Kdoescontain such a root, SinccNEfK(I) = l,wehavcb;> OandKcontains 

: a primitive pth rOot of unity. 

--' 

I 
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Let be a primitive p'lh root of unity in C. Then IK(y): K I divides Ir' 
aod K{J' S; F(t). Also Ie: K I ~ I H : X I ~ p'" and F.: SO F(e). Since ~(F(.)(K) 
is abcHa and ha.!; a cyclic Sylow p-subgroup. its subgroups of p .. pOwer 
index are inearly ordered by inch).ion. The f,md.mental theorem of Galois 
theory 00 yields that 1«1) <;; E (since I K(y) : K I ,;; IE: .K I) and ,(l 1 E Ei 
~=~N~ '. 

Write I ~ p" '. If 1 E K. Ihen N ".(1) ~ i, whieh is a primitive p'th root 
of unity .• contradiction. Thus y~ K. Write f!/(EIK) ~ <,,>, where 0(") I 
and I'll' .= 'l for some integer k ..;: 1. Then y",J :e::: '}!1t.1 and ' 

Ne,.(y) ~ yy')"'".)"", ~ y', 

where q ~ (k' - I )I(k I) If p" b is the exacl p-power divISor of q. then y' 
IS a primitive p"'th root of UnIty which IS not the caSe. 8y Lemma 10.11 then. 
p,r(k-l)ifp;'2and4,j'(k-I))fp;2. 

Let .I " K be a primitive p"th root of unity with a chosen as large a. pos­
sihle. Then 0 < b S a. Since y ¢ K, we have a < c and bE (y> so th.t ,\ ; 
a" = C\' and p'l(k - 1). Since a> 0, we have p = 2 and a ~ I so that 
R ¢ K. The proof is complete. I 
(10.13) COROLLARY (FOIlg) Let G have exponent ,,~mp". where p i, 
prime and p,j'm. Suppose F ,;; C and F contain, a primitive mth root ofunily. 
Lei X E I,,(G). Then m,,(x) = I unless p ~ 2 and p ¢ F, in which ca .. 
m,(;() :5 2. 

Proof If p ~ 2 and R ¢ F, let E ~ F[R] so that Ill' PI ~ 2 and 
m,(x)l(2m,,(x)) by Corollary 1O.2(g). Thus it suffices to assume that A e P 
if P ~ 2 and to prove m,(x) ~ I. 

Let r. be a primitive nth root of unity in C. The hypothes., on F now 
guarantee that (4(P«)II') is cyclic. If q is a prime divisor ofmp(x), then Theorem 
10.12 yield. q ~ hnd.J=1 ¢ P. Thus p ,p 2, 4,j'm, and mh) is a power of2. 
We havc 4,j'0 and thus a Sylow 2-.ubgroup of G is elementary abelian and 
2,j'm,(x) by Theorem 10.9. The result follows. I 
(10.14) COROI,LARY (Roqll"tIe) Let 0 be a p-group and X .lrr(O), 
Let f C. Then m,(x) I unles. p 2 and J:"t ¢ F in which case 
m,.(x) S 2. 

Proof Immediate from 10.13. I 
Note Ihat taking G to be the quat.roion group of order 8 show. that the 

exceptional CaS.S in the three preceding results can. in fact. occur. 

(10.1 S) COROI_LARY (I" Solomon) Let k be the product of the distinct 
prime divi.o," of I G I and let f" S C. A~~umc that fI contains a primitive 
(2k)th root of unily. Then mh) = I for all X € Irr(O). 

The Schur index lee 

Proof Notelhat if2\1GI, then:J=l E F. Let. be. primitiVe nth root of 
unill(where" is the .xponent or G. Since every priMe divi,or of" dividOl< k, 
the hypothesis on 'f guarantees that '1(F(e)/F) i. cyclic. If X. Irr(G) and p is a 
prim'-divisor ofm,(x). then Theorem 10.12 yields p 2 and.J=1 ¢ F. Since 
m,(x)Ix(I) we conclude that 2!IGlarid .... havc a contradiction. I 

'I ,; , ' 

'¥o;t of the above result~ are directed to showing that Schur iodices ar. 
~mi"l. We haven!)t yet se<:n lUI example to show that m,,(x) can be greater than 
2. In fact cvcry positive integer can otcur as a Schur index. Here, we ~hall 
~ttl. for an indication of how to prov. that every prime can occur. We need 
two ract, from number theory 

(a) leI F ~ O(e), where e is • root of unity. Let R ~ l[e) and let I be 
• proper ideal of the ring R. leI ~ E F. Then ~ '" ulv for some II, ') E R with 
not both u. VEl. 

(b) (Dirichlet) leI a. b E Z with (a, b) = I. Then there exists a prime of 
the formak + b for 80me k e Z. 

leI P be " prime. By (b) above, choo~ a prime q = p'k + (p + I) for 
some k. Then pl(q ~ l) but p',j'(q - I). We now construct the ~midirecl 
product G ~ QP, where Q is cyclic of order q and P is cyclic of order p' and 
actsnontriviaUy (but not faithfully) on Q. There exists f.ithful X e Irr(O) with 
xli) .. p. We claim that mQ(x) B p, ' 

.. ' . , ',I' ',' 
(10.16), THEORSM Let q = XP, where X <l G is cyclic of order pq, p..p G 
i<cyclic of order p' and I G I m p'q for primes p and q such that p' -!'(q - I). 
Then there exists faithful x'" Ir,(O) such that "'.,(X) = p. 

Proof Note that X _ c.(X). Let A be a faithful linear character of X 
and let X = A". Then X Ii' Irr(G~ xli) - p, "nd (G, X. X) is • a-triple. Since 
",,,(x)lp by IO.2(h), it suffices to show that "'00:);.! I. Lct K & O(x), e ~ 
O(!.). and co G K be a primitive plh root of unity. By Theorem 10.10, it suffices 
to show that w is not in the image of N EI" 

Let v be a primitive qth root of unity in E and write r. cuv so that 6 i. a 
primitive (pq)th .root ~nd E = Ore). Let R ~ Z[g] and let I :; qR be a maxi­
mal ideal of R. Since RII i. a field of characteristic q, the only qth root of 
unity in RII is 1. Thus if" e \'f(EI.K~ then v .. I .. v' mod I and since 0) E K, 
we have e' 5 Ol~ III. W'" 8 mod .1 .. Since R g lee]. it follows that r' .. 
r mod I for all r e R. Since IE: K I .. p, we conclude that N .,.(r) '" r' mod 1 
for all r e R. 

Suppose, by way of contradiction, that OJ = N E;.(.) for some ~ " E. By 
Fact (a). write ~ ~ blc, where b, C E R but not both b. eel. We conclude thal 
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b' " N .,,(b) ~ N .,,(c)N .,.(~) .. c'w mo~.1. Sin"",nql bo,\h"b. C Ii);' we 
condude that w· - (b· le·Y, where.: R ,-<:,Rlli~,\henl'tu~aJ h,omO,Ill0l1'hi<nl. 

Now I + x +:x~ + ... + ,,,,-1 ~nr:r(:x :-"wt~o,I.~lingx ,:"l,)!Ie 
see that I -. w div.id~sp in R. Since p" .f, ?:in RII. \V~ ~~,'i,lude that "!~, 1\':,1. 
Thus b"le· IS a primItive p' root of unity In Ril. ,.,' , '" 

Sinc~ p I(q - I), there exists" • Z such that o· i. ;, prurutive pth roOt' 'of 
unity in R/I. Since (e·Y':::r. I. we have f:* - (a*t for some k and hence 
G e Z + I. Thus R = l[eJ - 1. + I and RII >: 2/(Z 1"\ I) e ZlqZ. Since 
p' ,t(q -. I), ZlqZ does not contain a, ~,~imitiX~ .p.'J??,t;,4C1l9ity ~1'4:,t11!~ 

I ~ntradlC:hoDcompletestheproof. ,I .,., "", I ~1't;I·'~IJ(' ",'I·' I! r:'j 

., I , '~. i '1'· :. - . . . < .... (' ; \' 

Suppose F 50 E SO C, with IE: FI - n < <:1) and I.! 'ie'Ifr(Gj' with'F(x) 
~ F. By 1O.2(g). mh) divides nmJx) . .ln pa(ticular.;fX,;',a/fordod,by,an E­
representalion, then ""X) ~ I and 00 mh),divide • ..! E"EjI'. This ,ouggel,lo, \,he 
question of finding minimal fields E '" F over which X is afforded. , ,I, 

, , 

(10,17) T"/'OllEM Let xe Irr(G) and F <;; Cwith F(X) = F.Lelm -'mh). 
Then lhere exists E ;;, F such Ihat X is afforded by an E'ropresentation and 
IE:FI _m. 

I'roof Let V Ix: an irreducible F[G)-module' which affords mx' (by 
Corollary IO,2(b». LeI D ~ E,wl(V)' the centralizer ring of V, sO that'D'i. 
• division ring by Schur', lemma. Let E Ix: any maximal subfield ofD.Then 
E acts on V and V may Ix: viewed as an E-opace. Since E commutes with the 
action of G. we may view Vas an E[GJ-module. Now EB1GiV) i, the central­
izer of E in D. The maximality of E thus yields E£{GiV) ~ E and thu" the 
E[GJ-module V corre.pond, to an absolutely irredudble E-represent~tion::E 
by Theorem 9.2(a. c). Let ~~ Ix: lhe F-rcpresentatiori corresponding to the 
F[GJ-module V. lly Lemma 9,18, .E is a constiluent of 3'. Since 3 affords 
mx and .E is absolutely irreducible. we concl~de that ::Eaffords X. FinallY"by 
9.18(a) we conclude that m m IE: FI and the proof,is ~mple,te. I 

We can, of course, find an .f~isomorphism of E info C in the above situ=. 
alioD, and so tht: result remains true if we:: add the condition that £'5' C; 
However, it ifi not always true that if F ~ L ~ C. where'L is a splitting field 
for G and X ~ Irr(G) wilh F(X) ~ F,then there exists • field E with F !;; E;; L. 
IE; F I ~ m,{x) and such that X is afforded by an Drepresentation. .,,' I, " 

We close thi~ chapter by stating a fcvi mOre facts' abOut the Schur index. 
The proofs of some of these St:em to require a rairly deep knowledge of number 
theory and division algebras. 

(a) (Feill) If X ~ Irr(G), lhen m.,(x) divides nIX', IQ ] for every ~Iitive 
integer n. 

Problema 
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(b) (Braller-Speiser) (Corollary of (a)) If X e Irr(G) is real valued, then 
m,,(X) S 2. 
"., (e)' (Fein- Yamada) If X e Irr(G). then m,,(x) divides Ihe exponenl of G 
and mo(x)' divides I G I. 

'/ hobltll", 

(10.1) Let H S G • .9 E Irr(H) and X e Irr(G). Suppose F 50 C. 

". (a) If X~ = ,9. show that m,.(xll m,(.9) and m,(9) ,;; I G : III m,.(x). 
(b) 1f.9 = X. show that m,,(9)lm.(x) and mFlx),;; IG: IJlmFl.9~ 

YO.2) .Let N <I G and <p ~ Irr(N). Let F 50 C and put II ~ IG(<p). Let.9 be an 
IrreducIble conslltuent of <p" and let X ~ 9';. Show that J") d' 'd . 
IN.(II): IJlm,,(9). m"" 'VI es 

:, Hi", Consider (g e G I<p' and 'P arc Galoi. conjugate over F(X»), 

(10:3) Let X e Irr(G) and F 50 C. Define I,(X) to be lhe greatest commOI) 
dIVisor of the mtegers n, = IF(X, A): F(X)l[).". II as -\ rlln, over linear 
characters of subgroup, of G. Show that m,.(x)I I,,(x') but thai examples exist 
)Vhere m,,(X) < IFlX). 

Hint For the example, take G::;:;; Qt! . 

(10.4) LeI X E Irr(G) and F >; C. We say that X is F-,emiprimitiue if th~re 
does not eXISt II < G and 1/1 ~ !cr(ll) ,uch Ihat 1/1" _ X and F(I/I) _ F(X). 

.' (a) If X io F-semiprimitivc and N <I G. show that the irreducible COn­
Sllluen" of x. are GaloIS conjugate over F(x), 

" (b) L~" G be ~i1po~.~t and aSSume ;=1. F II I G I is eVen Show lhat 
X e Irr(G) IS F-semlpnmtllVe Iff x(l) = I 

(e) In the situalion of (b) and the not.tlOn of Problem 10.3, 'ho thaI 
Ih) m I forall X e Irr(G). 

Hi?t A non~yclic I'~group in which every normal abelian subgroup is 
>i~~CIIC IS necessarIly a 2-group and contains a cyclic maximal subgroup. 

~':)'lelnelnta.ryS)ince mhll/,,(X), lhis problem provides an ahernate (and mOre 
1': ,proof of C"rollary 10.14, Since IFlX) can, i.o' general. exceed 
[",!".p(J(), thIS resuu strengthons Corollary 10.14 slightly. 

Let F ~ C be a field in which -I is a sum of two squares. Let G be a 
l.~-I~OIIP and X e Irr(G). Show m,(x) ~ l. 

Him Reduce to the case where X( I) = 2 and Q8 S; G. 
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Note This strengthens Corollary 10.14 in a different direction and sug- . 
ge"s a strengthening of Theorem 10.12. In fact, B. Fein has proved that the 
exceptional case in ITheorem 10.12 can only occur if - I is not a .um of two 
squares in F. .. 

(10.6) Let X e trl(O) and F Si C. Let H = 0 ~ 0 )( ... " 0 be a direct 
oduct of copies of 0 and let'" = X " X " ••• " X ~ Irr(H). Show that 

m, ~ides m,(x). . ". 

Note In fact if H is the product of m,.{x) copies of a, then m,,(o/I),- I. 
Conversely. if m,.{"') ~ I and H i. the product of n copies of 0, Ihen m"(x)ln 
provided IF: «) I < 00. 

',: 
(10.7) (Fein) Let H be the product of n copies of G and let X and", be as in 
Problem 10.6. Show that mQ("') divides [X'. 10 ). 

Note Problem 10.7 and the note preceding it prove that "'<&) divides 
n(x', loJ for every n " 0 and X e [rr(O). 

(10.8) Let If 5 G x 0 and let X e [rr(O). Let '" - X " X" Irr(H). Show 
that mQ("') l. 

(10.9) Let G Q. x l, and let X 6 Irr(G) bcfaithful. Show that m,,(x) m l. 

(10.10) Let 0 H x K and'" e [rr(1I) and .9 € Irr(K). Let X '" x 3. Let 
F~ C. 

(a) Show lhal m,(x) divides m,(V1)mp(9). 
(b) Show that equality occurs in (a) provided (m,.{"'). 8(1) I F(.9) ; F I) = 1 

and (mp(8)."'(l)11'(",): FI) = 1. 
(e) Let P. q be primes such lhat p,j'(q - 1) and q,j'(p - 1). Show that pq 

occurs as a Schur index. 

(10.11) Let X E Irr(O) and plmQ(X) for some odd prime p. Show that 0 con­
tains an element of order pq. where (/ is some prime such that pl(q - 1). 

(10.12) Let p be an odd prime and let l' be a nonabelian p-group of order p3 . 
and exponent p. It is possible to find H s; Aut(P) such that H ;: Q. and 
Cr(ll) a Z{P) F C,(t). where t is the involution in f{. Let 0 m PH. the semi­
direct product. Let 9 E lrr(P) with .9(1) = 'p. 

(a) Show that .9 Can be extended to .q ~ Irr(G) such that 9(t.) ~ ± 1 and 
,9(t) '" p mod 4. 

(b) Show that [.9", xl = (p - 8(1.»)14. where X .lrr(H), x(l) = 2. 
(c) Conclude that -1 i •• ,urn of two square. in Q(."I{,) if p '" 3 

or,5 mod 8, 

Hint. Obtain 9 via Corollary 6.28. Compute 9(1) by working in N = 
(I', t). Note that IC.(t)1 s 2p and that the p - [ Oalois conjugales of 9. 
are all equal at I. Ir p .. 3 or 5 mod 8, show that ",,(X) ~ 1. where F M 

O(e""'). 
Note Conversely. if - I is a sum of two squar.s in Q(e'''''). then 

p " 7 mod 8. Some primes .. 1 mod 8 can occur, however. 

(10.13) Let P € Syl,.(O) be abelian of exponent p'. Show that p' .l'mo<X) 
for ~~ I~a).· . ' • i ,.,.m., ' .. '; .: . 

Hint If X <J G is cyclic and a/x is a p-sroup, then there exists V s; a 
Kuch that V ,.., X ~ 1 and 10: VXI <: po. 
(10.14) Show that the following two statement, can be added to the con­
clusions of Theorem 10.7 provided p " 2. 

(e) If Y is the p-complement in X, then Cq(Y) = X. 
(f) If U e Syl,,(X) and P. Syl"(H]. then U >; ([>(1'). the Frattini .ub­

group. 

Hints If C,.(Y) > U, show that H has a noncyclic normal abelian p­
subgroup. If M s; P and MU ~ P. then 8My i. irreducible. 

(1O.(~. Suppose~P(X) ~ xli) for ,;ome l ~ [rr(O) and f >; C. 

(a) If H s; a. show that all irreducible constituents of XH arc Oaloi. 
conjugate over F(X) and that .. ,..(,9) ~ Il( I) for each such constituent .9. 

(b) If X II' IG • • how that a is not simple. 
(c) [f 2,j'X(l) or..J=1 E F. show that (llker X is solvable. 

Hln, Use Lemma 10.4. 

(10,16) Suppose Ihat m,(x) = xlJ) for all x.Irr(G) with F .. C. Show that 
every subgroup of a is normal. 
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let N ..,; G and suppose ,9 e Irr(N) is invariant in G, For each irreducib~. 
constituent ~ of 9G we have that x. ""e(x).9. where e(xl. the ramijicatio,n •... UI 
a positive integer, In Chapter 6 we obtained sOme information abo~t. ,~~ 
mysterious integers. If,9 is extendible to G [which is equivalent to saymg that 
some <(x) ; I], thcn the e(x)'s are exactly the degrees of the irreducible 
characters of G/N. (See Corollary 6,17.) We shall see that. in general, the 
e(xl's are the degrel:s of irreducible "projective representation," of G/N. 
(IU) I)EflNlTION Let G be • group and F a field. let l: a ,.. Gl(li, F) be 
such that for evcry g. h '" G, there exists a scalar o(g. h) e F such .that 

l(g)l(h) - l(gh»(g. h). . ... 
. ,l 

Then I is a projective F-representatlOii or G. Its degree is n and the funct~9:n . 
a: G x G ...... F is the associated [actor set of I. 

Note that the" factor set·· f;i has nonzero valuc:s and is uniquely deter­
mined by l. Both of these observations follow from the fact that the matri,,.., ':.< 

l(g) are nonsingular. . 
let Zen, n <;; GL(Ii, F) be the group of nonzero scalar matnees. l"Y"' .• " 

that Z(n, F) ~ Z(GL(Ii. F».] By definition, POL(n. F) - OLen. F)/Z(n. F) 
the projective genera/linear group. If I i. a projective F.representahOn of G 
degree n them the compos.ition of 1: with the canonical ho'm()m"'l.hiJlIIl; 
OL(n, F)' - PGl(n, F) is • homomorphi.m G - PGL(n. F). Co.nve.rsely, 
'" G - PGL(n, F) is any homomorpbism, we can define a projectIve 
resenlation l of G by setting l(g) equal to any element of the coset 1!(g) 
Z(., F) in GL(n, F). 

17. 

-
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.. , I&fore proceeding with the study of projective representations. We digress 
to give an instance of how they can arise: in the study of ordinary represen­
tations, 

(11.2) THEOREM let N '" G and suppose '!l is an irreducible C-repre,en­
, (taUon of N whose character is invariant in G. Then' there exists a projective 
~ C-representation.;( of G such that for all n E Nand g E G we have 

(a) len) ~ '!l(Ii): 
(b) l(1i9) ~ l(Ii)I(g): 
(c) l(gli) = l(g)l(n), 

Furthermore. if 10 is another projective representation satisfying (a), (b), 
and (c), then lo(g) =. l(g)I'(g) for some function 1': G _ C", which is con­
stant on cosets of N. 

,Proof For g E G and n e N, write ~)(g.g- ') ~ '!l'(n). Since '!l alfords a 
G-invariant character, we conclude that 11 and V" are similar representations 
of N. 

Now choose a transversal T for N in G (that is, a Set of Coset repre:!len­
tatives), Take 1 E T. For each t E T. choose a nonsiogular matrix P

t 
such that 

P,'fJPt-
I 

;;;;&" V'. Take:: PI ~ I. Since every clement of G is uniquely of the 
form III for n" Nand t e Twe Can deline l on G by .{(nt ) ~ '!l(Ii)P,. Properties 
(a) and (b) are immediate and (c) fOllows since 

X(,")J(m) ; 'll(njP, '!l(m) ~ ~)(n)'!l'(m)p. ~ '!l("'m' - ')p, 
; l(litm,- , . t) = l(nl . III). 

Properties (a), (b). and (c) yield 

l(g)'!l(n) = l(YIi) ~ l(gng-' .g) = ~)(gng-')l(g) 

l(g)'!J(')l(g)"' ~ '!l(yng- ') 

aIJ 9 ~ G and" e N. If A is any nonsingular matrix slich that 

A'!l(n)A-' = '!l(yng-') 

n., N, th~n A -, X(g)commulcs with all '!len) for n E N and thus A -, l(g) 
!lealar mattlx by Corollary 1.6, If lo also satisfies (a), (b), and (e), we may 
A - lo(g) and conclude that X.(9) - X(g)I'(g) forsome I'(g) e C". Also 

9;ij;.;"llgjJ'(h)'l)(n)l(l,r 'I(g)-' ~ l(g)'!l(hnh - ')l(g)"' ~ '!l(ghnh-' g- '). 

zs.:",!,llIIring this with 

• i[ 
I I 
I, ; !l 

• '. 
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yields .£(a)I(h) ~ .£(gh)'(g, h) for some ~(g, h) E C" and thus I i. a projective 

representation. 
All that remains now is to check that 11 is const.ant on eosets of N. We have 

I(")l(a)I,(g) ~ .£o(o)lo(g) ~ lo(ng) ~ l(nglJ«ng). 

Since l(n)I(I/) ~ I(ng) is nonsingular, the result follows. I 
Of course, the above argument does not. really require that ij be a com­

plcx repr.nentation. Using Theorem 9.2 and Lemma 9.12, any absolutely 
irreducible representation will do. 

We begin our study of projective representations by considering t~e 
associated factor gets. . 

(11.3) LEMMA Let.: G x G --> F' be the associated factor set of 'pro- ' 
jectivc F-reprcsentation of G. Then 

.(xy, :)<x(x, y) ~ .(x, yz)<x(y, z) 

for all x, y, Z E G. 

Proof Let X be the projective representation. We have 

I(x)l(y)I(z) ~ .£(xy)l(z)<x(x, y) - I(xyz)<x(xy, z)<x(x, y). 

Also 
I(x).l:(y)I(:) ~ I(.<).l:(yt)<x(y, z) ~ I(xyz)<x(x, yz)<x(y. z), 

The result now follows because all of the matrices are nonsingular. I 

. "j 

(t 1.4) DE"'NITION Let A be. possibly infinite abelian group and let G be 
any group. Theil an A:factor set of G is a function 0:: G x G - A such that 

.(xy, t).(x, y) ~ .(x, yz).(y, z) 

for all x, y, : E G. 

Thus the factor set of a projective F ~reprcsentation is an ro( -factor set 
whel'e F:-l denotes the multiplicative group of F. Conversely, we shall show 
that every F H -factor set is. associated with a projective F -representation. To 
do this we introduce the "twisted group algebra," . 

Let G be a linite group and F a field. Lot ~ be an F' -factor set of G. Let 
F'[G) be the F-vectorspace with basis (gig E G). (That i~, there is. specifi~ 
basis of P[ G) which is in one-to-one correspondence with G.) Define multl­
pl;cation in F'[G] by Ii' Ii ~ gTi.(g, h) and extend v;a the distributive law. To, 
establish that the multiplication thus defined is associative; it suffices to check· 
it on the basis dements" for g e G. That it holds there is immediate from the 

:P:rQjectiv~ representations 177 

definition of a factor scI. The finite dimensional algebra F'[G) is the twisted 
group algebr<J with respect to IX, Note that if (X is the trivial F Jo: -ractor set, that is, .. 
1X(g. h) ~ I for all g. h. we can identify peG] with F[G]. 

In order to see that P[G) has a I, we need the following. 

(11,5) LBMMA Let. be an A-factor set ofG. Then ~(I,,<) ~ .(1, I) ~ o(x, I) 
forallxeG, . 

Proof We have 
.(1 . l,x)<x(1, 1) - 0(1, I . x)<x(I, x). 

Canceling .(1. x) yields .(1. I) ~ 0(1; xi for x e G. That .(1, I) ~ o(x. I) 
folloW!J'.ymmetrically. I 

, 

Leta be an r-factor set of G and let v ~ 0(1, WI E F. Now (vIlli -
viiot(l,i1) ~ iI and similarly g(vn : (i.Thu. vI is the unit element in P[G), 
It is nOw immediate that the elements Ii e P[G) for g E G all have inverses. 

Now let« be an F'-factor set of G and let 'I) be any representation of the 
algebra PEG). Define I(g) ~ 'D@. Then l(g) is non,ingular and 

X(g)I(h) m 'D@'D(1i) = 'D(g. Ii) '" '{J(gTi'(g, h) ~ X(gh).(g, h) 

IiiO that 1: is a projec:tivc:.represent&:tion of G with factor set ct. 
Conversely, if X i,s,B proj~tive F .. rep~nt8tion of G with factor set (x, we 

can define a repr ... ntaiion tI of rCG] by setting 'D@ - I(g) and extending 
by linearity. In otherword., the, projecti •• F-representations of G,having 
fact,:,r ,"t,~ ar~ in, a ~Mural,'on.:to:.o,ne,i:olTe!lpondence with the represen­
tations of the twisted group algolira rCG]. The .ituation is analogous to the 
connection between ordinary representations and the ordinary group algebra. 

E-,tactiy as in the case with ordinary representations, we define two pro­
jective iepresenta.tions, ~ and ~ to be similar if" ~ p~ 1 XP for some non­
singular matrix P; Also :t is irredliciblt if it is not similar to a projective rcp­
resentation in the form 

(~ :). 
Note that similar projective representations have equal ractor sets and 

cOrrespond to similar representations or the appropriate twisted group 
algebra, Also, irreducible projective representations correspond to irre-··· 
ducible representations of the algebra. Since every finite dimensional algebra 
has irreducible representations, we have proved the following. 

(11.6) COROLLARY Leu be an F'-factorset of G. Then G has irreducible 
projective F -representations with factor set IX. 
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The set of A-factor IItts of G forms a group under pointwise multiplication. 
In the language of group cohomology. this group is denoted Z'(O, A), the 
group of .. 2-cocycles.· If ~, G .... A is an arbitrary fonction. we can define 
.~GxG""A~' 

It is routine to check Ihat b(jl) is a factor set. 
Note that .s is a homomorphism from Ihe group of A-valued functions on 

G (with pointwise multiplication) into Z'(O, A). The image of b is the sup. .. 
group B'(O, A) ,;; 7.'(0. A) which is called the group oC·~~boundarie~.~, 
The factor group Z'(O. A)/B'(O, A) can be identiflcd'with the second co~ 
homology group 11'(0. A). (Mote generally in cohomology theory,"i)J1e 
aSSumes that 0 acls on A. Here we are considering only the "trivial .ction'~' 

, , ; .' 
case,) "I' '" , 1 

The superscript 2 above refers to the fact that we are discussing functi,ons 
of twO variables on G. Since that will be the only situation considered hert. we' 
write ZIG. til for the group of A-factor sets B(O, A) for the image of 6 and we 
dellne 1/(0. A) ~ Z(O, A)/B(O, A), 

We say that twO A-factor scts of G are .quivaltllt if they are coogruent 
mod B(G, A). Thus 11(0, A) is the IIC\ of equivalence classes of A-f.ct,)r, 
on G. ' , '~ \ 1'" "', I' ' 

If I is a projective F-representation on 0 with fac~,?r set a, and 1" 0 ' 
is any funclion, define 'IJ l" by 'IJ(D) ~ l(g)I'(g). I\.is trivial to cll"o~,!.!hiii; 
\II i •• projective r.presentation of 0 with factor set P' i" ~). Thus ~,~'!1.\l;!},,:; 
have equivalent factor sets. I ''''', ' , ", ".<1,." 1,' .', "" 

If I and 'D are projective F~represe';t~tions of G, we say that ' 
equivalent if'IJ is similar to ll' for.somefunclion Ji:' i,' ~" ':F~'I';';~~fl~;:~'!r.~~~~, 
seen to define an equivalence relalion which preserves'i' 

We can now give a necessary and sufficient condition 
irreducible charaCler of a normal s~bgr~~p to be extendible. 

(11.7) 1'1IBOI\EW Lei N <I G and let 8 e,lrrjN) be invarianl in, 0, Let 'i),be 
representation affording 9 and leI 1 be a projOQtive repreS<;JItalioo, " 
satisfying condilions (a), (b), Il11d (0) of TheQrem 11.2. L,el ~ be ,the 
I. Define Ii € Z(O/N. C·) by P(gN, hN) - aJ,g, h). Then P is \'iell,-dcJ5ne<1"'!19., 
its image P E }/(G/N. C') depends only on 8. Also, 8 i. extendible, 
iff p = I. . . , 

l'rOQf For ro, n E Nand g, h e O. we have 

aJ,gn, hm)I(gnlom) M !(gn)l(hm) - l(g)l(nlom) 

- - - ~ -- - - - -------------
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using 11.2(b) and (c), Furthermore. 

I(o)X(nllm) ; l(D)X(hn'm) ~ I(g).{(h)l(n'm) 

= "(g, h)X(o")·'I:(n'l1I) = .(g. h)X(g/",',") 

),. br, 11.2(0). Si~ce .~(gnhm) ~ X(gl,"'~) i~ rlonsingular. we h.ve "(9n, hm) = 
~\If, h) and (J tS well de~ned. Thai fJ IS a faClor set is clear. 

If Xo were chosen In place of l. we have x. = .'£1' where /" G _ C· is 
cOnstant On cosets of N so that we can define v("N) = () If" h" '. .' 
set «0. then • I'.g, ... " asy"r 

~o(g, h) ~ ~(o. h)I'(o)14h),,(gW' ~ 
= {J(gN. hN)v(gN)v(hN)v(ghNr I 

.' .~~ i)enoc P is independent of t~e ch~icc of X. If P'Vr' were chosen in place 
. of V,; \\,e can repla,:" X by PXP, ' which leaves •• /i a.nd P unchanged, Tit liS P 
,tS uniquely determined once 9 IS given. 

Th 
If 8 is extendible 10 G, we can choose I and 'D so that X" it represenlation 
us~ = 1 and hencep R I. . 
Conversely, if P I, there exists v: GIN - C' such tltat 

ti(oN, hN) D v(yN)v(hN)v(yhN)-'. 

De!lne II' G ..... C" by I'(g) u v(yN). Now deiine Xo(g) X(gl!'(g)-' so that 
,Xo tS a prOJect,ve represetttation of G with factor set 

"0(0. h) ~ .(0. h)I'(O)- 'I'(W ',,(gll) 

h~~~s X. is a representation of G. Furthermore, since .{( I) 'V (I ) = I, 

I ~ .(1, I) = ,,(Il/I(I)I,(lr' ~ 1'(1). 

I'(n) = .(1) e ~1) ~ 1 for all n E Nand Io(n) ~ X(n)l'(n)-' ~ '!J(n) 
lo tS an extenSion of'l) and the proof is complete. I . 

A word o~caotion about Theorem 11.7 is appropriate. In the nOlation of 
\'r.r~~~:~0,~!t~f ~ ~ B(G, C ~).o that & ~'I in If(G, C'), it does /lot follow that 
~:: ,to G. For tnstance, t.kc G ~ Q" N = Z(G), and 8 the nOn-

C
O) hncar ~h.racter of N, Then 8 is nOI extendible to 0 and yet 

_ = I. (See Problem II.JH.) 

:. ,Th. thco~~ of projective repres<:ntations is closely relaled to that of 
extensIons, 

DllFtNITION 
r together 
Z(rj, 

A.cell/ral extension of a group G is a (possibly infinile) 
wtth a homomQrphism n of r onto G such that 
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(11.9) LEMMA Let (r, ,,) be a ccntral extension of G with A ~ ker 11, Let X. 
be a set of co,el represenlativ.s for A in r and write X (,~,Ig E Gj. where 
1t(x,) ~ g, Dcfine a: G X G -. A by x,,<, ~ .(0. h) .. ". Then. e ZIG, A). 
Furlhermore, the equivalence cia" of. is independent of the choice of X. 

Proof That a is an A-factor set follows by computing: ''(''''<11 XII: two ways,) 
usitlg the associativc law in r. H Y ~ (y,l is another set of coset represen· 
tatives, then y, ~@x, for some /dg) E A, Now 

I 
y,y, 1'((I),,(ll)X,X, ~ I'(g)p(h).(g. ")x" 

/dr/)/I(hllt(qhj-l·lq,l1),v" 

and the result follows. I 
If A Ht'ld U are abelian groups and A E Hom(A. U). then for each 

"E Z(G. A). we define .l(o) by ).(a)(g, h) ~ .l(.(i/. h)). It is routine to check 
that ,1(.) E Z(G, U). 

(11.10) COROI.LARY Let (r, tt) be a finite central extension of G and let 
A. X ~ (x,) and a be as in Lemma 11,9, Let '1) be an (ordinary) F·represen­
tation orr such that the restriction ')..'1 is the scalar representation M rorsome 
,IE Hom(A, F'), \)cline X(o) ~ 1)(x,) for 9 E G, Then :I' is a projective F· 
representation of G with ractor set ),(Ct). Furthermorc~ 

1)(y) ~ 3i(,,(y))~(y) 

for all y e r. where (" r _ F' is the function defined by I'(Y) ~ .l(YX;'!l)' Also 
:I' is irreducible iff'll', and the equivalence class of:l' is independent of the 
choice of co.et represe tives X. 

proof We have 

X(g)X(h) ~ 'll(x,) (x,) ~ 'll(~(g. h)x,,) ~ l(~(O, h)):I'(yh) 

and X is a projective repre' ntalion with factor set A(a), If y € r, we have 
y ~ ax" where 9 ~ niy) an a € A. Thus " 

'!llV) ~ X(g)A(o) :!:(n(y))l(yx;';,). 

In particular, X(G) and 'l)(r) span the same vectorspace of matrices over F and 
the al1s.rtion about irreducibility follow •. 

Finally, if li, is the projective representation determined by an .Itoltll,ate '~ 
choice of coset representatives, we have 

and:!: and li, are equivalent. I 

ProjEitctive nfloprO{lentatioIll;l lal 

Note that ir ~ 15 an irreducible C~rcpresentation (or any absolutely 
irreducible F·r.presentation). then the condition that ~). be a scalar rep· 
resentation in Corollary 11.10 is automatically >Ali,tleu, 

Henceforth we shall consider only C·rerrescnt.tions, 

(11.11) DEI'lNITION LeI (r. rr) be a finite central extension of G. Let I be a 
projective C.representation of G. We say that I can be Wtet! to r if there 
exists an ordinary representation '!l of r and a function ~: r -. C' such that 

'l)(x) I(n(x))/J(x) 

for all x e r. Furthermore. (r. n) has the projectivf liftin" property for G if 
every projective C .. reprcsetltation of G can be lifted to r, 

Note that if X is lifted to the representation 'U on r, then ~l A is necessarily 
a scalar represent.ation and by Corolla.ry 11.10 we can construct a projective 
representation Xi of G by choosing coset represcnlativc$ ror kef Jt in r. Then 

I,(1T('><))~I(x) = 'll(.><) = .lO(n(x))/I(X) 

and hence .t
1 

is equivalent to X. Thus if(r. n) has the projective lifting prop· 
erty for G, then all projective C-representations of G are equivalent to oneS 
obtained via the construction in Corollary 11.10, 

We shall prove a theorem of Schur which asserts that every finite group 
has a finite central extension with the projective lifting property. The point 
of Schur's theorem is that it allows us to apply what we know about '1rdinary 
repr.sentatiohs \0 the study of projective rerresentations, For instance. in 
the situation of Corollary I L10, if'lJ is irreducible and F - C. then we have 
deg:!: s deg'l) divides 1 r : AI'" 1 G 1 by Theorem 3.12. Thus a consequence of 
Schur's theorem i. that the degree of every irreducible projective C·represen. 
tation of G divides 1 G I. 
(l1.12) DEFINITION The Sr.h", mldrip/ter of G i. the group H(G. C'). It is 
denoted M( G). 

For a finite abelian group A we use the notation A to denote the group 
Irr(A).lf(r. ,,) is a central extension orG with A - ker n finite, we construct a 
homomorphism ~: A _ M(G) as follows. Choose a set X of coset repre· 
sentativCjl for A in r and write X ~ {x,lg e G}, where 7t(x,) g, Le~ 
a e Z(G, A) be defined by x,x. ~ oig, h)x,. as in Lemma 11.9. For ,\ e A 
define ~(.l.) D ~~ where l(~) E ZIG, C·) is defined by A(<<)(g, h) ~ l(~(g, h)) 
and the bar denotes the canonical map Z(G, C ') - H(G, C") '" M(G). Note 
that ~ i. a homomorphism .. 

The map ~: A,",' M(G) i. independent of the Qhoice of coset repre· 
...ntalives X. This follows since another choice would yield a factor set 
(J" Z(G, A~ which is equivalent to a by Lemma 11.9, Since ~(r I € 8(G. A). it 
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follows that .l(1.I)).(Pf I ~ .I(~p- ') E' B(O, C'). Thus ),(IX) and ).(p) are equiv­

alent in Z(G. C') and .1(.) = .l(P)· 
We shall callihe unique homomorphism~: A -+ M(G) constructed aoove 

the standard map. 

(11.13) THEORBM Let (1", n) be. finite cenlral extension of 0 and let q be 
Ihe associaled stal,d.rd map. Let I be • projective C-representation of a 
with faclor sel y. Then X can be lifted to riff ji lies in the image of q. In par­
ticular, (r, x) has Ihe projective lifting property iff ~ maps onto M(G). 

Proof. Let A ~ k.r" and lei X - (x,lg. GJ be ••• t of co.et r~prtsen. 
t~liv.s for A in r wilh n(x,) - O. Write "',x, ~ <>(0, hlx" so thai"''' Z(G, A), 
Now suppo •• ii = .,().) for some A e A. Then ),(IX) i. equivalenlto y and we have 

A(<>(o, h» ~ )'(g, h)J.I(g)J.I(h)J.I(gh( 1 

for !lOme function 1': G -+ C' . ' ; 
Deline 'D on r by 'I)(ax,) m ),(a)I(g)J.I(g) for a e 4 and g e G. We have' 

'I)(x,)1)(x.) = I(II)l(h)I«n)l'lh) m ;!;(gh)y(g, h)J.I(g)J.I(h) . 
, = A(I.I(11, h»I(gh)ll(gh) & ;P(.(g, h)x •• ) 'l)(x,x,). 

Since 'P(.x,) ll(u)'V(x,), it follows that'D i. Ii representation. Thus 'I) lifts ;: 
Itor. l, 

Conversely, if l can be lifted, we have'l)(x) & I(x(x»l'<x)_~Or some rep;, 
resentation II) of r and function II: r -+ C. Thus I~! - 11(1) '/J(l) lUlU ro~" 
every • e A we hay. 'l)(.) M ;!;(lMa) - J.I(a)J.I(I) ,'lJ(I) and so A(.),~,. ,', 
l'<a)J.I(o- I is a linear character of A. Now write I'{o) -; J.I(",.~ We have 

).(~(g, h»~)(x.,) I!)(x,)'l!(x,) l(g)l!(h)v(u)v(h). 
Thus 

),(.(0, h»v(gh)I(gh) = y(g, h)v(g)v(h)I(gh) 

. and A(~) is equivalent to y. Therefore 

~(A) ~ .I(~) - f 

and tho proof is complete. • 

Given an arbilrary nnite group a we .hall show that M(G) is n~::~=; 
construct a oentral extension (r, x) ofa with A .. ker" such that tl~'" 
map~: A _ M(G) is an isomorphism. This will. thus be a /!foup With 
jectivc lifting property for G with small .. t poilllble order, namely I a II Ml\IJII: 
Such a group r is called a Schur repr.stlll.lion U,oup for G. .. . ' I 

An abelian group Q is divisible if for ev~ry x E Q and positive IDtei"" 
there exists y e Q, with l' = x. for il\Slance, F' is divisible if F is 
closed. 

Projective representations 

, . (1.1.14) LEMMA Let A be an (infinite) abelian group and let Q !;;; A with Q 
dIVISIble. Assume I A: QI < ~. Then Q is complemented in A. 

I,," 
'. Proof Use induction on I A : QI. We may aSSume A > Q and choose 

a" .A. -: Q. Lei n Z o(oQ) in AIQ and let u = ,,' G Q. Let v E Q with v' ~ I. by 
dlVlslblhty and let " ~ (IV-I so th.t b' ~ I. Since aQ = bQ, il follows Ihat 
n = o(bQ) in AIQ .nd thus (h) ,.., Q ~ I. 

, Now let A ~ AI(b) sO Q ~ Q<h)/(h) sat' i .. Q:;;;; Q and 1.4: QI & 

IA : Q<b) I < I A: QI. Ily Ihe inductive hypothesis, . is complemented in A 
and thus there eXists B S; A with B,.., Q(b) = (b') B = A. Now 
Q,.., B - Q n Q(b) ,.., B - Q" (b> ~ I and the proof i. complete. I 

. The abo ... result remains true without the assumption Ihat I A : Q I is 
, finlle. W. will nol need Ihat mOre gener.1 facl, however. 

.. :: 1.15) 1'11I!OREM Let F be an algebraically closed field and a a finite 
.. gr~up. Then II(G, F') i •. finite and each ofilS elements h •• order dividing I a I. 
'. ~urthermore, 8(0, F') I. complemented in ZiG, F"). 

"', !,~oof First,w~arguelhatB(o,r)isdivi.ible.Hfl.B(G, f')andni •• 
, . POSlhve Integer, write II 0(1') for SOme function I" G _ F'. For each 9 E G 

choose v(il) e F' such thatl'{o)" J.I(g). Then b(v)' & 0(1') & p. We can Ihu; 
apply Lemma 11.14 when we show thai I H(O, F')J < 00. 

Let" E Z(O, F') and define 

p(g) ~ n .(g, x). 
xcG 

lixed y, h G G, we have .(g, hx)o:(h, x) = .(gh, x)o:(g, 11). Taking the produci 
all X E a yield. 

II(g)J.I(h) = J.I(Oh).(o, MIG I 

IhuulG1
" 8(G, F 'i. This showsthat H(G, F') hasexpon~~l dividingl 01 . 

let U = (.eZ(G,F')J.IGI = I). For "EZ(O,F'), let A = 
F'1.). By the result of the previous paragraph IA: B(G, F')I 
IGI. Thus by Lemma 11.14, 8(G, F") is complemented in A and the 

l:<I )':z.nl('G"'," oe11l). is a subgroup of U. Thus Cl.EB(a, F')U and hence B(G, F')l) 

, No,,: every element of U is a function from G x G into (yeFlylGI = 1). 
. " th,.,. a fiMe set, 11 follow. that I UI < ~ and thus 

IH(G.F')I ~ IB(G,F')U:B(G,F')I s lUI < ~ 

the proof i, complete. •. 

Next we need a general method for constructing central extensions. 
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(11.16) Lh",MA Let A be an arbitrary abelian group and lei a ~ ZiG, A). 
lbon there exists 8 central extension (r. n) of G with ker n = A and ,uch that 
a set of coset representatives {x, III" G) exists with n(x,) = g and x,x, w 

o(g,it)x". 

Proq( dt r ~ G x A as a set and denne V" a)(l', b) ~ (gil, ~(g,lI)ab). 
Th.t this multiplication is .ssocistive follows from the fact that ~ is an. A­
factor ,et. I.et .(1, Ir' z c A. Then (I, :)(g. a) ~ (g, 0(1. g):a) (g, a) by 
Lemma 11.5. Also 

(a- " (J' la(g-'. ,,)-' =)(9, a) ~ (I, z) 
/ 

and hence f is. sroup with 1 = (I. :). 
Clearly n: r -4< 0 defined by n(o. 11) 0;::: (J is a homomorphism with ker :It ... 

A = {( I, a)la E A). That. ;r 5 ZIG) follows sinec .(1, g) = '(11. 1) by Lemma 
IU. 

Since (l,za)(l.zb) = (t,ulb). it follows that o-(l.ta) delin .. an 
isomQrphism A ~ ji', We identiry A and A via this isomorphism. 

Let X = {(O, l)1y E GJ. The" 1[ maps X one-to-one and onto G and so X . 
is a set of coset representatives for A in r. Now 

(g. 1)(1t, I) = (gh •• (g. II)) = (I, '.(g, h))(gll, I) 

by Lemma 11.5. Since (I. :.(g, h») ~ a(g, h) under our identification, the 
proof is complete. I 
(11.17) THljOKEM (SohlJr)Oiven G, there exists alinite central extension 
(I", n) which has the projective lining property for G. Furthermore, tr. n) can 
.be chosen such that ker n ~ A ~ M(G) and the standard map A .... M(G) is 
al) i~omorphism. 

Proq{ Let M- be_a complement for B(G, C") in Z(O, C') by Theorem 
I t.t 5. Let A = M. Denne II) E A by .(g, hHy) = y(g, h) for ye M. It is '. 
clear Ihat in fact .(g, h) 6 Nt ~ . ext . 

(.(gh, k)o:(il. II) 1') ~ y(gll. kll'(g, II) 

using the definition of multiplication in Nt. Similarly, 

(.(g. hk)o:(h, k»)(y) ~ y(g.lIk)y(h, k) 

and since y rtlns over a set of factor sets, it follows that" E ZiG, A). 
Now let (r, n) and X ~ {x,lg e GJ be a. in Lemma 11.16 so that x,x, p. 

• (g,I,)x". Lot 'I: A - M(G) be the standard map. We show that ~ maps onto. 
For yeM(G) = 7.(G, (;'1I8(G, C"), there exists yeM,., 'i since M 

complements 8(0. C') in ZiG, C"). Now deline A On A B Nt to be the 
evaluation map at y. Nott: that A E A. Now 

.\(o(g, iI)) = o(g, I,}(y) = y(y, h) 

ftrojectl.ve l'epreBentatiONl ISS 

so that A(o) = )'. Therefor. 

as desired. 
By Theorem 11.13, it follows that r has the projective lifting property for 

G. Also, 

IAI = IAI ~ In(A)1 ~ IM(G)I ~ IMI ~ IAI 
and so 'I mu't be one-to-one Hnil A ;;,; M(G). However A ~ A by P",blem 
2.7(c) and the proof is complete. I 
(11.18) COROLLM<Y Let X be an irreducible projective C-representation 
of G. Then deg(X) divides 1(; I. 

Proof See the discussion preceding Definition lLt2. I 

Before going on to e:xploit Schur's theorem, we give another re~ult which 
is useful in the computation of M(G). We have defined a Schur representation 
group of G to be a minimal central extension with tht: projective lifting prop~ 
erty. The next theorem will yield another characterization, 

(11.19) THEORJ;M Let (r. n) be a finite central extension of G with A = 

kcr n and let ~: A .... M(G) be the st.ndard map. tet Ao = A n r' .. Then 

ker~ = {AeAIA" S;; ker A}. 

In partieular, ~ is one-Io-one iff A S;; r', 
Proof Let X ~ {lO,lo e GJ be as usual and write X,x, = .(g, h)x" with 

~eZ(O, A). Suppose Ae ker~. Then I. ~ ~(A) ~ AW and so '(o)e 8(G, CO). 
Thus 

)(~(g, h») m ~(gl/l(h)ll(gW 1 

for SOme function /1: G .... C'. Now define X on r by A(ax,) = '\(a)I1(g) and 
check that 

:l(x,)l(x,) ;\jx,x,). 

(This is essentially the same calculation as in the proof of Theorem .11.11) 
It follows that l is a linear character of f which extends A. Now f' S;; ker X 
and so A. 5 ker !. . 

Conversely, let A.s ker ,t. Then A is extendible to .10 e Irr(Ar'/f') by 
'\.(ax) = !.(a) for x e r. Since fir' isabelian . .\0 is extendible to A, ~ Irr(r/f1. 
Now 
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Define I'ly) ~ A ,(x,), Then 

!.(~(g. h)) - fIlg)l'lh)I'(gW' 

and the result follows. • .. :. 
! r li 

(11.20) COROLLARY Let (r. ,,) be a finite central extension of G.,with 
A = ker 11:'. 

(a) If A '" r. then A is isomorphic to a subgroup of M(G). 
(b) Assume I A I - I M(G)I. Then A Iii r iflT ha.' the projective lifting 

property for G, In this ca .. M(G) ;,: A. ' , 

Proof (a) follows since A ;l; A and (b) is immediatdrom Theorems 11.19 
andll.l3., " 

Thus we sec that r is a Schur representation group for G iff r fA ;;g G for 
SOme A <;; Z(r) such that IA I ~ (M(G) I and A <;; r', 
(11.21) COROLLARY Let p be a prime divisor of IM(G)I, Then a Sylow 
p-stlbgroup of G is noncyclic. 

Proof' Let r be a Schur representation group for G (which exists by 
Theorem 11.17). We may asstlme that riA ~ G with A <;; Z(r). Let 
PIA E Syl,,(G) and assume PIA is cydic, Since A is central, it follow, that P is 
abelian and thus r has an abelian Sylow p.subgroup, By Theorem 5.6, 
p,j'1f' r. z(r)l. Since A <;; r by Corollary 11.20, we have p,j'IAI. Thus 
p,j'IM(G)I, • 

The next corollary is quite important It can, of COUrse • be proved without 
all of the complex machinery which we have developed. 

d1.22) COROLLARY Let N <J G with GIN cyclic and let 9 E Irr(N) be 
invariant in G. Then .9 is extendible to G. 

Proof By Corollary lUI. M(GIN) ~ H(GIN, C") is Irivia!. The 
result now follows from Theorem 11.7. I 

The above theory, together with some rather technical computati~ns 
yields a tool which is very useful when studying the ~haractcrs of groups with 
normal subgroups. Let N <l G and let .9 IS Jrr(N) be invariant in G. 
these hypotheses we say that (G, N, .9) is a character triple. The analysisnrlth;,,'" 
situation is much easier if .9 is linear. We shall use a Schur reF,resenta",," 
group for GIN to replace (G. N. 9) by another character triple If. A. 
which riA", GIN and!. i, linear. Of course, this would not be of milch. 
unless we knc:w that the character theory or r was somehow closely dod 

en • 
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the character theory of G. For instance. we would want ..1Yand .9(; to have 
the same numbers of irreducible constituents with the same ramifications. 

We define below the notion of" isomorphism" of character triples. Thi, 
rather complicated definition makes precise some of the ways in which the 
character theory of two character triples can be related. We first introduce 
SOme not.tion, If (G. N • • 9) is a character triple, let Ch(GI U) denote the sct of 
(possibly reducible) characters X of G such that XN is • multiple of 8. Let 
Irr(GI~) be the irreducible characters among these, sO that Irr(GI9) i. the 
set of irreducible constituents of 9G

, Note that if N <;; H S G. then (Il, N, 9) 
is a charactcrIriple and XI/ e Ch(HI.9) whenever X E Ch(GI9), If<: U --> V isan 
isomorphism of groups and tpElrr(U), let tp'elrr(V) denote the cOrre­
sponding character. sO th.t tp'(u') ~ tp(lI), 

(11.23) DEFlN1TION Let (G. N • . 9) and If, M. tp) be ehuract.r triples and 
let r: G/N --> riM be an isomorphism, For N <;; H '" G. let If' denote the 
inverse image in r of t(H/N). For every such H, suppose there t:xists a map 
".: Ch(flI9) -. Ch(H'ltp) such that the following condition, hold for H K 
with N '" K 50 II S G and X. tjJ E Ch(lJ 1.9). • 

(a) ".(X + tjJ) = orl/(X) + ",,(tjJ); 
(b) [X. tjJ) = ["'(X), ".(tjJ»); 
(c) "'(X,) = (""(X» •. ; 
(d) ",,(X{i) ~ "'I/(X){I' for {I E Irr(fllNi 

Let tj denote the union of the maps qu- Then (r, u) is an isomorphism fl'Om 
(G. N. 9) to (f. M. <pl. 

Note that if(T. or) is an isomO"phisnl from (G. N. 9) to If. M. <pl. then "'II 
is determined by it. restriction to Irr(III.9), (This follows from (ai) Ily (b) it 
follows that "" maps Irr(HI.9) one-to-one into Irr(H'I<p), Therefore. to 
construct an isomorphism ("t. (1) it suffices to define u

H 
on Irr(HIV) to be Olle­

to-one, then extend the definition by (a) and check that (c) and (d) hold for 
X ~ Irr(H 1.9). 

'-

(11.24) LBMMA Let (t, "'): (G, N, 9) -. (r. M. <p) be an isomorphism of 
character triples, Thcn "H is a bijection ofCh(IIIU) onto Ch(H'I'p) for all H 
with N S H S; G. Furthermore. x(1)/.9(1) - ",,(X)( I)/<p(l) for.1I X e Ch(H 18). 

Proof If "'.IX') ~ "HIx,) for X,ECh(HI8), we have Ex,.tjJ] ~ 
["'I/(X,). 0',,(</1)) is independent of i for.1I tjJ E Irr(/J 19i It follows that Xl ~ X, 
and hence (f H is one-to-one. 

For XECh(HI9) write «X) = X(I)/9(l) and Similarly ,et e(q) ~ q(l)/<p(t) 
for qeCh(H'ltp), Note that ".(9) E Irr(M I tp) and so "'N(·9) = <po We have 

I 

I 

• 
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1., = e(X)8 and qM = «'0", and thlls 

e\<1H(X)q> = «'1/(1.))" = <1,(X,) = ",("(x).9) = e(x)", 

and thus ,,"#(x)) ~ ,,(X) as claimed. 
By Frobenills reciprocity, we have 

,9H L e(x)x 
l"',,(ulhj 
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and oomparing degrees yields L "(X1'.9(1) = IH: NI.9(1) so that L e(x)' ~ 
IIf:NI where X rllns over 1,·r(HI.9). SimilMly L«q)' = IH':MI = III:NI 
lor q E 1 rr(f/' I ",). Since 0'11 maps Irr(H 18) one-to-one into Irr(H'1 ",). we have 

Ill: NI ~ L e(x)' = L e("H(Z))' ,:; I d'll' ~ IH: NI· 

H follows that every '1" Irr(H'I",) is of the form ""(X) fo" some X e Irr(HI,9). 
The result noW rollows, I 
(11.25) C(>R<)LLAkY Isomol'phism is an equivalence relatioll on char­
acter triples. 

Proof. The reflexive and transitive propcrli~s are obvious. If 

(t, 0'): (C, N, .9) ~ rr, M,lp) 

is an isomorphism, then <1,,: Ch(J/18) - Ch(KI",) is one-lo-onc and Onto 
where K ~ H'. We can, therefore, dellne .,.-' by (a-'). = «1/1)-' for 
M ~ K ~ r where H = K'- '. It is routine to check that 

(t"', ,,-'): (r, M, "') ~ (G, N, ,9) 

is an isomorphism. I 
A nearly trivial e~ample of an isomorphism of character triples is given 

by the following result. . 

(11.26) I,EMMA Let (G, N, Ii) be " charncter triple and let 1': G ..., r be an 
""to homomorphism with ker I' ker ,9. Let M = I,(N) and let", e Irr(M) be 
the character corre<ponding to ,9 E Irr(N /ker /1). Then (0. N, ,~) and (r, M, '1') 
are isomorphic character triples. 

I'roof Wehavet:GIN- r/Mdefincd naturnlly from 1"ForN 50 H sG 
and X G Ch(H I ,9) we obtain ker II S ker X and we may view X as a character· 
of Hiker /I. Let ",,(X) be the corresponding character of i,(H) .. H/ker "', 
Check that (T, ,,) is the desired isomorphism, I . 

AnQ{i1r:t example of an j~omorphism of cliaracter triples it' provided by 
the following. 
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(11.27) LliMM' Let (G, N, "') be a character triple and let ~"lrr(G) be: such 
that ~N'" = iJE Irr(N). For N S II S G, define aH; Ch(III'p) - Ch(HI,9) by 
"n(!{I) = !{I",;, Let i: GIN - GIN be: the identity map. Then 

(i, ~): (G, N, "') -+ (G, N, ,9) 

is an isomorphism of character triples. 

I'rooj' It is clear that "II does map Ch(lj 14') to Ch(HliJ) and that prop­
erties (a), (e), and (d) of Definition 11.23 hold. It thus .uffices 10 show that "II 
maps Irr(H I",) one-to-one into Irr(H I.~). This follows from Theorem 6.t6. I 

Given invariant .l., .9 € Irr(N) for N <J G, with ,1(1) I, it follows that 
(G, N, A) and (G, N, 8) are isomorphic if 9.1. -, is extendible to G. 

(11.28) THEOREM Let (G, N, ,9) be: a character triple and let (r, n) be ~ 
fiuite central extension of GIN having the projective lifting property. Let 
A ~ ker n. Then (G, N, .9) is isomorphic to (r, A, X) for some A e A. 

Proof By Theorem 11.7; the triple (G. N .. 9) determines an dement 
flo H(OIN, C') = M(GIN). Since r has the pf<)jeetive lifting property for 
GIN, we can lind), Eli such that q(A) = fl-' where ~ is the standard map 
(Theorem 1 1.13). 

Now let C' <;: C x r be defined by C' ~ {(y, x)liI ~ n(x)), where ii ~ 
gN, the image of g in CIN. Note that 0' is a subgroup of C x r. Let L = 

N x A and observe that L <I G'. Define .9' and " on L by 8'(", a, ~ 9(n) 
and ).'(n, 0) ~ A(a), Note that ,9',).' € Irr(L) arc invariant in G'. . 

We have projection homomorphisms·J.'a: O· - G and Itl': G~ "-'+ r. These 
maps are onto and ker I'G '" 1 x A ~ ker ,9' and ker /1" = N x I ~ ker A". 
It follow. by Lemma I t.26 that (G*, L, ,9') i. isomorphic to (0, N, il) and 
(C", L, ).0) is isomorphic to (r, A, ).). Jly Corollary 11.25, it suffices to show 
that (a*, L, )") and (G*, 1-, ,9') are isomorphic and by Theorem 11.27 we 
will be done when we show that 9*(,1 or' is extendible to G'. 

Let \lJ be a representation of N affording.9 and let X be a projective rep­
resentation of G as in Theorem 11.2, Let« be the factor set of G belonging 
to'" and let Ii be the corresponding factor set of GIN as in Theorem 1 1.7. Let 
(x,lii e GIN} be a set of coset representatives for A in r with nIx,) = Ii. Take 
Xr 1. Write x,x! ~ )'(ii, Ii)>!,! so that ye Z(GI N, A). Since ~(l.) p- " we 
have 

).(y)/leB(GIN, C') 

and hence 

).(y(o. Ii))a(g, h) = I'(ii)-I v(W 'v(gm 

for some (unction v: GIN ... C', 
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Every element of G' is uniquely of the form (g, ax.) for g ~ G and a e A. 
Deline 3 on G' by . 

a(g, ax,) ~ :«g)A,(a)" I 1>(0). 

We compute 

and 
3(gh, aby(g. ~):< .. ) = :<(gh).\(ab)" ' A,(\'lg, ~))-llI@~). 

Since the .. two expressions are equal, we conclude that 3 is a represcnLation 
ofG'. 

Now y(T T) ~ 1 and ~(1. 1) = I and it follows that v(ii) = 1>(1) - 1 for 
n e N. Therefore 3(n, II) ~ 'Il(').!(")"' and 3. affords .9'(.l'r '. The proQf.s 
now complete. I 

We now consider some applications:. 

(11.29) oOROLLARY Let N <l G and X E lrr(G). Let 8 E Jrr(N) be a' ~q­
Slituent of XN' Then x(1)19(I) divides I G: NI. 

Proof Let T Ir.(.9). the inertia 8r~up, and let t/I e Irr(~) such that 
1/1" X and ifJ" = .9 (fheorcm 6.1 I). Since ;«1) m IG: TI.p(l). ',t $U~cc. to· 
.how that y,(I)l9(I) divides IT; N I. Let (r, A, A) be a character triple Isomor­
h', 10 Cf N 9) with A linear. Let \ e Irr(rI!.) correspond to y,,, IrrlT 1 II). 

~h'~n y,(l)j.9I,1\'= e(I)/.\(I) W) by l.emma 11.24. Since AS;; 1"(e) we have ... 
W) divides I r ; A 1 a 11': N 1 by Theorem 3.12. The result follows. I .: 

Note Ihal by repealed application of this re.ult we. can weaken the ... 
pothesi~ that N is normal in G and a~sume only that N !s subnormal, . 
Ihat there exist subgroups N, such that 

N<lN,<J'" <tN.<lG, 

In particul .. , if N is subnormal and abelian then since 9(1) - 1 woOblain 
the following generalization of Ito's Theorem 6.l~. 

(I 1.30) COROLLA~Y Let N ;; 0 be subnormal and abelian. Then 
divides IG: N 1 fQr every X E Irr(O), 
(11.31) COROLLA~Y Let N <l G and let 9 E lrr(N) be in.variant in 
Suppose forcvorr Sylow sub¥roup P/N ofG/N that 91S extendible to P. 
.9 i. extendible to G, 

1'.00/ Let (r, A,.t) be a character triple isomorphic to (G, N. 9) and 
"linear. If N ,; If 5 G and AsK 5 r are such that If and K 
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then B is extendible to H iff .< is extendible to K. Thi. follows from Lelnma 
11.24 since extendibility. of 9 is equivalent to exislence of X E Irr(H I ,9) with 
X(I)/9(I) = I and similarly for extendibility of!.. Thus.l is exlendible to Ihe 
inverile image in r of every Sylow subgroup of r; A. By Theorem 6.26, we 
conclude that.< is extendible to rand hellce a is extendible to 0, as desired. I 

We can use Corollary lUI to obtain an alternate proof of G.llagher', 
Theorem 8.15, a proof independent of the result. of Chapler 8. W. are as­
suminglhat (G. N, 9)is a character Iriple in which (.9(1), 10: Nlj ~ I and that 
det(a) is extendible to G. By Theorem 6.25. 9 is extendible 10 H for every H 
with N .:; H ;; G and H/N solvable. The result now follows from Corol. 
lary 1l.31. 

The following combines several of our extelldibility criteria. 

(11.32) nl~OREM Let N<JG and ,gelrr(N), with II invariant in G. As­
sume for every prime divisor p 01(9(I}o(.9),IG: NI) that a Sylow p-subgroup 
of G is abelian or if p 0;' 2, that .9 is p-ration.1. Then a is extendible 10 O. 

Proof By Corollary 11.31. it sulllees to assume that 0/ N is Ii p-group for 
some prime p. If a Sylow p-subgroup of 0 is abelian, Ihen ,9 is extendible to 
:G by Theorem 8.26. If p ". 2 and a i. p-rational, then .9 is extendible by 
Theorem 6.30. In the remaining case, (10: NI, 0(9).9(1)) ~ I and Corol­

. lary 6.28 yields the result. I 

As another applioation of the theory of projective representations, we 
prove a theorem ofT, Ikrger aboUllhe characlers of solvable groups. Recall 
thaI X .lrr(O) is ,aid to be quasi-primitive if X. is homogeneous (Ihat is, a 
multiple of an irreducible) for every N"" G. Primitive characters aro ncce.­

. sadly quasi-primitive and, in general, the converse is false. 

(11.33) THEOIUlM (Berger) Let 0 be solvable and suppose Xe Irr(G) is 
quasi-primitive. Then X is primitive. 

In order to prove Berger's theorem, we shall exploit the fact that there 
,: exists.a centrtll extension ofG with the projeclive lifting properly. We break 
:: .. th'e· proof into several intermediate results. The first of these is independent 
.. :' 'of projective represcntittion~, 

'II,' , 

(l1.34) THWIUlM Lot L .. If <: G with L"" G. H maximal and G/I. 
~Ivable. Let 8 E Irr(H) such thai 8" - X and 8,. are ;"oducible. ,'hon there 
exists M <I G such Ihat X" is not homogeneous alld M :2 L. 

Proof We may assume without loss that L = corcG(H). the large.t 
normal subgroup of 0 contained in H. Lei K/f. be a chief factor of G sO that 



192 Chapter 11 

Kif. i. an abelian p·group and K !# H. Thu. G = Kif by the m"iOlality of H. 
Since K/L is abelian. we have H n K...q K and $ince H r. K ..::::I H we con .. 
elude that 11 " K <1 G and thus 11 " K L. 

Let C Q OG(KIL). Then C <J G and '0 C" H <J H. However. 
K !: />I(e " f/j and hence C" H "" O. The maximality of L forces L ~ 
en H. We have C K(C" II) ~ K. 

If K G then II /., <J (; and .ince Vr. € Irr(G) we have J G(.9) ~ I. by 
Problem 6.l and thus Xl. is not homol!;~neou.s. We assume, therefore, that 
K < G and let M I K be a chief factor of G so that M I K is an abelian q.group 
for sOme prime q. If" = p. Ihen (KIL) " 'lJ,MIL) # 1 and the minimalily of ' 
KII_ yield. KIL t;; 'lJ,MIL). Thi$ contradicts C«KIL) = K and we conclude 

p '" 1/. 
We suppose that XI, and Xu are homogeneous and write Xu = e., for some 

~G lrr(M). Now x(I)/9(I) = 1(;: Ifl ~ IK: Llisa l'owerofp.Since.9L Elrr(L). 
it is a constituent of q .. and hence q( I )/i)( I) is an integer which divides X(I )/il(I). 
Therefore q( I )/9( I) is a power of p. Since M I K is a q·group for q '" p, we con· 
c1ude that '1. E Irr(K) by Theorem 6.18 or Corollary 11.29. 

Since XL. is homogeneous, it is a multiple of ,91.. and thus ttl, is also. Let 
R = M n /J and let. be any irreducible constituent of~R' Then [<L, 9LJ '" 0 
and hence T = 9. Ii for some Ii E I rr(R/ L) hy Corollary 6.17. Since M ~ KR 
and K ("\ R ~ L. we can lind y E Irr(MIK) such that 'I. ~ p. Now 

However. since M H = G and M n II = R. we have 

and thus fAi ~ .~y. Since ~ is a constituent of," by Frobenius reciprocity. 
have [~. ~yJ ¢ O. Since ~.EIrr(K). Corollary 6.17 yields y ~ I" and hence 
(I ~ I, and < = 8 •. Thus~, is homogeneous and sinco (a.)" ~ e~ we have 
'I. = •. 9. and ~(I) = earl). This yields ,9(1)IM:RI ((a.)")(I) m .'1)(1) 
and [~ •• ~.l"'" e' = IM:RI. It follows that ~ vanishes on M - R by 
Lemma 2.29. As ~ is G·invariant, it vanishes on M - R' for all y E G and 
hence vanishes on M - nR' = M L. In particular. ~ vanishes on M - K 
lind so 1M: K I = [11K. "KJ by Lemma 2.29. This contradicts ~K E Irr(K) and 
completes the proof. I 

(11.35) LEMMA Let (f. <1): (G, N, 8) - (r. M~ <p) be an isomorphism of 
character triple. and let N !;;; H !: O. Suppose'" is a character of If. Then 
",,,Ch(HI8) iff ",G E Ch(GI.9). AI,o, if ",ECh(fII.9). we have (lc,(",G) ~ 
(~I,(I/I)f 
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Proof The:: first assertion is irnmediate from Frobenius reciprocity. To 
prove th.t <fo("'") ~ (f,,("")'" when", E Chili 1.9). it ."/fices to check that 

[<t,N"). xJ ~ [(""(,,,)r, x] 
for all X E Irr(r!<p). Since "" maps IrI'(GI.9) onto Irr(rt\ll) by Lemma tl.24. 
we have X (1"(~) for some e e Irr(G I a}. Now 

("r.("'"). "G(m m [",G, eJ [.p. ~,,] 
~ [<'nf"'). ",,\eH)] [",,(.p). (<1de))"J 
~ (("It(.p)l, "G(~)J 

and the result follows. I 
(11.36) l.eMMA Let Z t;; 'lJ,n be such that r has the projective lifting 
property for G In r/z with respect to the natural homomorphism 1[: r -....,. G. 
Suppose K"" r, H S; r. If K ~ rand H ("\ K ;;, Z. Let .9 < Irr(/J/Z) and 
assume 1l " K <;;; Z(.9). Then there exists X" lrr(n such that K !: Z(x) and 
XII = ~.9 for some linear A E Irr(H). 

Proof Let '!) be a representation of H which affords .9. Let L = 
H n K <I II. Since L <;; 'lJ,9), 'D I. is a scalar representation and we can apply 
Corollary 11.10 to 111(1. n ker .9) and construct a projective representation 
X of HI!. such that '!)(h) = X(ht)l'(h) for some function I" If -+ C'. 

Now let t: G -+ filL be the compo,ite of the natural map. 

G c r/z -+ r/K = lIKII(;;z HIL 

so that .(hkZ) = hL for hE If and k" K. Let X* b<l the projective represen· 
tation of G obtained by compo.ing T with .'E so that X*(hk%) = l'(hL) = 
'l)(h)I'(W I. • 

Now lift :1'* to the representation 3 of r so that a(x) ~ X*(xZ)>ix) for 
x e r. where v: r ... C' . This yields 

3(hk) ft '{l(h)I-'(W I >ihk) 

for h e Hand k e K. Let 3 afford X. 
Restricting the above to H, we have 3(h} - 'V(h)!f(h)-I>ih) and henee 

)'(h) '" J.j(h)-Iv(h) defines a linear character ).EJrr(H) and X" a).. Thus 
X e lrr(r). 

For k ~ 1<. we have 

3(k) = 'P(1)I.(l)-l v(k). 

which is a scalar matri •. Thu. K !: 'lJ,X) and the proof is complete. I 
The next result is a generalization of Theorem 11.34 which includes 

Berger's TheQrem 11.33. 
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(11.37) THr"'R"'" Let L <;; H < G with L <J G and G/L solvable. Let 
9 e Irr(U), with a" = X., IrrjG). Then there exists M <l G such thalM " L 
and l./If is not homogeneous. 

Proof We may assume thal there: do not exist subgroups Lo ~ HI).< G 
• nd ,90 " Irr(Ho) such that L < Lo <J G and (,90)0 - X. We may also assume 
that H is maximal in G. Wt; have L - coreQ(H). We aSsume that Xl. is homo­
geneous and write XL. !;;;;; acp with cp t Irr(L) so that (G. L. tp) is a character 
triple and 9., lrr(H l<p), 

It follows from Lcmma 11.35 that the hypotheses of the theorem remain 
invariant if(G. L, <p) is replaced by an isomorphic triple. and similarly for the 
conclusion. Thcrefore, by Theorem 11.28. we may assume that <P(1)- '1. 
Thus L <;;; 7..0;) and in particular, L <;; Z(9). . ., . 

Let (r. n) be a finite central .xtension. of G .having th~ projcctivo lifting 
property. Let 2 - kef nand identify G with r/z via n. Foroubt!roup!l U S;;,G, 
let U· denote the inverse image of U in r.~lthat ~·/Z = U.,and G. .... J,~.'r .. 

Let K/L be a chicf factor of G .0 that K/L is abelian and K .'t.. H. Thus 
KH _ G and K n H <l K/I so that K" H _ L. We have 9Elrr(U·/ZJ 
and L" <;; Z(9). Also K· H· ~ f' and K· n H· - L" ;;, 2. Lemma' 11.36 
thusappliesond yields~ E [rr(f')such that -"I •• - 9 Corsome linead drr(H·) 
and K· <;; Z('I). 

We have 
X M 9r m (.l~H.J" _ .lr ~ 

and hence ... " E Irrif'). Since 1L. E Irr(L·~ Theorem 11.34 applies and we can 
find M "" L· with M <0 f' and (.n .. not homOgeneous. . ". . 

If M _ L·, let v, and ., be distinct irreducible . constituents of (1')"" 
Let I' be an irreducible eonstituent of ~L" Since r,. ~ K· ~ Z(~) we. hav~ 
1'(1) ~ I and thus I'v, and I'V, are distinct irreducible constituents oC(~.l')L. 
.:\II. XL'" This is a contradict.ion since XL" is homogeneous. , 

Thereforc. M > U. Since (1,)" is not homogeneous, Theorem 6.11 
yields a subgroup T "" M with T < rand 0/1 e Jrr(T) such that oiIr ~ ;,c. ThUll 

X ~ ~) ... 5 ~o/I,. - (~To/If, ':'. .1 

Since Z ~ ker X we have Z G ker(qToiIl and thus in G, ~ is induc';,!'Crom 
the proper subgroup T/2 < G. Also, T/2 02 M/2 > L and this contradict, 
the lirst sentence of the proof. It follows that XL is not homogeneous and,the 
proof is complete. I 

Problems 

(11.1) Let ~, fJ E 2(G, F' ~ where F i •• lield. If ~ and fJ are equiValent, 'how 
that £"'[G] ;;:: F'[G]. , .,j 
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(11.2) . Let ~., ZIG. A) and leI 9 c G. Show that ~(x, y) ~ ~(y, x) for x. 
ye (u). 

Note In general, xy - yx docs not imply that ~(x, y) ~ .(y. x). 

(11.3) Let • ., ZIG. A) and let x. y E G commute. Assume that A is divisible . 
S~o.w that a:(x~ y) ~ !l(Yt x) iff the: restriction of IX to (x. y) is cquivaltmt to the 
trlvlal factor Set. 

/Ii'll Use Lemma 11.16. 

(IIA) Let. E 2(G, A). Say Ihat g. EGis ~-spe~ial if ~(g, c) ~ .(e, g) for eVery 
c e CG(g). Show that If 9 IS «-speCial, then so IS every conjugate of g in G. 

/lint Let (f', n) be as in Lemma 11.16 with respect to G, A. and •. Then 
n(x) " .-specoal ,If n(Crlx)) ~ Co(n(x)). 

Note rf C( and P ar: eqlli~alent. then g eGis (X-special iff it is (J-spccial. 
Thus One can speak oC .-spce,al elements for Ii E /I(G. A). 

(11.5) Let ~ E 2(? A) and let X be a conjugacy ci.ss of G. Show that X 
consists of IX7 spccial elements (see Problem 11.4) iff there exists a function 
I" X -+ A such that 

I'(g)a(g, h) ~ I«g')a(h. g') 

for all 9 E X and h E G. 

. Hint See t,he hinl for Problem 11.4, Consider the conjugacy class of X 

I~ r, ~her~ xiJ lS the coset representative of A in r corresponding to g, ~ 

(11.6) Let (f'. 1!) be a finite central extension of G with ker n ~ A. Choose a 
set of coset representatives for A in r and let IX e Z(G~ A) be as in Lemma l1.9, 
Let'l E A. For e.ch X. Eirr(f'I.l), choose a rcpresentation 'lJ a/fording X and 
co.nstruct the p~?Je~tlYI: C-represe.ntation I" as in Lemma 1 1. to, Show that 
th .. defines., blJecuon of lrrjf'I.l) onto the set of similarity classes of irre. 

proJcchve C-represemation, of G with faclor sct ,J(.). 

(11.7) Let a E 2(G, C'). Show that C· [G] is semisimple. 

, Hint Show that L (dim M)l lWl IG I, where M runs over a representative 
set ofirrcducible C"[G]-modules. Use Problem 11.6. '-

(11.8) Let. E 2(G. F'). Show that dion 7..(F'[G]) is equal to the number of 
COnJugacy classes of (X-special eh::mcnts in G, 

Hint Use Problem IU. 

~J1.9) Let (G. N, 9) be, charactertriplc.lfg" G/N, say that g is a-special if.9 
18 extendIble to (N, g, c) for all c ~ G with [g. cJ EN. Check that this is well 

• 
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defined. Let P E lI(GIN, C') be as in Theorem 11.7. Show that 9 e GIN is 
a-special iff it is p-special. (Sec the note following Problem 1104.) 

Note It is clear (without appeal to Problem 11.4) that conjugates of 
.9.special elements in GIN are .9·special. 

(11.10) (Gallagher) Let (G. N. 9) be a character triple. Show that Ilrr(GI9)1 
is the number of a.special conjugacy cla ... s of GIN. 

Him Several of the previous problems are relevanl. 

(11.11) The character triple (G, N, 9) is }lilly ramified if there exists 
xdrr(GI9) such that (x(l)f9(I))' ~ IG:NI. Suppose (G. N, 9) is [uHy rami. 
fied and G > N. Show that no cyclic subgroup of GIN can be it. own cen· 
trali.er in GIN. 

Hint Use Problem II.IO. 

(11.12) Let (G. N.,9) be a character triple. For X.yEG with [x,yJeN. 
define the complex number «.<. y) as follows: Let >/I be an extension of 8 to 
/I z (N, y). Write >/Ix >/I). for). 0 Irr(HIN) and put «x, Y) ~ ).(y). Show 
that «,» is uniquely defined and that 

(a) (x, y) ~ (XII. ym) for n. mEN; 
(b) (x,x,. y» (x,. y)(x,y» whenever (x,. y]. [x" .vJ EN; 
(e) (x. y) ~ ,9([x, y]) if.9 is linear. 

Note By (a) we can view «.:J> as being defined on commuting pairs of 
elements of G/N. 

(.11.13) Let (G.N •• 9) bo a character triple. If N 5; H5 G, >/I e eh(H I a). 
and Ii ~ gN e GIN we define >/I' E Ch(H'1 ,9) by >/I'(h') s >/I(h). Check that this 
is well defined. We say that the isomorphism. 

(f. <1): (G. N. II) - (r. M, "') 

isstrung provided (",,(>/I)"" ~ ",,(>/11) for all 11 E G/N.all H with N ;; H ;; G 
and all >/I" Ch(H 1.9). Show that the isomorphism constructed in Theorem 
.11.28 is strong. 

(11.14) In the notation of Problem 11.12, show that (!C, y) ~ (y, xr t • 

and «x. y,y,) ~ (x, y,){x, y,) if [x. YI]' [x, y,] e N. 

Him Viewing (,) as defined on commuting pair. of element. of GIN. 
it is invariant under strong isomorphisms of character triples. (See Problem 
11.11) 

I 

ProblelTlB 197 

(11.15) Let (G. N. ,9) be a character triple. 

(a) If g E G and «.y. x) '" I for some !< e G, show that r.(g) ~ 0 for all 
X" Irr(GI·9). 

(b) If Ii" GIN. show that g is 9.special iff (g. x» ~ I for all x E 0 such 
that (g, x» is defined. 

See Problems 11.12 and 11.9 for definitions. 

(11.16) Let E be elementary abelian of order p'. Show thai M(E) is elemen­
tary abelian of order p"'- "12. 

Hint Consider a Schur representation group for E to get I M(Eli 
:> p~'- "". For equality. lei {x,11 :;; i :s; nl be a generating set for E. 
DeHne /Xu: E x E -+ C by C(1~n x/", 11 x/,") = r.u"1J, where r,. is a primitive 
pth root of unity. 

(1!.17) LetG~A,.ShowthaIIM(G)I=2. 

Note In fact,IM(A,)1 c 2 for all n ., 4 except for n 6.7. where the 
Schur muhipliers have order 6. 

(11.18) LetG ~ CH.whereHandC.recyclic.C .. G.andH r'"l C = 7"(G). 
Show that M(G) ~ L 

Hint· If r is a Schur representation group for G. show that 10'1 I r' I. 
(11.19) leI (r,. "') and (r,. "') be Schur representation groups (or G. Dc· 
liner" r, x r. byr = [(x. y)l",(x) m ",(y)} .nd.howth~\ r', ~ r' ~ r', 

Hint Let A, = ker 'n, and define n; r _ G by ,,(x. y) ",(x). SQ that 
ker" = A, " A, and (r. n) i. a central e~tension of G. Usc Theorem 11.19 
to .how that WI ~ In I. Note that tr': r' r'"l (A, x A,)I ~ IG'I. 

Note One cannot conclude that r, ~ r, .s the two nonabelian group. 
of order p' show. If G = G' then r, ~ r; and r, ~ r, in this cas •. 



12 Character degrees 

Let e.d:(G) denote' the set (x(I)lx E Irr(G)), where G is a group. In this 
chapter we consider what can be said aboutG when c.rl.(G) is known. We have 
altcady Seen in Theorem 6.9 that if every f "c.d.(G) is a power of the prime p 
then G has an abelian normal p·complement. The first results in this chapter 
consider a weaker hypothesis, namely that p divides f for e"cry f E e.d.(G) 
withf> t. . , 

(12.1) THEOREM Fix a prime p. Write .<I'(G) ~ (X. Irr(G)lp'(x(l) and 
p,j'o(X)}· Let ,(G) ; L",o, X(I)'. Then 

IO'(G)1 .. ,{G) mod p. 

Proof Let N ~ O"(G). Since O'(N) e N, N c~n have nO irreducible 
character with determinant.1 order divisible by p. Thus Irr(N) ~. 
.'I'(N) u (t/!Elrr(N)lplt/!(Ij) and hence INI ~ L'.'n'N,t/!(I)' '" sIN) mod p. 
It will therefore suffice to show that sIN) " s(G) mod p, 

Now G acts On .9'(N) and the resulting orbits are of p·power size. Let 
.<1'0 ~ (t/! ".<I'(N)It/! is G-invariant). Since all characters in an orbit have 
equal degrees, it follows that .'i(N) iiIiI LIIr • .Ya 1/1(1)2 mod p. We show that re­
striction detlnes a one-to-one map of 9'(0) onto!/ 0 and this will complete the 
proof. 

If X E .'i'(G) then (X(I), I G: N I) - I and So X. E Irr(N) by Problem 6.7. 
Thus x." .9'0' Conversely, ift/! E.9' 0 then by Corollary 6.28, t/! is extendible to 
G and a unique extension of t/! lies in .9'(G). The resuit now follows, I 

• The: initials c.d. stand for .. ~haracte:r d~,greeti." 

.... 
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(12.2) COkOLLAl<v (Thompson) Suppose plx(1) for every nonlinear 
X" Jrr(G), where p is a prime. Then G has a normal p.complement. 

I'roo/ In the notation of Theorem 12.1, all X G Y(G) arc linear and have 
kernels which c~>ntain O'·(G). 1l follows that .9'(G) ; Irr(G/G'O"(G» and 
s(G)=.IG:G'O'(G)I. Thus p,(>{G) and hence by 12.1, p,j'IO'(G)I. Thus 
O'(G) IS a normal p.complement for G. I 

.. Th~ fOllowi?8 lemma is very useful for inductive proofs of theorems 
giVing mformatlOn about G when c.d.(G) is known. 

(12.3) Lf.MMA Let G be solvable and aSSUme that G' is the unique minimal 
normal subgroup of G. Then all nonlinear irreducible chal'actcrs of G have 
equal degree/and one of the following situations obtains: 

(a) G is a p·group, ZIG) is cyelic and G/Z{G) is elementary abelian of 
order f'. . 

(b) G is H Frolx:nius group with an ahelian FrObcnius complement of 
order! Also. G' is the Frobenius kernel and is an elementary abelian p-group. 

,:'Oof I~ Z{G! '" I, we must have that ZIG) is a cyclic p.grolip and 
G - Z(G)wlthIG I ~ p,EverYXEIrr(G)wlthX(l) > 1 is faithful and satis1ies 
X(I)' E I G: Z{G)I by Theorem 2.31. If x, Y E G, then since [x, V] E ZIG) we 
have [x', y] ~ [x, y)' ~ I since I G'I ~ p. Thus _<' E Z{G) for all x e G. This 
completes the proof in situation (a). 

Now suppose that ZIG) ~ 1. Certainly, G' is an elementary abelian 
p-group for Some prime p. Choose q JIG I, a prime different from p and let 
Q e Syl,.<G). Then G' Q '" G and it follows by the Frattini argument that 
G '" G N where N ~ NG(Q). Now N n G' <l N since G' <J G anti 
N n G' <l G' since G' is abelian. Thus N C\ G' <l G. Now Q.., G and so 
N < G and N iI1 G'. By the minimality of G', it follows that N C\ G' ~ 1 and 
thus N is abelian. 
, If 1 io .;; t N, then N normalizes CG,(x) since N centralizes x. Since 
Cdx) <l G We have Ca.(.>:)"", NG' ; G, If C •. (x) '" I, then x centralizes G' 
and It f?1l0~' that.x E Z{G), a Contradiction. It follow, that Ca.(x);' 1 and 
thus G IS a F robc:nlUS group with kernel G' and complement N by Problem 
7.1. We conclude that ~II nonlinear X E Irr(G) are of th.: form AG for linear 
lelrr(G'). Thus IG:G'I ~ INI is the COmmon degree of all nonlinear irre. 

.: dUCJble characters of G. The proof is comple.te. I 

The way Lemma 12.3 is ~pplicd in practice is the fOllowing. Given nOn­
"_ ..•• ~ .. a" G,let K <I G be maxImal such that G/I( is non.belian. Then (G/I(), 
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is the unique "{inimal normal ,ubgrollp of GIK. Thus either GIK is nM- •. 
solvable or el,. satislies the hypotheses of Lemma 12.3. 

liz is a character ofG, we introduce the notation V(x) ~ <g E G I X(u) " 0). 
Then V(X), the ",mishi1Iy-off,ubgroup, is the smallest subgroup, V s; (I such 
that z vani'hes on G - V. Of course, V(X) <I e. 

The relevance of V(x) to character degrees is this. Suppose X G Irr(G) and 
V(X) s; N <l G. -rhen by Lemma 2.29, we have (X., XN] ~ Ie: NI. Now 
write XlV 'II;;' e :El= I ,9 j where the .9/ E Il'r(N) are distinct and of equal degree 
(Theorem 6.2). We have IG: NI a [r.., XN) = e' , and 1.(1) = .,8(1), where 
,9 is one of the ,9,. It follows that IG:NI,9(1)' divides X(I)'. In particular, 
10: NI ,. 1.(1)' and 1.(1) is divisible by every prime divisor oflG: NI. 

The following result is useful when K <l G and GIK satisfies the con­
ditions of ca .. (b) of Lemma 12.3. 

(12.4) THEOREM Let K <l C be such that (ilK i. (I Frob.nius group with 
kernel N IK, (In elementary abeli«n p·group. Let t/I e: Irr(N). Then one of the 
following hold •. 

(a) IG: NIt/t(I)Ec.d.(G). 
(b) V(t/I)s; K and thus IN:Kldividcst/t(l)'. 

Proof For I.E IJ'r(NIK), let T(i.) denote 10 (1/11.), so that T(I.):1 N. JI 
T(A) N for .ome i., then (1,1/1)" <i Irr(C) and hencelG: NII/I(I)ec.d.(G). We 
suppo •• then, that '1'(;;') :> N for nil i" 

Let W V(4,)K so that K !;;; W 5i N and let S ~ No(W) ;2 N. Since 
I G(t/I) normaliZe< V(t/I), we h!lve I Glt/I) \;; S. However. V(t/I) V().I/I) for all 
.!. Irr(N IK) since the A are linear, and it follows that T(i.) !;i S lor all .t 

Now view NIK as an F[SIN}module, where F is the field with p ele­
ments. Since GIK is a Frob.nius group, we have IGINI divides INIKI- I,' 
and thllS p.fICINI. In particular, p.fISINI and hence NIK is completely. 
reducible as an F[SIN}module by Maschke's Theorem 1.9. Since WIK is 
a "ubmodule, we can write NIK ~ (WIK) x (U/K). where S normalizes U. 

Now suppose W> K so that U < N. Let i. E Irr(NIU) with I. ~ IN' . 
Since GIK i. a Frobenius group, we have 10 (1.) ~ N and thus 11.1.) = N. 
Therefore. Ilrr(NIUIi <: I + ISINI. We claim that there exist distinct 
J.d' € Irr(NIU) with 'q.!) ('\ T(II) > N. If not, then since N <. T(I.) ~ S fOf 
alllGlrr(NIU) we have . 

ISINI- I ;;, L:(lt(.\)!NI- I);;, Ilrr(NIU)I:> ISINI, 

where the .um runs over.! e1rr(N IU). This contradiction show. that A, 
"E Irr(N IU) exist wilh 'I'(.!) n T(,l) > Nand'! '" I', as claimed. 

Now let x E (T(l) ('\ T(~)) - N and write, = Ai'i.. Then Ax = ,..,." and 

I/IA. ~ (t/lA)' = ",xAx ~ (t/I',..')v" = (1/11'1'" c t/lI'" 
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and thus t/I' = t/I" and we have V(I/I) S; ker("·')' Also U s; ker(v") and thus 
N ~ V(t/ljU 50 ker(v'') so that v .... '" I. and ,x'" v. Since ), ~ ~, we have 
v'" IN and I(,(v) '" N. This contradicts x ¢ Nand thu, prove, that W = K 
and V(l/I) s; K as desired, That this implies IN: K!lt/I(I)' follows from the 
remark. preceding the statement of the theorem. I 

In. particular, in the situation o( Theorem 12.4, we have for 1/1" Irr(N) 
that either I G : N I ",(I) "c.d.W) or pi t/I(1). This most important consequence 
of 12.4 could have been obtained with somewhat less work than was needed 
to prove the lull ,trength of the theorem. 

(12.5) THEOREM Let c.d.(G) = (I, m). Then at least one of the (allowing 
occurs. 

(8) G has an abelian normal subgroup of index m. 
(b) m = p' for. I'd me p and (i is the direct product oI" p-group and an 

abelian group. 

Proof Suppo •• there exists K ... G sllch that G/K satisfies conclusion 
(b) of Lemma 12.3. Let NIK g (OIK), sO that IG: NI = m and NIK is a 
p-groop. Since GIK is a Frobenius group, ml(INIKI- I) and sO pJm. We 
claim that N i, abelian. 

Let t/I. Irr(N) and let X be an irreducible constituent of 1/1". Then X(I) ~ I 
or m and 1'I(1)lx(I). In particular, pN(I). By Theorem 12.4, ml/l(I)Ec.d.(O) 
and thus 1/1(1) ~ I. This est.blishe. the claim and situation (a) olthe theorem 
holds in this ca,e. . 

We now suppose thill no K ... G as above exists. Let n be the ,et ol prime 
divisors ol m. By CorQllary 12.2, G has a normal p-complement for every 
pEn. II Inl > 1, then e has no irreducible character of p-power degree and 
hence CIO'(O) i. abelian for.1I p. It follows that 0' is a n'-group. Since the 
elements ofc.d.(O') divide clements of c.d.(G), we conclude that c.d.(G') ~ (I) 
and G' is abelian. In particular, 0 is solvable. Now let K <I G be maximal such 
that GIK i. Ilonabeli.n. Thus elK sati.fies the hypotheses of Lomma 1203. By 
~;uum"mption, we are in case (a) of the lemma and this contradicts m n01 being 
a prime power. 

We may now assume that 11 e (p). Let A be the normal p.complemcnt of 
o sO ~hat A is abelian. Let A E Irr(A) and let 'r ~ Io(),). If 1/1 is any irreducible 
conslltuent of ),G. then by Clifford's theorem,IG: "/'I divides t/I(I), and thus 
Ie: TI ,. m. Now (I,.)" is not irreducible and has degree sm. It follows that 
all of its irreducible constituents are linear and thus G' ~ ker((I T)O) s; T. 
(Note that we have just done Problem 5.14(c).) 

. . Now if D "'n",,, .. , h(A), then A ~ Z(~) for all e € Irr(D) and thus 
A ,;; Z(m Thus D = A x P for P ~ Syl.(D). Since C' SO D, we have D "" G 
arid 'hence P"", G, If 0' ~ P then [G. A] ~ A ('\ P = I so that A ~ ZIG) 
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the result follows. Otherwise. let K ;< P. K <l G with K maximal such th~t 
GIK is non.belian. Since 0 is solvable, the hypotheses of Lemm. 12.3 are 
satisfied. By assumption we are in case (a) or the lemma and G/Kis a p-group. 
Thus K '" 0'(0) ~ A. We have K ;;> AP ~ D ;;, G' and this contradicts 
GIK being non abelian and completes the proof. I 

(12.6) CO_OLLARY If Ic.d.(G)1 ~ 2, then 0' is abelian." 
, 

Proof Let e.d.(O) = (1. mi· If A <l G with IG ;AI = m then GIA C8J) 

have nO nonlinear irreducible characters and so is abelian. Thus if qse (ajof 
Theorem 12.5 holds. we are done. 

In case (b) of 12.5. G is nilpotent and hence is an M·group by Corollary 
6.14. The result follows by Theorem 5.12. I " 

In the case that m is a prime we can 'sharpen Theorem 12.5 to give a 
necessary and sufficient condition on G that c.d.(O) = n. mi. The followi~g 
results prove more than is necded for this and will be used again. Theorem 
12.7 is actually a generalization of Theorem 6.16. ' 

(12.7) THooR"'" Let N"", 0 and ,uppose 9, •. 9,,, Irr(N) are invariant in G 
and .9,.9, t Irr(N). Let X, be all irreducible constituent of (9,)" for i '" 1,2 
and let t/J be an irreducible constituent of X I X:.l:' Then 

1b(l)x,(I) :e: X,(I).9,(I)'. 

Proof We have 0,," [x,x,. Ib] = [X,. Ibi,] and thus X, is. constituent 
of Ibi ,. AI.o (X,). = (x,( I )/.9,(1 )).9, and it follows that 

X,( I )19,(1) :£ [8,. (Ib .)(i,).] = [.9,(x ,)., .p.]. 

However. (X,). ~ (x,(1)19,(I))9, and this yidds 
, I 

X,(I) X,(I) 
:9,(1) :£ 9,(1) [8,11,. lb.].. 

Now 9,9, is the unique irreducible constituent of lb. and thus [9,9" lb.] 
~ >1«1)/9,(1)9,(1). Substitule this in the above and simplify to obtain the 

result. I 
(12.8) COROLLARY LeI N <> G and suppose fJ" Irr(O) with N '" Z(P). 
9EI,,(N). Then there exists an integer h such that M(I)to.d.(O) 
b':e: P(I)t,wheret = IG:/o(9)1. 

" 
Proof Let T = I G(m and let y be an irreducible constituent of PT' Then; . 

fJ is a constituent of yO and so P(\) :£ ),(1) •. Also. N ,. Z(y) and 'we . 
Y. ~ y( 11.1. Let e be an irreducible oonstituent of 9T and let ~ be an irred"oilllo 
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constituent of {y. Since .9). E Irr(N). Theorem 12.7. applies and so 

W)q(l) ;:, y(l)9(1)'. 

Thus 

n l)~G(I) :e: y( I )t' 9(1)' ;:, /3( I)t 9( I)' . 
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Now T = /G('~i -:, 10(9.1) and hence ¢". qG E Irr(G) by Theorem 6.11. Lcq be 
whichever of ¢ • ~ has larger degree. Then X(I) = b9{l)forsome integer band 

h'.9(I)' ~ x(l)' :e: {G(I)'!"(l):e: {J(I)t.9(1)' 

and the result follow,. I 

(12.9) COROLLARY Lct c.d.(O) = {I. p}, where p is a prime. Then there 
e"sts abehan A", G wilh 10: A I = p or 1". 

Pro?! By Theorem 12_~, we may assume that G is a p~group. Lt:l K.q G 
be m.ax,mal such that GIK IS nonabelian and lot ZIK = Z(OIK). B Lemma 
12.3 ,t follows that I G: zi = p'. y 

Let Ii .1.,(OIK) with 13(1) ~ I' and let .9 5 I ,,(Z). Then since Z <;; Z(Pl. 
Co.rollary 12.8 y,e1ds an ,nteg~r b ,udlthat b' ;:, 13(1) '= p and b,9(l) 0 c.d.(O). 
ThIS forces .9(1) = I. Thus Z IS abeilan and the. proof is complete. I 
(12.10) LBMMA Let A ,,; 0 be abelian and let b = max(e.d.(O)). Then 

(lIlA I) I I Cola) I ;:, 101/b. 
"A 

Proof Since ICG(a)1 = L:, Ix(a)I' for x.e hr(G). we have 

(IliA I) I ICG(aJi = (1/IAI)LLlx(all' = L[XA.X,]. 
/I x oj '-

However, lA is the sum of x(1) linear characters and hence [v X] ~ (I) Thus ..... A. A c:::.. X ' 

(I/IAI) L I CG(a) I :e: L x(l) . 
• 

Furthormore.IOI ~ L, x(1)' ;; b L x(!) and thus L x(l):e: IGllb . d th 
result follows. I x x an e 

(12.11) Tlir.oR"'" Let G be nonabelian and let p be a prime. Then c.d.(G) 
~ (I, p} ,ff one of the following holds. 

(a) There exi,t, abelian A "'" 0 with I G : A I ~ p. 
(b) I G: Z(Gli = p'. 

. Pro'.'.! If(a) h~lds. then ~(I)lp for every X" !rr(G) by Ito's Theorem 6.15. 
Smce (, IS nonabehan. c.d.(G) ~ {I. pl. If I 0: Z(G)I = p', then x(1)' :£ p' by 

.• , 
I . , i. 

I 

! I 
I 
I 

I 
i 
I 

I 
I 
i 
! 
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Corollary 2.30 and x(l)lp' by 6.15 (or lI2), Again it follows that c,d,(G) 
~ {I, pl, 

Conver .. ly, suppo,e c,d,(O) {I, p} and assume that (al is fal,., We may 
."ume that 0 is a p-group, By Corollary 12,9, there exists abelian A <l 0 
with 10 : A I p', By Lemma 12,10, we have 

(I/IAI) L: IC,,(a)1 ~ 101/p, 
,," 

Now A acls by conj('gation on 0 - A and by Corollary $,15, the number 
of orbits of this action is 

(1/IAJ)I(JCo(a)I-IAIl :<:(lGI/r) -IAI, 
,," 

It follows that the average size tt of these orbits satisfies 

~ '" (IGI-IAI)/«IGI/p) -IAll ~ p -I- I < p' 

and so A has an orbit orsizc I or p on G - A. Since G does not have an abelian 
subgroup of index p, A ~ Co(A) and thus there exists x E 0 - A in an orbit 
of size p, Let K ~ <A, x), Then Z(K) ~ CA(x) has index p in A and index p' 
in G, We shall show that Z(G) ~ Z(K) to complete the proof. 

Let Z ~ Z(K), If X Girr(G) and X" is irreducible, then Z SO Z{x) and 
[G, ZJ ~ ker X. On the other hand, if XI( reduces. then all irreducible con­
stituents arc linear and K' ~ kt!r X' Suppose [G. Z] > 1. We also have 
K' > I bul K' " [G, Z] SO ker X for every X E Irr(G) so that K' ('\ [0, Z] ~ L 
Now K,[G, Z) is the direct product of two nontrivial groups and so has an 
irreducible character ,9 with K'1t kcr 8 and [G, Z] It ker ,9, Let X be an 
irreducible constituent of ,9". Then K' If, ker X and [0, Z] '1; ker X. This 
contradiction shows that [G, Zl ~ I and completes the proof. I 

We remark that the la.t several sentences of the proof could be replaced by 
an appeal to Problem 5.26, 

Next we refine Theorem 12.5 in a somewhat different direction, Namely, 
if o,d,(O) ~ {I, ml and 0 has no abelian normal subgroup of index m, then 
the nil potence class of G is S 3, ' 

(12.12) LEMMA tet A <J 0 with A abelian and G/A cyclic, Then IAI ~ 
IO'IIA" Z(G)I, 

Proof l.et O/A ~ (Ag> and let .,-: A - A be defined by .,-(a) = a-la', 
Then 11 is • homomorphism and ker q = CAV)) ~ A ('\ 7,,(0), Let I be the 
imnge of~, Then 9 G N(I) and so I <I G, Since 0 ~ (A, g) and 9 centralizes 
A mod I, it follows that 0/1 is abelian and G' S;; T, Clearly, I SO 0' and hence 

IAI m Ikero'llli = IA n Z(G)IIO'I 

and the proof is complete, I 
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(12.13) LEMMA tet c,d,(G) = (I, ml and suppose A, B ,;; G are abelian or 
index m with A ,. B. Then IG'I s m and G' ,;; Z(G), 

Proof If K s; G with IG: KI :> m, then G',;;; K and hence K <J G 
by Prohlcm 5.14(c), In particular, A "" G, Let A -< K SO 0, then K <I G 
and thus K' "" G, If K' -< 0', let 10' .. I' E Irr(G'/K') and let X be an irre­
ducible constituent of /,", Now K' Iii ker X and so X. has a linear constituent 
). and x(1) :s; ).G(I) 10: KI -< m, Thus x(1) I and 0' kcr X' It follows 
that G' kc:r t(,. contradicting the choice or 11. '11ereforc K' G', 

Since A ,. 8, let b ~ 8 - A and let K ~ (.4, b), Thus K/A is cyclic and 
IG'I ~ IK'I IA: A" Z{Kli by lemma 12.12, However, 

.4 " Z(K) :2 A " B 

and.o IA: A" Z(K)I s IA: A .... 81 S IG; BI ~ m and the first assertion is 
proved. 

For 9 t G, the conjugacy class of 9 is contained in the coset gG' and so has 
'size:$ 10'1 :s; m, Thus 10: C(g)1 '" m and G' ,;;; C(g) by the first sentence of 
the proof. Sinceg is arbitrary, we have G' SO Z{G) and the proof is complete, I 

(12.14) T"EOREM Let c,d.(G) ~ {I, m} and suppose that G has no abelian 
normal subgroup of index m, Then [G, G'] ,;; Z(G), that is, G is nilpotent of 
class ::;3. 

"'o~r By Theorem 12,5 we may assume that G i. a p·group. If G has a 
faithful irreducible character X then X = ),G for linear). E Irr(K) and K ,;; (; 
since 0 isan M-group. We have IG: KI ~ X(I) ~ m and sO K <J G by Prob· 
fem 5.14(c}. Thus all irreducible constituents of x. are linear and K' ,;; ker X 
m 11 a contradiction. 

Thus G has no faithful irreducible character and hence 1..(0) is not cyclic, 
Let Z" Z2' Z, s; Z{G) be distinct subgroups of order p, If O/Z, is of nil· 
potence class :;;3. then [G. G, G, G] ;; Z" If thi. happens ror two distinct 
Z" we conclude that [G, G. (i, OJ = 1 and we are done, 

Assume then that GIZ t and O/Z, (say) do not have class :s;3. Working by 
induction on I G I, it follows that there e~ist A, B <I G with 10: A I m 
IG: BI and A' ,; Z, and 8' S Z" Let Z ~ Z,Z, so that AZ/Z and BZ/Z are 
abelian. Since GIZ is non.belian, we have m ~ c,d,(Glz) and so I G: AZI ~ m 
and 10: 8Z1 :<: m, It follows that Z ,;; A .... 8, 

If A/Z ~ BIZ, then A' ,; Z, " Z, - I and A is abelian, a contradiction, 
Thus A/Z ~ 81Z and Lemma 12.13 applie. to yield G'Z/Z 50 Z{G/Z), Thus 
[G'. G] ,;; Z s Z{G) and the proof is complete, I 

((::.}i~_/ \.) 
;' , '.' '. " ., 
"i ' • 
, " 

" ' I 
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We now consider groups G for which le.d.(G)! _ 3. Although the in­
formation obtained is not as detailed as when 1 c.d.(G) I = 2, we do prove a 
result analogous to Corollary 12.6. 

(12.15) THEOREM Let le.d.(G)! m 3. Then Gm = I, that is. G is solvable of 
derived length,;; 3. 

Before proceeding with the proof of this result we make some gen ... 1 
remarks. As the group A, shows. we cannot conclude from I c.d.(G) I m 4 
that G is solvable. It has been conjectured by G. Seitz that for solvable 
G. d.I.(G) ,;; le.d.(G)I. (Here, d.I.(G) is the derived lellgth of G; the smallest 
integer k for which G(~'. the kth commutator subgroup of Gt is trivial.) By 
Theorem 5.12, this conjecture holds for M-groups. It has also been proved 
when I c.d.(G) I = 4 (S. Garrison) and when I GI is odd (T. Berger). It is known 
that for any solvable group. d.I.(G) ,;; 31 c.d.(G) I. 

(12.16) LEMMA LetN<8Gwith(lNI.IG:NI)= LThen 

I c.d.(N) I ,;; le.d.(G)I. 

Also if GIN is supersolvable and N is solvable with d.I.(N) ,;; I c.d.(N)I , thcn 
d.I.(G) ,;; Ic.d.(G)I. 

Proof Let n be the set of prime divisors of I N I. If X "'rr(G~ let 9 be an 
irreducible constituent of X •. By Corollary 11.29, X(l)/.9(I) dividesIG:NI. 
Since 9(1) divides IN!. it follows that 9(1) is exactly the "-part of x(1). Sil;', 
every 9 e Irr(N) arises this way, we see thot c.d.(N) is e .. ctly the set of II.Parts 
of the clements of e.d.(G). Th. first assertion follows. 

Now assume that N is solvable and GIN is super.olvable. It follows that' 
G/N' is an M-group by Theorems 6.22 and 6.23 and thus d.I.(G/N') ,;; 
Ic.d.(G/N')I by Theorem 5.12. We may a •• ume that N' > I and observe that 

d.I.(G) ;;; d.I.(G/N') + d.I.(N') ;;; I c.d.(G/N') I + d.I.(N) - I 

,;; Ic.d.(G/N')1 + Ic.d.(N)1 - I, 

where the lasl ine4uality follow. from the assumption that d,I.(N) ,;; I c.d.W)): 
Now every f E c.d.(G/N') divides I G: N I by I~o's Theorem 6.15 and Ih~ •. 

t~e n-part of/is trivial. We conclude from the first part of the proof that" 
I c.d.(N) I ;;; Ic.d.(G)I-le.d.(G/N')I + 1andth.resultfollow~. I,:.' 

Proof(ifTh.ore," /2./J Letc.d.(G)- {l,m,n).Jf(m,n)+I,lhenG 
a proper normal p,complcment N for some prime p by Corollary t2.2 .. 
Lemma 12.16, Ic.d.(N)1 ;;; 3 and sO N is solvable and d.l.(N) ,;; Ic.d.(NJI 
induclion if le.d.(N)1 ~ 3 and by Corollary 12.6 if Ic.d.(N)I < 3. In this 
we are done by Lemma 12.16. 

-
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Assume now tha~ (n. m) OOI I. Suppose there ex.ists K"'<:;] G with GIK 
solvable and nonabelJan. We may assume that GIK satisfies the hypotheses 
o~ Lemma 12.3. If GIK is a p-group then (say) II is a power of p. Let X € Irr(G) 
wllh X(I) ~ m. Since p,f'm, we have XK E Irr(K) and thus by Gallagher's 
t~eorem (Corollary 6.17), xP E Irr(G) for P E lrr(G/K). This is a contradiction 
OInee mil ¢ c.d.(G). 

~erefore G/K is a Frobeniu, group with kernel N/K ~ (G/K)" where 
tv,/K " a p-group and I G: N I - " (say). Suppose'" € Irr(N) with ",(1) > I. 
~'"ce "",(I) ¢ c.d.(G), We con~lude from Theorem 12.4 that pi "'0). Let X be an 
Iffeduclbl,. ~onS"tuent of", . Then plx(l) and since p,f'n, we have xO) _ m. 
Thus '/;. IS irredUCible since (lG: NI, '/;(1)) - I. We conclUde that XN _ '" 
and "'(I) ~ m. Thus c.d.(N) - {I. m} and d.I.(N) ,;; 2 by Corollary 12.6 
Since G/N is abelian, we have d.l.(G) ;;; 3 as desired. . 

. Suppos~ now that no such K exists. IfX " Irr(G) with X(J) " I, then Glker X 
IS non.beh .. ,' and. thu, is non,olvable. However le.d.(G/ker x)1 ,;; 3 and 
wor~mg by mdu~tton on I G I we must have ker X _ I. Therefore, every 
nonhncar Irreducible character of G is faithful. 
. Now let" < m and let X e Irr(G) with x(l) ~ II. By Theorem 4.3, each 
lf~~uclble character of G is a constituent ofx' for suitable integers t, Let t be 
mmllnal such that t has an irredUCible constituent'" of degree m. Thus 
[X~.' *) + 0 fOrSonle irredUCible constituent { of x' - '. Now W) '" I or else 
X~. t~ J[f~duClbl< forcing X~ - '" which is not the caSe. Also W) '" m by the 
mltltmalny of t. Thus W) c II, 

Since [X;', "'] = 0 for linear ;., we conclude that [.l, "'i) _ 0 and "'i. has 
·.no linear constituents, Thus 

• • "'i = L~' + L ~l' 
1""'1 j_1 

where ~,.' ~J" Irr(G), {,(l) ~ II, ~jl) = m and a :2: 1 since ~ is onc of the ¢,. 
~omparmg degrees Yields mn e: atl "'" bm and since: (m, n) ;;;;;; 1, we have mJa. 
Since b:2::? and a > 0, this yields a !III: m and b m 0 and wi. ~ Ii-I {I' 

We claIm that each {, is of the form .l, i for .ome linear character) It 
s.ufficcs to fi?d a linear con!)tituc:rlt of X~" Suppose ((or some i) that Xe

J 
ha~ 'no 

linear constituent. Then \oJ , . 
Xe, = L Xl + L "', 

}-I kE I 

. Xl' "', € Irr(?~ xjl) ~ " and \b,(l) = m. Thus II' ~ r/I + sm and ~Is. 
;;, However, 0 .. [\bx, {,) = ["', Xea and \b is One of the \b,. Thus s :2: 1 and 
,.' hence s ~ n. Smce r ~ 0, thiS Yields nl ~ 11m and n ~ m

l 
a contradiction. 

):.:. We:: now have 'J - A,i for linear )., and thus xl/! .. L " .. i L A, and 
" 

I 
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Si'~ce ker '" I, We have "'(x) of. m for X of. I gnd thlls X(x) ~ 0 for all 
x E G' - (I j, It follows that cr."" I",] '" 0 and thus G' s; ker i. Thus con. 
t",diction completes the proof. I . 

Another technique for studying character degrees is based on the follow-' 
ing lemma. 

(l~.17) LeMMA (Garrisoll) I.et H s; a and let 9 E Irr(f{). Suppose for' 
every irreducible constituent X of ,9" that x. 8. Then V(,9) "" G, , 

Proof We have (,9")/1 is a multiple of.9 and so (.'1"). ~ IG:HI.9. Let 
h ~ H with 9(h) of. 0 and let S _ (x E a III" E It). By definition of 9G we have 

(1/1 HI) I 9(h') ~ :I"(h) - IG: III ,9(h). 
x .. s 

However, since 9G(h') ~ ,9"(h), it follows for X G S that 9(h') ~ ,9(h), This 
yields ISI:!(II) ~ IGI9(1I) and since ,9(h) of. 0, we have lSI ~ IGI and S D G, 
Thus h' e It for all g E G and ,9(h') ~ 9(h) of. O. Thu, a leaves the generating 
set for V(.?) invariant under conjugation and the result follows. I 
(12,18) LEMMA Let X E Irr(G) and let ker X < N <l G. Then 

ker X < N n V(x), 

Proof We may assume ker X = I. If V(x) n N ~ 1 then X vanishes 
on N - {I) and '0 [x., IN] # O. Thi, forces N ,;: ker X, a eontr.diction. I 

In the following, F(G) denol., the Filling s"b~ro"p of G, the (unique) 
largest normal nilpolcnt subgroup. . . 

(12.19) THr:ORIlM (BraUne-Garrison) Let X e Irr(G) and K ~ ker X. "';'h~,J··::: 
of the following conditions guarantee< the existence of "'" Irr(G) with 
\11(1) :> X(I) and ker \II < K: 

(a) K ft; 1"(0); 
(b) K 1"(0). GIK is solvable and K < O. 

PrQ(i/ Suppose Hi. iI maximal ,ubgroup of G nnd that KH ~ G. Then 
XII c 9 E Irr(H). If '" is an irreducible constituent of ,9" such that "'" .. , 
then "'H reduces and ",(I) ,. ,9(1) = x(1). Also, we cannot have (ker ",)H ~ 
or else VIII would be irreducible. The maximality of H thus yields ker "',;: , 
and since ,9 is a constitllent of \1111' we have ker '" 50 ker Ii ~ H n K < K.. . 
Thus the result follows in this shuation and we may suppo.e that whenever, 
KH = G for a rrHI.ximai subgroup If s:; G. the character:) = XII satisfies thc 
hypotho<e, of Lemma 12.17. In particular, V(,?)"", o. 
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Now we choose t"'" 0 as follows. If K It F(G), take J, ~ K.lf K S; F(O~ 
then we are in .ituation (b) and F(G) ~ K < G. Her., G; K i"olvable and we 
take L > K with t/K an elementary abelian ~hief factor of G. Thus L 
i. not nilpotent and we choose a nonnermal Sylow subgroup P of L. Note 
that in the case K _ F(G) and t :> K, we mu" have L ~ KP. By the Frattini 
argument, G ~ LNG(P) KN.(P) and No(I') < O. Let H :2 Na(P) be a 
maximal subgroup of G. Thus G ". HK and we let ~ XII' Then V(9) <J G 
and thus V(,9) 1"\ t <J G, 

Now K n H ' ker a s;; VIS) and 80 in the case K = L, we h.ve 
I' ~ K '" H s: L 1"\ V(~). In the case that t/K isa chief factor of G, we have 
(L C) H)/(ker ,9) is achieHactor of H and thus L n It <;; V(,9) by Lemma 12.18, 
T~u' in any case, P £' L n V(9) <J G and I' is Sylow in L. n VI,?), The 
Frattini argument now yields a ~ (L n V(,9»)N,P') S; H, This is a con­
tradiction nnd proves the theorem. I 
(12.21)) COROLLARY Let X E Irr(G), If either X(I) ~ max(e.d.(G)) or ker X 
is minimal among kernels of irreducible characters of G then ker X is nil­
pt.')tcnt. 

(12.21) COR(ll.LARY (Garrison) Let G be .,olv"ble and let le.d.(G)I ~ II. 

Then there exist N/ ~ G with 

1 ~ No S; N, s;; ... <;; No ~ G 

such that N, .. ,IN, is nilpotent for 0 :s; i < n. 

Proof Let N, ~ .F(G), the Fitting subgroup. Then c.d,(GIN,) s;; c.d,(G) 
and jf N, < G, then c.d.(GIN ,) does not contain the largest element ofc.d IG) 
by Theorem 12.19. In this ca.e, Ic.d.(GIN')1 < /I and the result follows by 
induction on IGI. I 

Suppose A lii G is abelian. By Problem 5.4 (or 2.9(b), I G; A I is an upper 
bound for c.d.(G), Conversely, suppose we know max(e,d,(G). Can we con­
clude that there exists an abelian subgroup with bounded index in G? We 
can, although it is certainly not true that there necessarily exists abelian 
A ,;: G with I G: A I ' rnax(c.d,(G»). 

We usc the notation b(G) _ rna,,(c,d,(O)). Note that if H 50 a and 
'" .lrr(H). then \II is a constituent of~" for some X e Irr(G), and thus 

",(1) ~ x(1) ;:; b(O) 

and hence b(H) :s; b(G). 

(12.22) LEMM,\ Let b(G) ~ b. Then there exist' x E G - {l) such that 
16: CG(X) I :s; b'. 
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Proof Let k = Ilrr( G)I - 1. Then 

101- I = L XlI)' :;; kb', 

where the ,um tuns over nonprincipal X E Irr(O). Let 

m = min{lG:CG(:<)llxeG,x", I}. 

Then I G I - I ;:: mk ,ince each of the k nonidentily conjugac,y cia,,,,,, ~as, 
size :1:m. We now have kb' :1: mk and the r.sult follows, I ' , " 
(12.23) THIlOP..IlM leI b(G) ~ b, Then G has an abelian subgroup ofinde~, ' 
:;;(bl)'. ' " 

/'roo! Use induction on b. If b ~ I. the result is trivial and if b - 2" 
then c,d.(G) = {I, 2) and We arc done by Cor~lIary 12,9, Assume then., 

thaI b "' 3, I' , II th t l.et K "" G be maximal ~uch that GIK is no~abe Ian. It .0 OM a • 
b(K) :s: b/2 since if 1/1 E Irr(K) with 1/1(1) > b12, then neceslartly 1/1 = for, 
some xe!rrjG), 8y Corollary 6.17, we have IIxelrr(G) for (ie , 
Since OIK is nonabelian, we may choose p WIth P(I) <!: 2 and thiS, 
P(I )x(l) > b, a contradiction. " .' 

8y Lemma 12,3. we have three main cases to,conSlder namely, G/K IS 

.olvable, G/K is a Frobeniu. group and G/K ts a p·group. 

elise J GIK is Ilonsolvable, Since b(G/K) :> b. Lemma 12.22 1.0 ..... ',.",. 

xeG/K such that x'" 1 and 

I (G/K) ; C'i,«(x)1 :> b'. 

Let CjK = Co,,(x), If b(C) :s: b I. then there e"i.ts a~lian A 0; C Wil~, 
IC' AI:;;: «b - I)!)' and.o IG :AI ~ IG ,CIIC :AI:> (b!) and weared?ne., 

Assume thai b(C) ~ b and let 1/1 E (rr(C) with 1/1(1) ~ b, Then every 
dueible constituent X of 1/1" satisfies X(I) '" b and thus Xc - 1/1, It follows 
Lemma 1217 that V(I/I) <l G and thus KV(I/I) <l G. IfKV(I/I) > K •. 
G/KV(I/I) i~ abelian and so C <I G since KV(I/I) S;; C. If Z/K ~,~:~~~ 
then Z <l G, Also. x E Z/K and so Z> K. It follows that G/Z 1$ 

and G/K is solvable •• contradiction, We cQnclu~e that V(I/I) S;;.1< and 
I C : K I :s: 1/1(1)' :> bl by the remarks precedmg Theorem 12.4 .. 
IO,KI;t;b·. r b of" 

fly tbe inducti.. hYJ'Othesis, K has an abe Ian su group 
';;([bI2]!)', F0r b", 5. we hay. ([b/~J!)'b':s; (b!)' and the re.ul~IQ"'>w" 
Assume then. that b:S: 4, If 2¢c,d,(G/K). then e.d,(GIK) s {I, 3, } 
contradicts the non.ol.ability of GIK by Theorem 12.15. ~us 
choose .9 61rr( GIK) with 9( I) ~ 2. We have G/ker .9 IS non.behan and nell""'., 
~.r.9 p 1<, leI M/K p (GIK),. Then M' 11: K = kcr 8 and hence 9" 

.. " ---~-------
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irreducible. Pick Y E MIK of order 2, Since y" ker(det(9». il follows that 
y E Z(8) ~ Z(GIK) m 1, a contradiction, This completes case l. 

Casd O/K is a Frobenius group, Let N/K = (G/K),. Ihe Frobenius 
kernel. By Lemma 12,3, IG: NI ec,d,(G) and so IG: NI:s; h. It b(N) ~ b/2. 
then application of the inducti"e hypothesis to N yields an abelian subgroup 
A Ii N with IN: A I ~ ([b/2]!)'. Since b([bf2] i)' :s; (b!)' we arc done, 

Stippo,e then. that beN) > h/2 and let 1/1 E Irr(N) with 1/1(1) > b/2, Theil 
1/1(1 JI G : N I ~ c,d,(G) and by Theorem 12.4 it follows that I/I( I)' :l: IN: I< I 
and hence IG: K I ::: b', Since b "' 3, we have ([b/2]!)'b' ~ (b!)' and we are 
done in case 2 by applying the inductive hypothesis to K. 

Casd GIKisap-sroup, LetZ/K ~ Z(G/K),8yLemma 12,3.IG:ZI c 

P(I)'.where{ielrr(G)andZ S;; Z({J),lnp.rtiClIl.r.IG:ZI:s; &',lfb(2) > h/l. 
pick 1/1 ~ Irr(Z) with ~(I) > b12. Then ~ m ~. for some X E Itr(G), It follow. 
from Theorem 12,7 or 6,16 that P(I)I/I(1)ec.d,(G) .nd this is a contradiclion 
since P(I)I/I(I) > h, Thus biZ) :;:; b/2 and Ihe result follows as in previous 
CI\$es since. ([b/2J!)'b' ;t; (h!)'. The proof is now complete, I 

It is apparent in the above proof that in cases 2 and 3. the inequalities 
obtained are far from being beSt possible, The limiting factor in this proof is 

... the nonsolvable caSe 1. If One assum .. that G is solv.ble it is possible to 
, obtain a belter bound. It is not known what the besl possible bound is either 

in the general situation or for solvable groups. 
The following result provides a tool which can be uscd to find all abelian 

" subgroup in G of index Sb(G)4 when G has an abelian normal subgroup with 
, nilpolent factor group. (Compare Theorem 12,24 with part (a) of Theorem 

12.19,) 

(12,24) THEORlrM (BroJi/le) Let xclrr(G) and let K = ker X and F/K = 
':, F(G/K). Suppose F is not nilpotent, Then there exists 1/1 E Irr(G) with 

1/1 <. K. 

'.' '.. Proof Let Q E Syl,(F) with Q..p f' and let H 2 Na(Q) be a maximal 
' .. aubgroup, Now QK"'7' G ,ince F/K is nilpOlent and normal in G/K and 
i, HK ~ 0 by the Frattini argument, Thus ,9 = Xff Eirr(H), 

Since ker(aG
) S fI, we have ker{aG) 'i!. 1(, Let 1/1 be an irreducible COI1-

;,ajiituenl of aG with K 11: ker 1/1 and let L ~ kcr 1/1. If L Si H. thc~ L S;; ker ,9 = 
K <. K and we are done, Suppo,e then, that L ~ H so tbat LH a G 

1/1" is irredUCible, Then 1/1" ~ .9 ami L" II = ker a ~ K " H, Write 
.... ker ,9, 

Now K " L <l G and K > K " L ;2 K n /I, It follows thai 

(K n L)II <. KII = G 
thu$ K n L S;; II. ·rherefor. K " L = K " H m N 
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We have 
IF:F(\I1I = IG:t11 = IL:NI = IKL:KI. 

Since Q <;; F (\ lJ and Q~Syl.(F), it rollows that q,r I KLIK I. Since 
KQIK <J GIK, we conclude that the commutator (KLIK, KQIK] = I and 
thus [L, Q] s K. Since L <l G, we have [L, Q] s K (\ L = N and hence 
L S N(NQ). However, 

NQ = (II (\ K)Q = H n KQ"" H 

since KQ <l G. Therefore, G = LH S; N(NQ) and NQ <1 G. The Frattin; 
argument yields G = NN(Q) <;; IJ, a contradiction. I 
(12.25) LEMMA Let 0" = I and let m ~ IG:F(G)I. Then m S b(G) and' 
b(F( 0)) :£ b( Gl/m. 

PrOof Let X E Irr(G) be such that ker X i. minimal. Since 0 is a relative 
M-group with re.pect to 0' which is abelian, there exi,t. H ;2 G' and 
linear Aelrr(H) .ueh that).G = x. Also, H i2 ker X. Since H <l G, all irre. 
ducible constituents or XH are linear and thus Hjker X is abelian. Thus' 
Hjker Xi: .'(Ojker X) and hence H is nilpotent by Theorem 12.24. In 
particular,H S F(G)andm S IG:HI X(I):!> h(G). 

Now let ,~€ Irr(F(G)) and let i/J be an irreducible constituent of 
Choose X e Irr(G) with minimal ker X s; ker i/J and let H be as above ' 
10: HI:!> b(G), Hjker X abelian and If s; F(G). We have H' S ker X S ker i/J _ 
and thus ,pH has linear constituent •. Thus SH has linear coostituents and .. 
hence S(l) :;; 11'(0): lfI = 1 G: Hllm :;; b(G)/m and the proofis complete. I 
(12.26) 'I'IIEOREM Suppose V"", 0 is abelian and GIV is nilpotent. Then: .­
there exists abelian A .. G such that 10: A I :£ b(G)·. ,'.:: 

Proof Use induction on h ~ biG). We may assume h ;> t and so Gis: 
not abehan. I'irst, suppose that every nilpotent factor group of G is abelian:', 
Then G' S;; V. G" ~ I and Lemma 12.25 applies. Since 0 is not' '::" 
F(G) <: 0 and b(F(G));;; him <: h, where m ~ 10: F(G) I ;;; h. By in- ",: '. 
ductive hypothesis, there exist. abelian A S;; fiG) with I F(G): A I s (blm)~ " ' 
and hence 1 G : A I s b' 1m' :£ b'.· : , 

Now .uppose th~t 0 does have a nonabelian nilpotent factor group.' .. 
Choo •• K"" G, maXimal such that GIK i. nonabelian and nilpotent. By .. 
LemmaI2.3.0IK is ap-group and IG:ZI ~ f'.whereZIK ~ Z(GIK) and ' 
Z = Z(fI) for some II Iii lrr(G) with fI(1) = ,I: By Corollary 12.8, we eonclude " 
that b(2):!> blf'12 < b. By the inductive hypothesis, there exists abelian 
A <;; Z, with IZ:AI:!> b(Z)';;; b·lf'. Thus 10:AI e IG:ZIIZ:AI:£ b' 
and the proof i. complete. I 
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Next we discuss the" p .. structurc" of G, where p is a prime which is in 
some sense large when compared to h(O), The ob.iC<ltive here i. to show th.t 
IG: O,(G) lis not divisible by too large a power of p. We prove th.t ifb(G) < P. 
then p,rl G: O,(G)I and that if b(G) <: p"', then p;,rl G : 0,(0)1. 

(12.27) LEMMA Let G act transitively on II set n with Inl ;> 1. Let H ~ G. 
for some ~ e n. Then t he average size of the orbits of H on n - {~l is ;;; /)(0). 

Prool Let ,9 = (In)", the permutation character of G on n. Write 
II _ I" + L a X, where the sum runs over the non principal irreducible 
constituent. of 8. The number of orbits I of H on n - (al is given by t = 
[I H,8Hl - 1 = [,9,.9] - 1 ~ L a~. 

Now In - (~) I ~ 8(1) - I ~ z... a,xO) s b L a" where b = b(O). Thus 
the average orbit si7" s is given by 

., = (1),x(l))/(E a,') ;;; (b L .,)/(1: a,) = b. I 
(12.28) COROLLARY If 0 has more th.n one Sylow p-subgroup, then 
there exist distinct!'. Q E Syl,(G) such that 

b(G) ~ ING(P): No(P) (\ NG(QlI <: IP: I' n QI. 

Prool Apply Lemma 12.27 to the conjugation action of G on Syl,.(G). 
Let P e Syl (G) and H _ No(P). Then some orbit of H on Syl,(O) - (pj must 
have size ~b(G). Let Q be in such an orbit. Then b(G);;: IH: N"(Q) I and we 
have the first inequality. Also 

IH:N,,(Q)I",IP:Np(ml 

and since Np(Q) ~ P (\ Q, lhe result follows. I 
(12.29) 'ltlEORIlM Let p be a prime and tet b(G) < p. Then G has. norm.1 
abelian SyloW p-subgroup. 

ProOl Let PeSyl,,(O). If P-/i G, then by Corollary 12.28, we can find 
QeSyl,(G) such that Q,",P and IP;PnQISb(G)<p. This is a con­
tradiction and shows P ... G. 

That P is abelian folioWli since every I e c.d.(P) i, a power of p satisfying 
I <: p. The proof is complete. I 
(12.30) LEMMA (Burnside) Let P E Syl,(G) aud let X, Y " P be normal 
subsets of P which are conjugate in G. Then X and Yare conjugate in N,,(P). 

Prool Suppose Y ~ X' so that P !:;: N(Y) and 1" " N(X), ~ N(X') 
~ N(Y). By Sylow'. theorem in N(y), we have 1'" ~ P for ,ome " E N( Y) 
and gu e N(P). However, X" ~ Y' m Y and tbe proof i. complete. I 
(12.31) LEMMA Let H !i G with 10: HI ~ p, a prime. Then OP'(H) "" G. 
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Proo!' Let K be the kernel of the action of G On the right coset. of 11 (act­
ins by right multiplication). Then K ~ 11 and K <l G, AI.o IG: KI dividesp! 

'and so 111: KI divides (1' - I)! and i. prime to p, Thus 0"(11) '" K <l 11 
and so 0''(11) ~ O"(K) <l G since K <1 G. I 
(12.32) THEl')j'"M Suppose bIG) < pm for some prime p, then 
p',j'IG: O,(G)I. 

pl'()(if We may assume that O.,(G) L Let l' E Syl,(O) and assume 
I l' I ;;; p'. Let N No(p). By Corollary 12.28. choose Q ¢ p. with Q E Syl.(O) 
such that 

1'''12:> biG) ~ IN; N"{Q)I <: 1/': l' 1"\ QI 

and ",t D = l' n Q, Then 11'; DI = p, Let M = No(O) il 1', Now l' ~ N(Q) 
and so 

It follows that 
p'" > IN: NN(Q)I :;>: piN: N 1"\ MI 

and IN: N n MI < [III', Note that M < G, 

I· 

Weconsider the action (by right mu!tiplication)of M on n = (Mxlx. G), 
Suppose,. orthl: orbits of M on n - {M} have size <p"l and s have size ~p2. 
Lel no be the union of the r smaller orbits. 

We claim 

(0) If Mx c no. then DD" ~ D'D and:<E MNM, 

Assuming (_). let us con1plete the proof. We have In - (M) I ~ p'., ,0 that 
Lemma 12,27 yields 

1'''' > h(G) 2:. In - {M) 1/(1' + $) <: 1",/(1' + s). 
, :/' 

If s ~ 0, then Mx E no for every .<. 0- M and hence DD' = D'D for all " 
x E G by (0). Thus (D'ix E G> is ap-group that is normal in G,a C,mtradlicttOD,:,:"i 

Thus .. > 0 and p'" <: (r ... s)/' ~ 1 + r. Now if M:<eno• th.C!1" 
x E MNM because of (0) and hence the orbit of M" under M contains an: 
element of the folm Mil for" G N. The number of distinct Mn for Il EN'" 

IN; N n M I < p'/2 and thus at most pll' M·orbits of n contain an eleme"l·':. 
of the form Mil. These include the trivial orbit {M) and So we 
1 + t :$ pl/'),. This contradicts H previous inequality. 

We now work to e""bli,h (.).I.et Mxello so thai x~M and D" 
Ifcithet' or D Or DA normalizes the other, then DD>" = D"D is a p-~:rOIIP 
erly containing D. Since If': D I = p it follows Ihat DO'" 
If)D': DI ~ p sO that D"" DO" and DD' >i M. Since also P >i we 
f' ~ (DD'r fOf some In e M by Sylow's theorem. Now Dm, D- ... I' 

-
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hence Lemma 12.30 yields D"' = D""''' for some 11 EN. Thus xnlnm- 1 E N(D) 
~ M and x G MNM as desired. 

The remaining case is where D !,t M' and I)' ,. M. Let W M 1"\ M'so 
that WDand WD'aregroups,SinceMxEll •• wehaveIM:MnM'1 <p' 
and hence IDW: WI,,; 1M: WI <: p' and IDW: WI p. Similarly 
IO'W: WI = I'· By Lemma 12.31. O"(W) is normal in both WD and WO" 
Write K ~ O"(W) and I, NG(K). . 

Since 1M: WI <: {I' and IDW: WI ~ p it follows thai I M: DWI < p and 
DW contains a full Sylow p-,ubgroup of M and hence of G. It fOllows thai 
DKIK. and V'KIf< arc Sylow subgroups of I,IK. Also. IJ"K '1' DK since 
DK S; M and D' % M. Thus ISyl,(L/K)1 > I and h(L/f<) ~ p by Theo­
rem 12.29. 

By Corollary 12.8. biLl ~ ab(K) for some a with a' :;>: b(L/K) <: p. 
Thus pJ/2 > biLl ~ pll'b(K) and b(K) < p. Thus K ha, a nDrmal Sylow p_ 
subgroup U by Theorem 12.29, Now UD E SyIP,f) and UD <1 WD since U 
is Characteristic in K <1 WD. Thus 1M: N,,(UDli ,; I At: DWI < [I and it 
fOllows that. un <I M. Thus I Sylp(M) I ::;;; 1 which is a contradiction since 
p. Q E Syl,(M), This completes the pl'Oof. I 

We close this chapter by conSidering the opposite;: of the stituation with 
which we began. Suppose nof 6 c.d.(G) is divisible by the prime p. A sulftcient 
condition (01' this to h~pp<n is that G has a normal abelian Sylow p.subgroup. 
(ThtS fOllows by Ito's fheorem 6.15.) It is conjeclured Ihal thi, condition is 
also necessary. the next result shows tllat to prove Ihe conjecture, it would 
suffice to Check Simple groups. 

(12.33) lHllOk~M Suppose G does not have n normal abelian Sylow I'­
subgroup and that no element of c.d.(G) is divisible by p. Then G has a non­
abelian simple composition (actor S of order divisible by p slIch that no 
~Iement of •. d.(S) is divisible by p. 

. Proof If N "" a and 1/1 E In(N). choose X" Ifr(G) with [xN> 1/1] ,. O. 
,',Th~n I/I(lJlx(1) and so p,j'J/i(l). In particular. if N" Syl,(O). then N is n.Ceg. 
, ~anly a!,<han and thus a docs tIOt have a normal Sylow p.subgroup. Also. 

If G IS Simple. the resuil,s trivial and we assume G is not simple. 
I' Let N be. maximal normal subgroup ofG. Workin~ by induction on 101. 
,: We may assume thai N has a normal Sylow p-subgroup P. Then 011' does not 

have. normal Sylow p-subgroup and if p,. I we complete th" proof by 
. , the inductive hypothesis to GIP, Suppose then. that}' = 1. 

must have plIG: N I and since G/N is simple we can lak. S ~ G/N 
": unle.s G/N is abelian. that is. IG/NI ~ p. We suppose this is the case. Let 
' eSyl,(G) so thatlQI_ p. 

e 
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If", E Irr(N). then ,J,G cannot be irreducible since pi "'''(\)' Thus I d"') '" N 
and hence 1,,("') G and '" is invariant in G, Thus Q acts trivially on IrriG), 
It fol1ows by Brauer's Theorem 6.32 that Q acts trivially on the ;et of con· 
jugacy classcs of N, 

If;;(, is a class of N then Q permlltcs Jr, Sinee p,j'INI, we hRve p,j'I,jf'1 
and thus Q fixes an clement of ;;(" It follows that C ~ CNIQ) meets every' 
conjugacy class of N. Thus N U,," C and this yields 

INI- I;; IN:NN(C)I(lCI I):;; IN:CI(ICI- I) ~ INI-IN:CI, 

Thu, IN: CI ,,; I and C ~ N, We conclude thllt Q "" G, a contradiction, I 
(12.34) COI\O'A.J\I\Y (110) Let G be ,olvable. Then G has a normal 
abelian Sylow p-subgroup iff every element of c.d.(G) is relatively prime to p. , 

Problem ... 

(12.1) The normal subgroups Nj.q G are a Sylow tower if 

I;=;:No~NI~·"~Nk!"!."!G 

and N".,IN, is a Sylow subgroup of GIN, for each i. 0;;; i < k. Supposdor 
every m. n "c.d.(G), either min or n I m, Show that G has a Sylow tower. 

(12.2) Suppose that every f "c,d,(G) is a power of the integer m. Assume 
that m is not a prime pOwef. Show that there exists ahelian A " G wilh IG: A I 
~ bIG) and thaI such an A is necessarily normal in G. 

Hint This generalizes part of Theorem 12.5. Mimic the proof of that 
theOl'em. 

(12.3) Suppose lhal G is solvable and thaI for every m, n e c,d.(O) with 
m .. n. we have (m, n) ~ 1. Show Ihallc,d.(G)1 !> 3-

(12.4) l.et G b. solvable with /)(G) ~ " '" I and ,uppOSe lhat G has no factor 
¥rollp which is a nonabelian p·group. Show that lhere exists I. s; G .nd .n 
integer' with 2 ,;; , ;;; h such that biLl S hi' and IG: LI ;; hr. 

(12.5) Lei G he solvable with biG) h. Show lhat G has an ahelian sub· 
group of index ;;; kh,·,,(b) for a suitable constant k independent of b. 

(12.6) Let c.d.(G) {t, p'l, where p is a prime and.;. 1. If a Sylow p. 
subgroup of Gis lIonahelian, show lhat G is nilpOtent. 

/Iint Use the fact that abelian Frobenius complements arc cyclic to 
show that if G is not nilpOtent, then thoro exists ahelian H <l G with I G: HI 
~ p' and Gin cyclic. Now lei GIK be as in Lemma 12.3(a) and consider HK. 

(12.7) I.et G be solvable wilh b = biG). Let p be a prime, 
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(a) Show that there exists proper K "" G and inte~cr e :e: 0 such that 
p./4h(K) ;;; band p" I,j' I G : K I. . 

\(b) Show that if p/IlG: O,(G)I, tben pI,.; b4
• 

(12.8) Let G" 1 and assume that all Sylow subgroups of G arc abelian. 
Show that b(0) ~ 10: .41 for some ahelian A <I G. 

(12.9) Let 0 he solvable and suppOse that all Sylow subgroups of G arc 
ahelian. Show that 10: F(G) I ;;; b(G)'. 

Hints F(G) Ca(F(G», Let ,\" Irr(F(G» he s\lch that 10: la('<) I is 
maximal. Let T ~ 10(A) and .• ~ IG: TI. Show th.l b(TIF(G);; his and 
let F/F(G) ~ F(T/F(G)). Show b(F) S s. Use Corollary 11.32. 

(12.10) Suppose that every f t c.d.(G) divides p' where p is a prime. Show 
that there exists abelian A s G with index dividing p4", 

(12.11) SuppO'e peIrr(O) with P(I) ~ f and that Z ~ Z(/l) satisfies 
10:21 ~ f'. Let Z ;;; H;;; O. 

(a) If I G : HI'" .r. show that h(H) < b(G). 
(b) If! G ; HI = f and X Eirr(H) with X(I) = bIG), show that V(X) ;;; 2. 

(12.12) (a) Suppose A S G is abelian and IG: CG(A)I ;. bIG). Show that 
there exists Ao S A such that I A: Ao I ,;; b(G)2 and C,,(A.) ;. ColA). 

(b) If G is a p·group. improve part (a) to read I A : An I ,; bIG), , 

Hint Use Lemma 12.10. 

(12.13) Show that there exist,. function/defined on positive integers such 
lhal for any group a if bIG) = b, then there exists H 50 G with IG: HI;;; b 
and I H; Z(H)I ;;; fib). 

Hint Us. repeated applications of Problem 12.12. 

(12.14) Let G be solvable and let p be • prime. SuppOse p',j' f for all 
f" c.d.(G). Show that either O,.(G) ;. 1 or a Sylow p.subgroup ofG is abelian. 

Hi.t In a minimal counterexample, let M be a minimal normal sub­
group. Show that I O,(GIM) I ~ p. Now show that Op(GIM) is a direct factor 
of. Sylow subgroup or GIM. Produce the other f.ctor by considering IG(A) 
for suitable A e Irr(M). 

(l2.l 5) Let N"" G with GIN a p·group and p '" 2. Let ,9 e Irr(N) be in· 
variant in G. SuppOse that every irreducible constituent of .9G has degree 
:i:p.9(I). Show that b(GIN) ;;; p. 

Hint. Extend 8 10 ~.IrriH) with N s;; H lind IG:111 ~ p, For 
'fI E Jrr(HIN) with 'fI(I) a p, consider (rp~)G. Conclude that there exists linear 
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U e (rr(HIN) such that 'P' : 'P/I for x e G, with /I iode~ndent olthe. choice of 
qJ. Use this and the hypothesis p -:F 2 to show that q> IS mvarumt In G. 

NQte If P ~ 2, thell Problem 12,15 i$ actually faille, 

(12.16) Let G be a p-group and suppose bIG) = p', If P .. 2, ,how th~t 
ntker xlx(!) = p') = 1. . 

lfim Use Problem 12,15, 

Notll Passman has cOr\iectured that if G is any p-group ,with biG) - p' 
and" <: p, then n(ker XIX(I) = p') m 1. He has proved thts when 0/ ha.~ 
class 2, 

13 Character correspondence 

We have already scen sevoral examples of the following siluation (for 
instance, Theorem, 6.11 and 6.16), We arc given H, 11 subgroup or factor 
group ofG, SUbsets [I' Ii lrr(1f) and:1" Irr(G) arc specil1ed and it is pI'ovcd 
that there exists a "natural" one .. to .. one correspondence between 9' and !T. 
Here, the word <, naturAl" is intended to mean lhat the correspondence is 
uniquely described by some general rule and thus more is being said Ihan 
merely thai 19'1 = 1:1"1. We shall nol allempt 10 give a precise definition of 
naturalness. Most of this cbapter is devoted 10 the study of a particular 
character correspondence which was discovered by O. GJauberman. 

We introduce some notation. Let Sand G be groups such that S acts on O. 
[That is, we are given a homomorphism S -> Aut(O).) In this .itu.tion, we 
can cOllslruct the semidireQl produci r of a by S so that a"" r, S E r, 
as ~ r, a n S = 1 and the given action of Son G i. the aClion by conjuga­
tion in r. (In fact Ihese properties characterize the scmidireci product) 

If X is a character of G and S E S, then as usual we define Ihe character 
x' of 0 by t(y') = X(o). Then S permutes Irr(G). We write 

Irr.(O) ~ {X~lrr(G)lX' ~ X forall SGS). 

(13.1) THEOREM (Glauberman) For every pair of groups (a, S) stich that 
S i. solvable ana acts on G and (I G I, I S I) ~ I, there exists a uniquely de­
finO<! one-to-one map n(G, $); Irr,(O) .... Irr(CG(S»). These maps '''Iisfy the 
following properties: 

(a) If T "" Sand B ~ CarT'). Ihen n(G, T) maps Irrs(G) onto lrr.,(8). 
(b) In the situation of (a), ,,(0, S) ~ n(G, T)1t(8, SIT). 
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(e) Suppose S is a I,-group and C = C.(S). Let X E Irr . .<G) and 1/1 a 

(x).(G. S). Then '/' is the unique irreducible constituent of Xc such that 
pHxc,'/IJ. 

In the situation of (a) in the thcorcm, note that B is S-invariant since 
T "" S. Thus S acts on H and in fact Srr acts on B. Therefore n(8, Srf) is 
defined on lrrsIT(B) = Irr,,(B) which is the image of Irr . .<G) under n(G, T). 
Also. ntH. SrI') maps to the irredllcible characters of C"I.SIT) = C,,(S) ~ 
CorSi. Thus the equation in (b) makes <en< •. 

Also note that if T = S in (a), then B = C,,(S) and Irr.,(B) = 1,,(8). Thus 
this speelitl caso of (a) asscrts that ,,(G. S) alwllys maps Irrg(G) onto Irr(CG(S)~ 

There is enough information in the statement of Theorem 13.1 to deter· 
mine" uniquely. Thus suppose that n,,(G, S) is defined whenever (G. 5) 
satisfies the hypotheses of 13. I and that "0 sati.lies (a), (b), and (c). We claim 
that "o(G, S) = n(G. S). By 13. I (c), this iscertainly the case if Sis. p·group so 
we may work by induction on lSI and assume that S has composite order. 
Let T <l 5 have prime index and let B Co(T). 'rhen n(B, SIT) ~ no(B. SIT) 
and ,,(G, T) ~ no(G, T) and III (b) yieldu(G. S) ~ "o(Cr, S). 

The preceding argument suggests how to con,truct the map n(G, S); 
namely. prove that if S is a cyclic p-grotlp and X <; Irrs(G), then Xc docs have a 
unique irreducible con.tituent fJ .<lch that [Xc, flJ " 0 mod p, where e ~ 
C,,(S), Define ,,(G, S) in this case by (x)n(G. S) m II. For general solvable S, 
oellne .(G, S) by working along a composition .crics for S. There are numer· 
ous technicnl difficulties with this appro.ch, not the least of which is to show 
Ih.t the map constructed i. independent of the composition series. The key 
to overcoming these dimculties i.s to find a uniform definition for n(G, S) for· 
all cyclic S. Following Glauberman. this is what we shall do. 

W. establish some notation which will be used repeatedly. 

(13.2) HYPOTHESIS Let S act on G and suppose (IGI, lSI) ~ l. Let e ;"'. 
CotS) and let r be the ",midirect product r ~ GS. 

(13.3) 1.IiMMA A.sume the situation in 13.2 and let x"lrrs(G). Then ther. 
exists a unique extension ~ of X to r such that (0(2), lSI) ~ 1. Also, R is the 
unique extension such that S 5 ker(det ~). 

I'roq( The first statement is just Corollary 8. I 6. Since o(~.) divide; both 
I S I .nd oW. we have Q(Xs) a I and S iii ker(det X). If '" is an extension of X 
with S S ker(detl/l), then 0(1/1) ~ o(det "') and divides I r: ker(det "')1 which 
is prime to I S I. Thus 1/1 = ~ and the proof is complete. I 

We call the character X of Lemma 13.3 the canonical .:<I<'n .. ;o" of X· 
For positive integers n, we: write C" :!:::e Q(r.), where c is a primitive nth 

root of unity. If(m~ n) = 1. it. is well known from Galois theory that 10" (""j 0"" 
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= Q, Thu. if ~ e Q. is invariant under the Galois group \4(Q.,/Q.). then 
~EQ. 
" If M "" 11 with I M I ~ m and I H : M I ~ n .uch that (m, n) ~ I, we shall 
·use the notation 'i#(I1IM) to denote 'I(O,,JO~). Notc that 'I(HIM) permutes 
Irr(H) (by Problem 2.2 or Lemma 9. I 6). Suppose 9 e Irr(M) is extendible to 
H. Since '1(HIM) fixes 9. it permutes the set of extensions of.9 to H. 

In th. situation of 13.2, if X e Irr,(G), and 1. is the canonical exten.ion of 
X to r, then for f E 'I(r/G). (X)' i. a" extension of X and o(X') = oW. Thus 
X' ~ X and hence ~ has values in 0 1"1 and t, has values in alGI 1"\ Olst = O. 
We have thus proved the following corollary. 

(13.4) COROLLARY In the notation of Lemma 13.3, 2s is rational valued. 

The following strengthens this. 

(13.5) LEMMA Assume Hypothesis 13.2. I.el X E Irrs(G) and let 2 be the 
canonical e~tension of X to r. Note that CS ~ C x S. For each irreducible 
constituent {3 of Xc there exists a (possibly reducible) character 1/1 ~ of S such 
that ~cs = 2:~ (f3 x "',). This equation uniquely determines the "'~. Also, 
the 1/1# arc rational valued. 

I'roof We have 

Irr(eS) ~ {f! x '" I (J e Ir1'(C). q> E Irr(S)). 

Write ~cs ~ 2:~, •• ,.(/J x ",). Set "'~ ~ L. ",.'1> and observe thllt, l/I, 0 
unless (Xc, fJ] " O. Thus ~cs L~ (fl x "',), where the sum runs over those 
(I.lr1'(C). whicb are constituents of Xc. Also, this equation uniquely deter-
mines the "'is. I 

If n \i(r/G) then W' ~ ~ and If' ~ p. Thus 

~C$ ~ «~)').,., ~ 2: ({J x ("',n , 
Thus 1/1, is invariant under '1(r/G) and hence has values in ClIGI' Since its 
values also lie in 0ISI' the result follows. I 
(13.6) 'OIF.OREM A ... ume Hypothesis 13.2 and that S is cyclic. Then for 
each X E irrs(G), there exi,t unique (3 e Ir1'(e) Rnd 6 ~ ± I such th.t ~cs) = 
ePIc) for all C e C and all generators s of S, where f is the canonical extension 
of X to r, Also. II i •• constituent of Xe and the map X .... (i i. one-to·one. 

Proof Writ.~e. - 'Lil x 1/I,8sinLemma 13's and fi. a generator., ofS. 
Write 8(.) = ~cs) for c e C, Then 8 = 2:, I/I~(,){J. In particular, ,9 is a class 
function on C. We claim that (8. 9) ~ l. 

Let T be a set ofreprescntatives for the right cosets ofC in G. If I" r, e T 
and x e·(es)" n (es)", then there exi.t err c, E C with 

ej'lst! .= (Cjsyl I!:!:!II X == (e2s)'1 == C2!lS'~. 
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We thus ha ve two factorizat.ions of x into products of commuting elements of 
order< dividing I Gland lSI. By Lemma 8.18, s', ~ so, and thus 1,/, -, e cr.) 
= C ;inc< S ~ (s). Thus I, ~ I,. Hence the sets (C.)' are disjoint for distinct 
rET and IU,(Cs)'1 = ITIICI ~ IGI ~ !Gs.l. Si~ce 5'S-' eGo we have 
(C,,)' '" Gs and hence Gs ~ U, (Cs), is. d,sJomt union. 

We have 

I CI [.9 •. 9J = L I ~(x) I' ~ L 12(x') I' 
..: .. (;~ X.CJ 

for all t e T. It follows that 

l'f'IIClUI •. 9J ~ L 12(x)I'. 
~.GI 

By Lemma 8.I4(c). the laller sum equals IGI ~ ITIICI and thus [9, 9J = I 
as claimed. 

We now have 

1 .. [.9. II) = L I"',(s)l'. , 
However, 1Jt,(sj is a rational .Igebrai~ integer by Lemma 13.5 and so lie, 
in Z. Thus ... ,(s) is nonzero for sOme un'que p ~nd forthat P .... Is) = e .. ± I. 
This yields 2("s) ~ '/I(e) for esC. Thi, equatIOn clearly determIOes f. and p 
uniquely. . 

We now show that {J is independent of the chOice of the generator.s of S. 
If S .... <so}; then So == sm for some m with (m, lSI) ~ 1. Thus there eXists an 
automorphism ~ of the field Olsl such that ,("(s) = ),(s; = ),(so) fo~ all 
.I. 0 Irr(S). Therefore 0 ". 1/1,(.')' = 1/1'<"0) and hence replac'ng s by So y,elds 
the same fJ. 

Finally. suppose XI> Xl ~ Irr.'.i(G) d~termine the sa~e.charactcr (J so that 
2,(cs) ~ ,,/J(c) fOl' C G C and I ~ I, 2. Sillce Gs m U(Cs).' ,t follows that 2, (gs) 
= r.,r.,2,(gs) for all 9 E G and thus by Lemn," 8.14(b), ,t follows that 

x, ~ (~,)G - (~2}G - X, 

and the map X>-> fJ is one-la-one. The proof is complete. I 
(13.7) ()EFINITlON Assume Hypothesis 13.2 and that S is cyclic. Construct 
mapsy(G. S): Irr,(G) .... Irr(C) and ,(G. S): Jrr,(G) .... {-I, I} by (XIY(G. SI ~ P 
and (x}l:(G, S) ~ e ~ ± 1 where 2(c,<) ; e{J(c) for c e C, (s) = S. and 2 IS the 
canonicaic:xtension or X to r. '. 

It will tum out that the m"p n(G. S) of Theorem 13.1 equals y(G. S) 
y(G. S) is defined, that is.. for cyclic S, 

The map y(G, S); Irr,{G) .... Irr(C) of Definition 13.7 is one-to-one by 13.6. 
It is al,o onto. One way to prove this is to show that IIrr,(G)1 G I Irr(C)I. 

Character correspondence 
22S 

Since S is cyclic. it fOllows from Brauer's Theorem 6.32 that I Irr,(GJI is equal 
to the number of S~invariant ~onjugacy classes of G. It is trut': that each s~ 
invariant class of G intersects C non trivially and. in fact, the interesction is a 
single conjugacy class ofC.lt follows that the number of S~invariant classes of 
G is equal to tht: total number o( conjugacy classes of C, and hence cqual~ 
I Irr(C)I· Thus rIG. S) maps onto. 

The assertion about S-invariant classes of G in the preceding paragraph 
follows from the Schur-,Zasscnhaus theorem. We digreSS from the dis~ 
cussion of characters in order to give a proof. 

(13.8) LEMMA (Glaubermall) I.el S act on G with (lSI. IGI) _ 1. Assume 
that one of S or G is solvable. Let Sand G both act On a set n such that 

/ 
(a) (a. g) . s = (~ . s) . g' for .11 '" E n, 9 s G •• nd s E S. 
(b) G is transitive on n. 

Then S fixes a point of n. 

Proof Let r; GS, the semidirecl product. For 0" E rand "E n, 
define 11' (gs) == (a· g). 8. Condition (a) above guarantees that this is an 
action. Pick" en and let H ~ r •. Since Inl ~ IG: G " HI ~ II: HI by (b). 
,t follows th.t I H: G "HI = lSI. By 1h. existence part of the Schur­
Zassenhaus theorem, let T be a complement fol' G n H in H. 

Then I TI - lSI and T is a complement for G in r. Now the conjugacy 
part of the Schur-Zassenhaus theorem yields S :::: TX for SOme x E r. Thus 
S ~ H;&' and S fixes IX • X EO. The proof is complett:. I 

(13.9) COROLLARY In the situation of Lemma 13.8. the set of S-ftxed 
points of n is an orbit under the action of Cc;(S). 

Proof If ~En is fixed by Sand CECo(S). then (~·c).s ~ (,"s).c' ~ 
~ . c and ,. c is S-fixed. Now suppose ". /1 E n are S-lixed. Let X ~ 
(y e G la· 9 - Pl. Then X is a left Coset of G, and is S-inv'ria"t. Let G, act 
on X by right multiplication. Note that Gp is S-invuriant and is transitive 
On X. For x eX,g e G,and .<E S, we have(x. y). s - (.'y)' _ x"IJ' _ (x .,). g' 
and Lemma 13.8 .pplies to the actions of Son G, and Sand G, On X. Thus S 
fixes a point x E X. Then x e CG(S) and" . x = p. The proof is complete. I 

(13.10) COROLLh~~ Assume Hypothesis 13.2 and that at least one ofG or S 
is solvable. Then J("!--+ .Jf' n C defines a bijection frOIn the:: set of S-invariant 
conjugacy classes: of G onto the set of conjugacy classes of C. 

Proof Let.~ be an S-invariant class of G. The conjugation action of G 
on X is transitive. For k E:f', {J E G, and s e: S, We: have 

(k . g) . s - (g - I ky)' ~ (g' ')'k'g" ~ (k . s) . y'. 
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By Lemma 13.8 we conclude that .:f" n C '" 0 and bv 13.9, .J/" " C is a 
~u~C . 

ShlCr,:: the cla::iscs or G arc disjoint! the map X'!'-'I<.r' (') C is one-to .. onc. 
If c € C. then the G·class of e is S·invariant, It follows that the map 
% f-> .:f" 1"\ C is on 10. I 
(13.11) COROLLARY The map y(G, S) of Definition 13.7 maps Irr,{G) onto 
Irr(C). 

Assume Hypothe'is 13.2 and that S is solvable. Let!/' be a composition 
series for S with 

.9': t :;= So <l S I ...:d •• , ~ Sk ~ S. 

Let C, c CGIS,) so that 

G = Co ~ C1 ;;2 ••• ;;d C" = C. 

Also, SI+1 ~,NI~Cf) for 0::;; i < k and we view ShdSj as acting on Ct. 
Since S/+ I/Sj is cyclic1 ...... __ 

1', ~ r(C,. S,+ liS,) 

is defined for t:ach ;\ 0 :5: i < k. We have 

'VI: lrr ... ! .. I(el) _ Irr(CI +,). 

Each 1', is one·to·one and maps onto Irr(C, •. ,) and so we can define 
1', -': Irr(C,+ I) - )rr(C,). 

(13.12) OIJI'INITION Assume HYPOlh«is 13.2 with S solvable. Let 9' be a 
composition series for S and usc the above notation. Put /f(G, 9') ~ 
(lrr(C)))".!,y;.!, ... 1',-11'(1 -I s;; Irr(G) and let neG, !/'): ;r(G, .9') - Irr(C) be 
given byn(G,9") l'"y, '''Y,_,. 

Thus ;rIG, !/') is the largest set on which tho composite function Yo 1'1 , .. 
')'It.- I is defined, Since each )'1 is oneMto~Qne. tt(G • .9) is one",to .. one and by 
construction of ;reG, .9'), we see thai "(G, .9") maps ;r(G, 8') Onto Irr(C). Our 
objcctive now is to .how that [nG, Y) ~ IrrslG), that n(G. 9") is independent 
of Ihe choice of!/, and that for cyclic S, ~(G, ."') ~ y(G. j"). We obtain these 
rcsliit. by considering the case that S is a p·group. 

(t3.t3) 1.liMMA Let l ~ R .. C, where R is a ringcontailling the values of 
all e E l,r(G). Let 8 be a gencrali<cd character of 0 with values in an ideal I of 
R. Assume J n l 5 pi! for some prime p not dividing 101, Then p divides 
[8,~] for all ~ olrr(O). 

Cha.r~cter correspondence: 

Proq( We have 101[9, ~J ~ L 8(g)C(g)~ I 1"\ l. Thus pIIGI[iI,~] and 
the result follows since p,r I G I, I 

"(13.14) TIlE()I(BM A,sume Hypothesi. 13.2 and that S is • p·group. Let 
X E IrrslG). Then there exist. a unique II € 1'r{C), with [x", Pl ;f; 0 mod p. 
Furthermore 

(a) [Xc, flJ ± t mod p; 
(b) if S is cyclic, then fI w (xl'l'(G, S) and Ix)r.(G, S) (Xc, Ii] mod p. 
(c) If 9' is a composition serie, for S, then ;rIG, !iI') IrrslG) and 

(x)n(G, ,1") d fl. In particular, ,,(G, .9') is independ.llt of the choice of 8'. 

Proof First asslime th~t S is cyclic and let {I ; (X))r(G. S) and c ~ 
(x)r.(G, S) so that ~(cs) = e{l(e) for C t Sand S ~ (s), where 1 is the c.nonieal 
extension of X to r. 

Let R be the ring of algebraic integers in 0 11"1 and let J be a maximal ideal 
of R with pE I. In the notation or Theorem 8.20, we h*~ve (cs)p' :;:;: c and thus 
that theorem yields x(c) - 2(c) '" J>(cs) mod I. 

We therefore have x(e) '" c/l(e) mod J for all C E C and thus Xc - eli is a 
generalized character of C with values. in I. Since I ¢ I and pEl. we have 
I 1"\ l ~ pz. and .inee pJICI, Lemma 13.13 yidds Ex, - ell, eJ '" 0 mod p 
for all ~ E Irr(C). It follow. that [Xc,~] '" 0 mod p for ~ '" ~ and [Xc, Ii] '" 
6 mod p. When S is cyclic, this proves everything but (e). 

If lSI - p, then 9': I <d Sand [£(0, ,V) ~ Irr,(G) and n(O, ,S) ~ riG, S). 
In particular, part (e) of the theorem holds when lSI ~ p. , 

Now assume lSI> p and drop the assumption that S is cyclic. Work by 
induction on I S I. Let)' 

9' : 1 ~ So .., " • .., S. ~ S 

and write T m 5._ 1 and 

fT: 1 = S. <I ••. <I S._. = 'f. 

Let B C,,(T). Then n(G, YO) ~ ,,(G, .:I'"),(B, SIT). Also, .'l(G, Y') is the 
invcrs. image in ;r(G, fT) of Irr.",.(ll) = Irr,(B) tinder the map 

n(G, fT): I;(G, fT) _ Irr(B). 

By the inductive hypothesis applied to T. we have X" Irrs(G)!: lrr,.(O) 
~ [£(G, fT) and x. ~ p9 ± ~, where .9 is • character of B or is zero and 
~ - (x)n(G, !T). If S G S, we have [x., e) ~ [(x')R' n ~ Ex., ~'] and thus 
Ex •• ~'] ;ll 0 mod p. Thus ~ - e' and ~ E Irr,(8). In particular, X" iY.(0, 9'). 

If (I E Irr(C), we have . 

[Xc. Ii] ~ [(p,9 ± ~)c, P] '" ± [{c. Ii] mod p 

I 
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and since ~ € Irr'!'I.(Ij) and SIT is cyclic, it follows from the first part of 
the proof that there is a unique /lGlrr(C) witn [~c,p],. o mod p, 
namely /1 ~ (~)y(B, SIT). Thu, /J = (x).(G, 9') is unique in Irr(C) such that 
[xc, Ii] ,. 0 mod p and in fact [Xc, /I] '" ± [ec, /I] " ± I mod p, 

We already have IrrAG) <;; ft(G, Y'). Now suppose 

</I EPr(G, 9') <;; X(G, ,'T) ~ Irr,.(G). 

Let q = (</I).(G, .'T) so that ~ E1rr.,(B). Let s E S. Then 0,. [</I., ~] = 
[(",')., ~'] = [(",')., q] mod p. Since T <l S and </I e Irr,.(G), it follows that 
</I'" Irr,.(G) = .<J«(G, §") and thus ~ = (y,')n(G, §") since [(</I')., q] .. 0 mod p. 
Since n(G, .'T) is one-to-one, we have </I = </I' and thus </I e Irr,{G). 

We have now shown that !!f(G, 9') ~ Irr,{G) and have given a description 
of the map n(G, 9') which is independent of [1', This completes the proof, I 

ASSlime H ypolhcsis 13.2 and that S i~ cyclic so that 

y(G, S): Irr.,{G) ... Irr(C) 

is dt:lint.-d. Suppose tr: r ....... rj is all isomorphism and that I'T(G):;;;;; G, 
and u(S) ~,S,. Then ,,-(C) = C, = CG,(S ,) and y(G" 5,): Irrs,(G,) ... Irr(C ,) 
is delined. Because riG, S) is uniquely defined, independently of any arbitrary 
choices.. it is clear that if 

(x)y( G, S) ~ IJ, 

then 

(x,)y(G" S,) ~ fI" 
where XI and H, correspond to X and Ii via the isomorphism,' t1. That is, 
X,(O") ~ X(iI) and {I,(e') ~ /3(e) for 9 _ G and c. C. (Recall thot the compu­
tation of (X))I( G1 S) requires choosing a generator s of S. but that the result is 
independent of this choice.) 

An imporlant special case of this invariance under isomorphism of 
)I(G, S) is when fl E Aut(r) and Gil = G and S" I(j4 S. In that case we have 

(X')y(G, S) ~ «(xlY(G, S))". 

(13.15) L" .... A Assurn< Hypothesis 13.2 and let T-<o S with T cyelic and 
I! ~ CGP'). Then 1,(G, T) maps Irr,{G) Onto lrrAB). 

Pr,,4 Sine< Irr,{G) " IrrAG), v(G, '1") is defined Oil trrs(G). I.<t H ~ 
GT...-:::j r. If s € S. then s defines an automorphism of Il with GJ = G and 
1'~ = T. Therefore. by the above discussion, we have 

(x")y«(;, T) ~ «(X)y(G, T)' 

for all X E lrrAG). It is immediate that rtG, T) maps IrrslG) into Irr,,{B). Since 
j!(G. T) maps Onto Irr{B) and is one-to-one. the result follows. I 
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(I~.J6) THEORliM Assume Hypothesis 13.2 and that S is cyclic. Let p be a 
prime and let 'I" be the p-eompl<ment in S. Let B ~ C,,(T). Then y«(;, S) ~ 
y(G, T)y(B, SIT) On IrrsiG). 

Proof. If p,j'ISI, then T ; S, B ~ C. and y(C, I) is the identity map on 
In(C) (as IS clear from Ot:fmition l3.7). The result is thus trivial in this Case 
and we aSSume piISI. In particular, p,j'I(;I. 

Let X E Irr,{G) " Irr,.( G) and let ~ = (X)y(G, 1") e Irr(8). Let fJ ~ (X)y(G, 5). 
By Lemma 13.15, ~ e Irrs(B) ; Irrm (8). We must show that/J = R»>(B, SIT). 

Let P" ~ (e)y(B, SIT). Sincc SIT is a p-group, Theo"em 13.14 yields 
~c ~. pcp + c.oflo, where tp IS a charactc;:r (or is zero) and £:0 = ± I. Let R be 
the rmg of algebraic integers in Orn and let I be a maximal ideal containing p. 
We have then e(e) '" 'o!lo(e) mod J for CE C. 

By dcfiniti?n of y(G, T), we have i(hr) ~ f.~(b), wher< T ~ (r>. hE 8, 
e.= ± ,I and 2lS the canonIcal extension ofX to 1. Applying this to (' E C ~ B 
y,elds 

~(et) ~ e~(c) '" f.f.of!.,(e) mod J 

for any generator, r of 'r. 
Now let 5 ~ <,) and let t - (,)", in the notation of Theorem 8.20. Then 

(r) ~ T and (es),. = er for e e C. Thu, by 8.20, We have 

i(c,) " J(ct) mod [ 

and thus 

Hes) '" f.co/i,,(e) mod [, 

By definition ofY(G, S), we have j'(e,) ~ J!l(e) fo,' {' E C with J = ± L Thus 
!l(e) ~ Ocf.ofJo(e) mod [for all eee. By Lemma 13.13, [fJ - ofJ';o/I"fJ] is 
d,vlS,ble by p and thus fI ~ flo as desired. I 

(1,3.17) CO.Ol,LARV Assume ~ypothcsis 13.2 and that S is cyclic with 
I S I = pq. where p and q arc primes. Let Y' be a composition series for S. 
Then .<i'(G,.'I') - IrrAG) and n(G, 9') ~ l'(G, S). 

Pro4 If p ~ q, tho r.suit i, immediate from Th<orem 13.14(b) and (e). 
Assume then that p. =I=- q. Write ,Y: 1 ...::;] T -::::J S, We may assume I T I ~ CJ. 
Now Lemma 13.15 y'ekl, that Pr(G, 9') ~ !"·slG). Theorem 13.16 asserts that 

n(G, .7) = y{G, TMB, SIT) _ y(G, S) 

where B ~ CoO")' Th< proof is complete. I 

(1118) ''''lEOREM Assum< Hypothesis 13.2 with S solvable. Let Y and §" 
be composition series for S. Then ,'1:'(G, 9') ~ X(G, fT) and n(G, [1') ~ 
,,(G, fT). 
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Prod U,e induction on (he composition length k of S. If k ~ .1 then I 
~</ ::= ::Y and there is nothing to prove so assume k > 1. Write 

/1': 1 = S. "" ... -~ S, = S. 
.<r: I ~ T. "" ... "" T, ~ S. 

Let .~. and $". be the composition serit::s ror Sk ... I and T. I respectiveJY1 
obtained by deleting S from !I' and !!T. 

Consider the case that S,_, _ 7;.-,. Let B ~ CG(S._ ,J. Then Irr.{B) ti 
(Irr(C)l1'(B. 5/5,_ ,)-' and so 

;fiG • .$1') ~ (Irr,(B))n(G. yor' 
and 

El·(G.:T) ~ (lrr,(8))1I(0 • .'pr '. 

By (he inductive hypothe,is. neG, YO) ~ neG. !!TO) and hence ;fIG • .$1') -
X(O. !!T). Also 

neG. Y) = 1I(G. Y°)y(B, S/S,_,) = neG • . ,r°l1'(B, S/7;._,) = 1«G. !!T). 

Assume now that S"_l if.; ~t;.-I and let M = S,,~ 1 (l ~_I' Let ...I( be a 
composition series for M and extend jf to composition series fin" and !yo for 
S which run through S"_I and ~_ I! respectively. By the preceding paragraph, 

Pl(G • .$1") - X(G, 5") and neG, .9"") = neG, .$1'). 

We may thus replace .$I' by .$1'" and similarly replace:T by :T'. We may now 
assume that $, m 'J~ for i ~ k - 2 and that 

..If: t:c So<lo" <:)S~_2 = M. 
Lei 

17: I .. 7.- tiM "" S/M 

and let 0 = CG(M). It follows that 

X(G • .$1') = (iC(O, 9'))n(G ... itT' 
and 

Also 
neG, .$1') = neG. ,'#)n(D,.9') and .(G, .r) ~ n(G • ..#)n(D, n. 

Therefore. it sull1ce~ to prove that 

XeD, .!'f') ~ ;f(O.!7) and n(D.9') - n(D,!7). 

We may therefore assume that M ~ 1 and D ~ a. Thus S = S._, X 1k-, 
is abelian or Qrder (1'1 ror prime!) p and q. If P IIIF ti, then ' 

.«'(G. !I') = Irr.,(G) = i't(G, .,r) and n(G • .$1') = .(G, .,r) 
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by Theorem 13.14. II p ;f. q, then G is cyclic and Corollary 13.17 yields the 
result. The proof is complete. I 

Assume Hypothesis 13.2 with solvable Sand choos. a composition series 
5" for S. By Theorem 13.18, Pl(G. 5") is independent of the particular com­
position series and so we can write :fIG. S) ~ X(G • .$1'). SimHarly. we can 
write n(G, S) n(G • .9"). Then Pl(G,5) and neG. S) are unambiguously 
defined. We have :reG. 5) ,; lrr(G) and .(G, 5) is a bijection of :rIG. S) onto 
(rr(C). 

As in the discussion precedin~ Lemmu 13.1 S, .uppose It: r ~ r, is a" 
isomorphism and let a, ~ a(a). S, - a(S), and C, a(C) CG,(S,). Then 
"induces bijections Irr(G) -lrr(G,) and Irr(C) -> Irr(C,). Since :r(G, S) is 
uniquely defined. we have :f(G" S,) is the image of :rIG, S) in Irr(G,) and 
P = (x)n(G. S) implies that p, = (x,)1t(G" St!. where XI(Y') = Xly) and 
ti,(e'") ~ Pic). In particular, if O'EAut(T") and a' = G and S· = S, then (f 

leave, iC(G. S) set wise invariant and (x')1I(G, S) ~ ((X).(G. S))" for X E :rIG, S). 

(13.19) COROLLA"Y Assume Hypothesis 13.2. with S solvable. and let 
X(G. S) and .(G, S) be as ahove. Then :reG, S) = Irr,{G). Also. if T <> S 
and B ~ ColT). then 

(a) neG. T) maps Irr,(G) onto Irr,(B); 
(b) n(G, S) ~ ,,(G, T),,(B, SIT), 

Proof If T"", Sand B = CQ(T), use ~ composition series for'S, which 
runs through T in order to con,truct n(G. S). Then (b) is immediate and 

Pl(G. S) ~ (X(8. S/T).(G. T)-l 

Thus (a) will follow once we prove the flut ,tatement. 
W. show that .'((G. S) ~ Irr,{G) by induction on the composition length 

k of S, If k = I then iC(G, S) = (Irr(C)l1'(G. Sr' ~ Irr.(G), Suppose then. 
that k > I ~nd I.t T"" S with 1 < T < S. Let If ~ G'/' <l r. For .' G S, we 
have G' G and T' = T and hence by the discussion preceding the state­
ment of the corollary. we see that 

(x')",G. T) = «x)n(G. T))' 

for X E .'(G, T) Irr,{G). Since 1«G, T) is a bijection from Irr,.(G) onto 
Irr(B). where B - Ca(T). we see that ,,(G. T) carries the S-i"v •• iant char· 
•• teu in Irr.,.(a) onto Irr,(B). Since Irr,(G) ;; Irr,.(O), it follows that 

Irr,(G) - (Irr.(B»)1t(G. T)-' M .'(8, 5IT}1r(G, Tr' ~ :r(G, 5). 

where the second equality is by the inductive hypothesis applied to SIT. I 
(13.20) DP.FINI'rtON Assume Hypothesis 13.2 with S solvable. Then the 
G1a«berman map is the map 1«G. S): 'rr.(G) - Irr(C) constructed ahove, 
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We hav" now completed the proof of Theorem l3.t. The Glaubcrman 
map satislies conditions (a) and (h) of 13.1 by Corollary 13.19. It satiodies 
condition (e) by Theorem 13.14(c). Also, by Theorem 13.14(0), we have the 
following. 

(13.21) COROU-ARY Lct n(G. S) be the Glauberman map with S a [I-group. 
Let C ~ CG(S) and let X G Irr,,(G) and p ~ (x)n(G, S). Then [Xc. P] '" ± 1 
mod p. 

There is one further loose end. 

(13.22) C(>ROI.I.ARY Assume Hypothesis J 3.2 with S cyclic. Then n(G. S) 
- y(G. S). 

Proof Use induction on I SI. Let pi lSI. If S isap-group, the result follows 
from Theorem 13.I4(b). Assume that S is not a p-group and let T be the p­
complement in Sand B ~ ColT). Then ,,(G, T) ~ y(G. T) and ,,(B, SIT) -
y(B. SIT) by the inductive hypothesi,. The result now follows from Corol­
lary 13.19(b) (or Theorem 13.I(b» and Theorem 13.16. I 

LeI S aet on C. Then S permutes Irr(G) and S permutes the set CI(G) 
of conjugacy classes of G. Hy Brauer's Theorem 6.32. the permutation 
characters of Son II'I'(G) and CI(G) are equal and it is nat.ural to ask if these 
actions arc permutation isomorphic. That is~ docs there exist a bijection 
a: lcr(C) -, CI(G) such that a(X') - '(x)' for all X E Icr(C) and S ~ S'! In general, 
lhe answer is no. Howevet. if(IGI.ISI) - I and S is solvable, it follows via 
Glaubcrman's TheM.m 13.1 lhal lhe actions of Son Irr(G) and CI(C) .re 
permutation isomorphic. 

(13.23) LEMMA Let the group S permute two sets n and A. Suppose lhat 
for every T '" S, the numbetoffl.ed points ofT On II equals the number on A. 
Then n and A arc permutation isomorphic. 

Proof We prove the existence of a bijection a: n ....... A such that a(w . s) :::C 

"(wI . s for all ill dl and, E S by induction on I lli. (Note that taking T = 1 
yields Illl = IAI.) 

Let T '" S be maximal such lhat T has a fi.ed point On n. (Possibly 
T _ S.) Let T fix WEn and .l e A. By the maxim.lity of T, we have S" ~ 
l' ~ S,. Let iV. be the orbit of OJ and I!!, the orbit of .l under S. Write ll­
(9,0,1 U ill and A OD (!:i;, V AI where: the unions arc disjoint. Map eto: (I)", --+ (!)J. 

by C(()(w· 8) = ).,1; and check that. (10 is well-defined. one-to-one, onto and 
that i:to(v· s) :::::: lXo{v). s for all v e {!Ii(> and S G S, 

Since every H ~ S has equal numbers of fixed points on (!)tu and &)'1 

it follows that fI has equal numbers of fixed points on 01 and AI' By (he 
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inductive hypothesis, there exists a permutation isomorphism IX: Q _ AI' 
Now define (X on n by combining 1lo and al' I 1 I 

(13.24) 'rHEOREM Let S act on C with S solvable and (lGI, lSI) = 1. Then 

(a) S fixes the same numbers of irreducible characters and COIlJ'ugacy 
classes of C. 

(b) The actions of Son Irr(C) and CI(G) arc permutation isomorphic. 

Proo/ It su/lices 1o prove (a) since (b) follows via Lemma 13.23 by 
apphcatJOn of (a) to all subgroups of S. 

Since n(G. S) maps Irr,,(G) one-to-one and onto Irr(C), it follows that 

I Irr,,(G) I = I Irr(C) I = ICI(c)I. 

By ~oI'ollary 13.10, intersection defines a bijection from the set of S-fixcd 
conjugacy dasses ofG Onto CI(C). The resull now follows. I 

Theorem 13.24 becomes false if the hypothesis thaI (I G I, I S I) = 1 is 
dropped. (See Problem 13.16 for an example.) 

. Suppose we c?ntinue to aSSUme thaI (lGi.ISI) _ I. but dJ'Op the as­
sumptIOn that S " solvable. If S is nonsolvable, then 211S1 by the Feil­
Thomp~ol1 thcore~n ~nd ',hus 2,r1 G I. Thus G is SOlvable! again by F~it~ 
Thompson. In thIS Situation, where Hypothesis l3.2 is satisfied with G 
solvable of odd order, it is po~~ible to construct a natural character COrrc~ 
spondence from Icr,{G) 01110 Irr(C) by a method enlirely dilfere"t from Glau­
befJna~'s. (And thus Theorem 13.24 remains valkl without the hypothesis 
that S ISs?l~able.) We shall describe the map Icr,,(G) _ lrr(C) in thi«ase but 
Without glvmg the proof since the only known proofs are too long to includ 
The key'tep is the following. e. 

(13.25) HII;OREM Assume Hypothesis 13.2 and that G is solvable of odd 
order. Let C ~ fI S G. Suppose that there exist S~invariant normal sub­
groups, K and L of G such thaI 

(a) L", K and KIL is abelian; 
(b) G = KC; 
(c) H - LC. 

Then fO! each X" Irr.,(C). there. exi~ts a unique >/J c Ift,,(ff) such thot [XII. >/JJ 
IS odd. rhe map X .... >/J IS a blJ"CllOn from Irr,(G) onto Irl's(II). 

Proof Omitted. I 
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To construct the correspondence bel ween Irrs(G) and Irr(C) we construct 
a chain or subgroups 

G CO>('I>"'>C" C 

and apply Theorem 13.2510 obtain maps Irrs(C i)- Irr,{C,+,). The com-
l'o~;ition of these maps is the de$ired correspondence. , 

Assume Hypolhesis 13.2 and that G is solvable of odd order. We consi?er 
the set .I!" of S-inv.riant subgroups H wilh C /J ~ G. For H <.I!", define 
H· [H, S)'c. Since [II, S] "" HS it follows Ihat [11, S), <l HS and thus' 
f1"" ,W'. If H :> C, Ihen [II. 8] :> I and [H, S).:>. CH, S], by solvability. 
Since [H", SJ s [H, S)" il follows that H" < H. We now define the sub­
groups C,,,.W' by CQ = G and C,+, = (C,)" and we have Ihe desired chain of 
subgroups. 

We musl now check that the hypotheses of Theorem 13.25 arc satisfied by 
laking H ~ G". Lei K ~ [G, S] and L = [G, S]'. Then K and L are normal 
S-invari.tlt subgroups of G and KIL is abelian. That G = KC follows fairly 
easily from Glauberman's Lemma 13.8. Condition (c) of Theorem 13.25 is 
automatic rrom the det1nition of G*. 

It ha:o; been conjectured ror every group G and prime p that ir N ~ NG(P) 
ror P f:; Sylp(G), thcn the numbers or irreducible characters of pi-degree of G 
and of N arc equal. (For simple group' G, this conjcclure is due 10 McKay.) 
Using Glauberman's Theorem 13.1, we prove a result which includes the 
special case of lhis conjecture when G htts a normal p-com(,)lement. 

(13.26) 1'HHOREM Let G ~ KH with K <l G, H solvable, and (IHI, IKI) 
~ l. Let N ~ NG(H) and put 

;r = (X e Irr(G)I(1 HI, X(I») = I) 
and 

1/1 = {~elrr(N)I(IHI,~(1)) = I}. 

Then there exisl' a uniquely defined bijection of .r. onlO 'i!!. 

Pro~r W. have N a (N (") K)H and Ih. commutator 

[N n K, H] 5 H n K = I 

so Ihal N r. K D C ~ C.(H) and N = C x H. It follow, Ihal 

'i!I = (P x AlP ~ Irr(C), A "'rr(H), A(I) ~ I). 

Now if X E;r, let ,9 be an irreducible constituent of Xx· Then I G; lr;(8) I 
divides both x(1) andlG: KI = IHI. Thus 1.(,9) = G and 8elrrl/(K). Let 
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9 be the canonical extension of .9 to (1. Then X = \q~ ror some unique 
~ E !rr(G/K) by Gallagher', theorem (Corollary 6.17). Since (7.(1), 1111) = I, 
we musl have W) = l. Also, l uniquely determines :1 by x. = ~ and Ihus 
determines 9 and ~. We Can now map;r 10 \0/ by X _ «(,9)n(K, If)) x el/' Since 
reslriction defines a bijection of Irr(GIK) onlO Irr(l/) and ,ince .9, E.'l' for 
every a E Irrl1(K) and linear e e Irr(GIK), it follows that we have mapped 
!i' onto (!II, "rhe map is onc·to"onc since the,., E 111/ arc uniquely of the rorm 
fI x!.. I 

Suppose S acts on G and that N"" G is S·invRrianl. Also. aSsume that 
(I G: NI, lSI) = I. We consider a pair of "dual" question., 

(a) Lei X e Irr.{G). Does there exist .9 e Irrs(N) wilh Ex.,.9J "" O? 
(h) Lei 9 e Irr,,{N). Does there exist X G Irrs(G) wilh [9G

, xJ '" O? 

Both questions can be answered in the affirmalive.By Ihe Feit-Thompson 
Iheorem, at Ie .. t one of S and GIN is solvable and we assume Ihis. Also, 
nole that if S is a p-group, hoth faclS can be proved relatively easily by CQunl· 
ing arguments. 

(13.27) 'l'HI!OREM Lei S acl on G and leave N <! G invarianl. Assume Ihat 
(lSI, I G: Nil = I and Ihal one of S or GIN issolvahle. Let X E Irr,(G). Then 
X/Ii has an S-invariant irreducible constituent. 

Proof Lei !'l ~ {.gelrr(N)IEx., ,9] '" OJ. Then GIN ~rrnules !'l 
Iransivively and since X i. S.invariant, S ~rmutes n. AI.o, the aclion of S on 
G induces an action on GIN. Let ,9 en. s 6 S, and 9 <; G. For x e N, we have 

(.9'),(,,') = ,9'(x) ~ .9{gxg - ') 

and 

(.9'J"(x,) ~ 9'(g'x'(g'j- ') ~ ,9(gxg- '). 

The hypotheses of Glauberman's Lemma 13.8 are Ihus satisfied and the 
result follows. I 

The situation of queslion (b) is more diillcuit and inleresting. First we 
consider the case where GIN i. solvable. 

(13.28) THEOREM Lei S act on G and leave N <I G invariant. Assume Ihal 
(lSI, IG: Nil = I and that GIN is .olvable. Let .~,; Irr.,{N). Then 8" has an 
S·invarianl irreducible constituent. 

Proof Fir'l assume that GIN i. abelian, and let A be Ih. group of linear 
characters of GIN. Let n = (X E [rr(G)1 [8G• X] '" O}. If X € nand .l e A, Ihen 
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X.l. ~ n .ince (XA), = XN' This defines an action of A On n, We claim that this 
action is transitive, ' 

Let X, I/! eCl, Then 0 o! [XN. I/!N] = ((XN)". "'] and I/! is an irreducible 
constituent of (X.)" ~ (X. I.)" ~ x(I.)", However. (IN)" ~ LA .. A and thus 
(xN)" = L Xl Since XA e IrrW) for each A eA. it follows that 1/1 E X.< lor some 
,! and A is tl'ansitive on n as claimed, 

Since 8 is S.invariant, it follows that S permute. nand al.o S act. on the 
group A since (AllY = A'I'" If X E n, .l. E A, and s e S, we clearly have 

(XA)' ~ (x')A' 

and the hypotheses of Glauberman's Lemma 1),8 are satisfied since I A I a 

I G : N I and thus (I A I, I S I) = I, The result follows in this case, 
We nOw assume that GIN is non.belian and wOl'k by induction on 

IG: NI, Let MIN = (GIN)" Then M <l Gis S·invariant and M <: 0 since 
GIN is ,olv.ble, By the inductive hypothesis,8M has an S·invariant i,rre. 
ducible constituent 1/1 and by the III'S! part of the proof. 1/1" has an S·mva"ant 
irreducible constituent, The result now follows since IIG = (9")", I .. 

To ha"dl~ the easelhlll GIN is not solvable. we appeal to the Glauberman 
correspondence. Theol'em 13, I. We first restrict ailenlion to Iho situation 
whore (IGI.ISI) m I. 

(13.29) THEOREM Assume Hypothesis 13,2 and that S is solvable, Let 
N <l r with N !;;; G, Let X drr.,(G) and .9 .lrr.,(N), Write ~ ~ (x)n(G. S) and 
tfJ (8)n(N, S), Then (.9". X] o! ° iff [I/l. {] ,. 0, 

Prool We lirst consider the Case that S is a p·group, Then [Xc. ~J,jIi 
o mod p and every irreducible constituent of Xc other than ~ occurs wIth 
multiplicity divisihle by p, Since XCeN ~ (XdCcN. il follows that . 

(I) [XCCN' q.>] .. [Xc. e][~CcN' q.>] mod p, 

Now write X. m L h"t!.. where t!. I'uns over SUIllS of orbits of the action:. 
of Son Irr(N), If t!. ~ L~) whel'e I!) is such an orbit. then [t!.CON' '1'] ~ 
1(1)1[~cM"'q.>] fol' '16(1), If 1(1)1" I. then plleJl and [dCnN.lp] " o mod p, 
Thus 

[XCoN. q.>] '" L (xN.'/] [~CcN' II'] mod p, 
~!:i Irr,\,(NI 

However. for ~" Irl'.,(N). we have ['/CcN. q.>] Eli 0 mod p unless q.> = VI""\".~)\ .. i 
that is, unless 11 fill; 9. Thus 

(2) 

Since [Xc.~] jill 0 F [.9ccN • q.>]. comparison of Equations (I) and 
yields that (X". II] 5! 0 mod p ilf [~CnN' q.>] " ° mod p, Since N.., G 
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pA'IOI it follow, Ihat (xN. 9J .. 0 mod I' i!f(x ... 9J ~ 0, Similarly. ['CnN' "'] 
'" 0 mod p iff [eCoN , q.>] = 0, Tbe result tbus follows if S i. a p-group, 

To complcte the proof. We use induction on lSI, We may chao •• T"" S 
with s(,r a nontl'ivial p·group, Let 8 = CG('J"), By Theorem 13,1. we b.ve 
n(G. S) ~,n(G, T)n(B. SIT) and similarly. n(N. S) ~ n(N. T)n(B,.., N. SIT), 
Now [.9". x] o! 0 ilT [((9)n(N. T))". (x)n(G. T)] o! 0 by the inductive hy­
pothesis, The result now follows by the lim part of the ~>roof, I 

(13.30) COROLLAkY LetSactonGwithSsolvablcand(lSI,IOJ)= I. Let 
N,"" G be S.invariant. Let 8 E Irrs(N), Then ,'Je has an S·inv.riant irreducible 
conslituent. 

Proof Let C = CG(S) and <p = (9)n(N. S) .0 that q.> GlI'r(C 1"\ N), Let ~ 
be an irreducible constituent of q.>c and let X = (q.»n(G. S)-', Then X E Irr,(G) 
and [9". X] ¢. 0 by Tbeorem 13,29, Tbe proof is complete, I 

To complete our analysis of question (b). we need to consider the case 
where S i"olvable and (lSI. I 01) ,. I. Of course. we continue to assllme that 
(lSI.IO: Nil I. I'irst. we observe that it is no loss to assume tbat ,9 is 
invariant in G since if U I G(9). then S leaves U invarianl. Now. if we can 
find an S·invariant irreducible constituent'" of 8u• then I/!Ii E Irr,(G) as 
desired, We shall finish Ihe proof by an appeal 10 tbe Iheory of projective 
representations of Chapter II, The following proves slighlly mOre than We 
need, 

(13,31) THEOR~M Let N ~ G "" r with N <l rand (lr' OI.IG: NI) I. 
Assume Ihat one of riO or GIN issolvable, Let ,9 E Irr(N) be invariant in r, 
Then I)" has some r-invariant irreducible cOllstituent. 

Proof By Theorem 11.28, we can lind a character triple (r" N I •• 9,) and 
an isolllorphism (T. ,,): fr. N, 8) - (r" N ,.8,) with 8,(1) ; I. Let G, ~ G' 
so thatthe i~omorphism ~: fiN -, r,IN, carries GIN to G ,IN" Suppo$e we 
can find I/!, G1rt(G,19,) with 1/1, invariant in r l, Let'" € Irr(GI.9) wilh 
<t,,(I/I) ~ 1/11' We chtim that I/! is invariant il) r, To see this, let X be an irre­
ducible constituent of I/!'" so that XElrr(rl.9), Let X, ~ ",{X), Then (X,)G, 
~ 'I/!, for some integer e and it fQ]Jows that XG = fl/!, Thus t/I i. invMiant as 
desired, 

The argument of the preceding paragraph shows that it i, no loss to 
assume that .9 is linear, We may thus factor 8 = "I' where (o('l). I G : N I) _ I 
and (0(1').1 r: G I) ~ I lind ,! and II are ""wers of.9, Thud .od /I are invariant 
in r, By Corollary 6,27 • ..l has a unique extension. 1 e Irr(O) such th.1 0(1) 
= o(l), Because of the uniqUeness. it follows that 1 is invariant in r, Suppose 
wo can lind a r-invariant irreducible constituent 1/1 of 1'", Then ",J. E Irr(O) 
is r-invariant and.9 ~ "..l is a constituent of(I/I~)N' 
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"\ 
We may therefore assume that ,9 = J~. that is, that 8 i~ linear and 

(0(8). I r: GI) ~ 1. Also. we may replace 1- by r/ker 9 and thus .ssume 
that I) is faithful. Thus I N I ~ 0(8) is relatively prime to Ir: G I and hence 
(IGI. Ir: Gil I. By the Schur-Zassenhaus theorem, we can find S,;; r 
with sa m rand S <"I a ~ I. Thus S acts on G and leaves Nand 8 invariant. 
Also, one of S or G/N is solvable. Now Corollary 13.30 or Theorem 1128 
Yields an S·invt.rianl irreducible constituent of aGo The result follows. I 

To close the chapter, we obtain $ome further information in l:'l specia.l 
case of Theorem 13.6, 

(13.32) THEOR']M Assume Hypothesis 13.2 and that S is cyclic. Also sup' 
pose that C ~ C,,c,) for all xeS - (I). Let Xc Irr.,{OI and {I ~ (x)n(O. S). 
Let 2 be the canonical extension of X to r, Then there exists r.;;;; ± 1 and 
I' E ler(S) with 1" ~ I.,' such that 

(a) J>(Cx) ~ r.!l(c)!'(x) for all xc S - O}; 
(b) h ~ ISI.9 + "IJ, where.9 is a character of C or is zerO; 
(c) (x(l) - '/i(I))/ISI ~ kElt. 
(d) is ~ kp., + ,fit I Ii'. where p" is the regular character. 
(e) I';f Is ifflSI is even and k is odd. 

hnnf If I < T S S then n(G, S) = ,,(G. T) ~ y(G, T) and hence 2(Cx) 
= ±fJ(c) for aiL, E S - (I) where the sign is independent of c.lt follows that 
in the notation of Lemma 13.5, we have >/I,,(x) = ± I for all x'" I and >/I.(x) 
= 0 for x '" I and IJ '" 'I' E I',(C). 

Write ~I = >/I~. We work to express >/I in terms ofirr(S). Let )'" )., e Itr(S) 
tHld compute 

[()., - ),l)' >/I] = (1/ISI) 1: ±(),,(,,) - ),l(":)). 
l:>'1.~l ,~11" 1 

Since I),,(x) - ),,(x) I :;c; Hor x 6 S, this yields 

I[()" - ..\,). ",)1 :;c; 2(ISI - IVISI < 2. 

Therefore, the multiplicities with which)" and.t, occur in >/I differ by at most 
1. It follows that >/I = ap, ± I' where a eland " is a .um of distinct linear 
characters of S with 1,(1):;c; ISI/2. Also, I'(X) ~ ±I~(X) ~ ± I for 1 ;f xeS 
and hence 

,,(I) ~ [I', Ii] = (1/ISI)(I,(1)' + 1.51- I) 

and 11(1)' - 1051,,(1) -I-ISI - 1 = O. It follow. that ,,(1) = I and I'E Irr(S). 
Denne r. = ± I by the equation >/I = "P.' + "" (Note thnt if lSI ~ 2, then 
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neither c nor i< is uniquely defined.) Now ~(".<) = fI(cl</'(x) = r.IJ(c)I«x) for 
I '" XES and (a) is pl·oved. Also I'lx) = ± I for.< c S so t~.tl" = 1.,. 

Since.1I >/I. for 'I' ;f Jl vanish on S - {I}. each isa multiple of psand hence 
('I' x >/I .)e ioa multiple of I S I 'p. Since (fl x 'r ,)c ~ a I S I fI + "p, statement (b) 
follows and (c) is immediate from (b). Also Id) now follows. 

We now prove (e~ Since I" ~ Is, it followSthat I' 1 .• iflSI is odd. Sup· 
pose Ihen, that lSI i. even and let, € Irr(S) with " 1 •• hut, ;f Is. (This 
uniquely delines t.) Now <I.tlps) ~ 11" ''''Si A t. lly (d) it follows that 

Is 1IIOi dct(~s) a fl< 11~f1( I). 

Since 211SI, we have 2~'/l(1) and therefore I' c t'. Statoment (c) now follow, 
and the proofis complete. I 
(13.33) COROLLARY Let(f. N. ,9) be. character Uiplc "no leI N S (; <1 r. 
Suppose riG is cyclic and that rlN is a Frobenills group with kernel G/N. 
Assume that I!" = ex for XEirr(G) (and thus e' ~ IG:NI). Then Ir:GI 
divide, e ~ e for some 6 = ± I. 

Proof We may replace (r, N. II) by an isomorphic character triple and 
assume ,9( 1) = 1. Write ,9 ~ I').' where (n(A). I G : N II ~ I and (0(1'). I r : GI) 
~ 1 and), and I' arc powers of 9 and thu, invariant in rand .( is extendible 
to G by Corollary 6.27. Lel v be an extension of ;. Then 

I'G ~ (H)G ~ (,.,9)" = ,9" = c(vX). 

Since 'X E Irr(G) we may replace .9 by I' and assume (0(.9). IF : 01) ;., 1. We 
may ai,,, a<sumeth.tker8 = I so that N 5;; Z(nandtlGI,lr:GI)~ 1. 

Let S be a complement for G in r. If 1 '" XES. then C",N('<) ~ 1 and it 
follows that N ~ Co(x) and we are in the situation of Theorem 13.32. (Note 
that X e [rr.(O) .in"ex is the unique irreducible constituent of 9';.) The resuIt 
now follows from 13.32(c). I 

Probl''''$ 

(13.1) Assume Hypothesis \3.2 with S solvable. Prove the following facts by 
using the statement <lfTheorem 13.1, but do not appeal to any of the results 
used in constructing the Glaubennan map. 

(a) If X e Irr.(G) then (X)n:(G, S) is a constituent of Xc' 
(b) If fJ (x)n(G, S), theo O(X) O(P). 
(e) If C ~ G, Ihen 1I(G, 5): (rr(G) -;. (rr(G) is the identity map. 

(13.2) In the siluation of Theorem 13.1, let p ~ (X),,(G, S) for XE Irr,{O). 
Show that xii) divides IG: ClP(I). 

Hint In the case thaI S i. cyclic. consider co ~ "'I as in Chapter 3. 

( 
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(13.3) In the situation of Theorem 13.1. h:t N..o::::I G be S-invariant with 
NC ~ G. LeI 9 E Irr.,(N). Show that 

1,.«(,9)n(N. S)) ~ 10(09) n C. 

(13.4) Let S ael On G and leave N .oj G invariant. Assume that( I S I, I G : N I) 
~ I and that On< of S or GIN is solvabl<. Suppo,e CGIN(S) ~ 1. If X E Irr,(G), 
show that Ihere exists a unique oj; E Irr,{N) such thaI [XN' oj;] # O. Write 
(X)<\ ~ oj;. Show that ,) maps Irr.,{G) onto Irr,(N). 

(I3.S) Assume Hypothesis 13.2 and that S is solvable. Let C 5 N 5 G with 
N.."r, 

(a) Show that COIN(S) ~ I. 
(b) Let J: Irr,(G) ~ Irr,(N) be as in Problem 13.4. Show thaI b is one­

to-One. 
(c) Show that ,jn(N, S) ~ n(G,S). 

1Ii," (For (a)) Usc Glauberman', Lemma 13.~. 

(13.6) In the situation of Theorem Ill, assume that G is solvable. Let 
X G Irrs(G) itnd p ~ (z)nIG, 5). Show Ihal P(I) divides x(I). 

Hint..... Let N < G bt!': normill, S-invariant and maximal such. Then 
either NC ~ G or N ;> C. U,e Problem 13.3 or 11Slc) and induction on I G I. 

(13.7) In Problem 13.4, aSsume t.hat GIN is solvable. Show that tJ is One~to­
one, 

/Jint Us. induction on IG: NI. 

(13.8) Assume HYPolhesis 13.2 and Ihal G is nilpotent, Show Ihat Ilrr,(G)[ 
= Ilrr(C)I. Do nol assume Theorem 13.25. 

llim Usc ProbleIn 13.7. 

(13.9) Assume Hypothesis 13.2 and Ihal G is solvahle. Show Ihal C> I 
iff iln',(Gli > I. Do nol assume Theorem 13.25. 

(13.10) LeI N.." r with N 5 G<l rand (Jr:GI.IG:NI) = I. Assume 
that One of riG or GIN is solvabl<. Let KIN be a complement for GIN in 
rlN and assume CG/N1KIN) ~ I. Let ,9 e Irr(N) be invarianl in K. Show lhat 
there: I:xists a unique r-invariant X E Irr(G) with [9G~ X] =1= O. 

lIim.<; Use the argumC:llt of Theorem 13.31 to reduce to the 
(lGI, If: GI) ~ I. Us< Problem 13.5(b) if riG is solvable. 

(13.11) Let S be solvable and let H be a group with (lSI, IHI) ~ I. Let 
G = H x 1/ x ... x H where there are lSI factors and let S act on G 
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permuting the factors regularly. Let C = C{;(S) alld note that 

C ~ ((h, h •... , h)lh E II) ~ H. 

AI,o, if X e Irrs(G), Ihen X = .9 , ,~ x ... x ,9 for SOll1e V E Irr(H). If 
(X)n(G, S) ~ II, show Ihalll((h, 11, ... , iI» ~ ,')(h 'Sl ). 
(13,12) Let N -0:;::; G a,~d suppose 8 e ~rr(N) is invariant in G. Suppo:'le .9G = ex 
f~r son~e X e irr(G), (I hus (C, N,.9) l~ a fully ramilied character triple (InJ 

e ;;;;: IG: NI.) Assllme that S is solvable, acts on G1lcaves Nand.9 inv(lrianl 
and that (lG: NI, lSI) ~ L LeI CIN ; CG/N(S), Show thaI Xc ~ R wilh 
{Elrr(C).ndf' ~ IG:CI. 

ffint Use the technique of the proof of Theorem 13.3110 reduce LO the 
case .t!lal (IG I, 151) ~ I and ,9( I) ~ I with .9failhful. In this case, C ~ CG(S). 
Use Iheorem Ill. 

(13.13) LeI S act on G and leave N '" G inv"rian!. Assume Ihal (lSI, I G: NI) 
~ I and that S acts Irlvlally on GIN. LeI 9 E Irf(N) and X G II'r(G) with 
[XN. \9J =1= 0, Show that ,Y is S-invariant itT X is S~invariant. Do not assume 
the Feit-Thompson thcOI'cm. 

Hint ,In sh~wing that :J € Irrs(N) implies X € Irr.,4G), it :5utfif.:l:s to aSSUml: 
thaI GIN IS cyclic. 

(13.14) In the situation or Theorem 13.1. let N.q G be S-inVMiant with 
NC ~ G. Let ,9 E Irr,{N) and <p ~ (,~)n(N, S). Let / ~ Id,~) (so thaI I n C ~ 
le(IP) by Problem 13.3). If oj; is an irrcducibl< constituenl of W, show Ihat 

(oj;G)n(G, S) ~ «oj;)n(l, S»e. 

(13.IS) LeI E be elementary abelian of or<lor p' for p # 2 and 1<1 S be 
dihedral of order 2p. 

(a) Deline an action of Son E such thaI Irr,{E) ~ {I.;) but C,"{S) > 1. 
(b) Dehne an aclwn of Son E such thaI C,,(S) ~ I but 11,-,,,(10)1 > I. 
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Suppose X is a faithful character of G. In this chapter we are concerned 
wit.h drawing conclusions about G when given information about ;(. For 
instance l we alI'eady know that ir X is irreducible, then Z(G) is cyclic and that 
if all irreducible constituents. of X are linear, then G is abelian. Another, less 
trivial example which we have seen i~ Theorem 3.13. 

A faithful F-representation of 0 with degree n is an isomorphism of 0 
with a linear (l'0llP of degree n over J'; in other words, a subgroup ofGL(n, Fl. 
For our purposes, we will re,trict attention to finite linear group,. (It should 
be pointed out. however, that stt~ling Ihat an infinite group is a linear group 
imposes a type of finiteness condition on it, that is, it guarantees that the 
group is not "too badly" inllnite.) 

We shall al,o restrict aUention to complex linear groups. Thus from now 
on, a "linear group" is a finite subgroup ofGL(/l, C) for some n. A gtoup is 
thus isomorphic to a linear group of degree n itT it has a faithful character of 
degree II. We say that a linear group is irredllcible if the identity map is an 
irreducible representation, 

(14.1) '1'IIIlOREM (Blichfeldl) Let G be a linear group of degree n and let 
~ ~ {I'll' is prime, p ;> II + I}. Then G has an abelian Hall ~-subgroup. 

We need a lemma. Recall that a character X is p-rational (where p is prime) 
if its values lie in 0, for some r with p,j'f. (This i. Delinition 6.29.) 

(14.2) I."MMA Let p "" q be primes .u"h that G h .. no clement of order pq. 
Then each X e Irr(G) i, either p-rational or q-rational. 

~40 
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Proof Let X e Irr(G) and suppose that X is neither p"rational nor q­
rational. Then in the notation of the discussion following Definition 6.29, 
there exi'ts (f € ~,(G) and t € ~.(O) with X· "" X "" Xl. Also, by Problem 2.2(b), 
X', x' e Irr(O). 

If g e G and 1'%0((/), then x(g) E O~, where I a I p'm and p.!'m. Thus by 
definition of ~p(G), we have x(,if ~ x(g). Similarly, if q.!'o(g), then X(g)' 
~ X(g), 

Since G has no element of order pq, it follows for every g € G that either 
p.j'o(g) or q.!'o(g) a»d we conclude that 

[(x - X'), (X t)] - O. 

Since [X, tJ ~ 0 - [X', X), we obtain 

o ~ [X, xJ + [X', x'] ~ I + [X", tJ ;,: I 

and this contradiction proves the result, I 
The following easy lemma is a special case of a more general result due to 

Schur which we will prove later. 

(14.3) LEMMA Let X be a faithful p-rational character of G and assume that 
p divide'IGI. Then X(l);': p - l. 

Proof Since X is p-rational, h has values in Or for some r with rtr. Let 
P';;; G with IPI ~ p. Then xp has value, in Q, ...., 0, ~ G. Let \~ ~ (I(O"JO). 
Then 'I fixes XP and thu, permutes the linear con,tituents of XP' S,nce X is 
faithrul, Xp has a nonprincipal linear constituent A and '\(x) l' I, where 
I "" x E P. Since ~ is transitive on the p - 1 primitive pth roots of 1, it follows 
that the images of). under 'I take on p - 1 different values at x and thus there 
are at least p - 1 different characters in the orbit of.l under ,~. Since each i •• 
constituent of XP' the result follows. I 

An observation that is often u.eful when work in} with linear groups is 
that if (K,) is a family of normal subgroups orG with r lK, ~ 1, then G can be 
isomorphically embedded in the direct product 

D(G/K,) via gH( .. . ,gK" .. . ). 

Proof afTheorem 14.1 Use induction (In n and for groups with degree", 
induct on I G I. Let X be a faithful character of G with x( I) ~ n. Suppose that X 
is reducible and write X ~ X, + Xl' Let K, ~ ker X, so th.t GIK, is iso­
morphic to a linear group of degree X~I) <:: n. By the inductive hypothesis, 
O/K, has an abelian Halln,-subgroup where ", = (pip> 1 + XJI)). Since 
n .. "" it follows that O/K, hann abelian Hall ,,-subgroup H ,/K,.lf H, <:: a, 
th.n the inductiv. hypothesi. yi.lds an abelian lion ,,-,ubgroup It of H,. 
Since no prime in n divides I (G/K,) : (HJK,)i ~ I G: lid, it follows that H iso 
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HaJJ n-subgroup of G and we afe dont: if HI < G. We may thus assume that 
HI ~ G and G/K/ is an abelian n-group for i = It 2. However, KI n Kl ;::: 
ker X I fi ker II = kef X = I and thus G is isomorphic to a subgroup of the 
abelian n-group. (G/K,) x (GIK;:). The result follows in this casco We now 
assume that X is iw:duciblc. 

If II ~ G is a Tr-subgroup,lcl,!.J be an irreducible constituent of XII' Then 
!~II divide, 1111 and <0 a prime divisor p of .9(1) sati,li« /I < p';; 9(1)';;" 
and this cOlllnldictioll shows t.hat .9(1) = 1. Thus Xu is a sum of linear char­
acters and since X i, faithful. it follows that If is abelian. 

Suppose there ex;'t. M "'" G with I G : M I ~ pEn. Let H be • H.1l n­
subgroup of M. which exists by the inductive hypothesi,. If JJ <l G. let 
P E Syl,(G). Then til' is a Hall n-subgroup of G and we are done. Suppose 
then. JJ -P G and choose a Sylow sUbgroup Q of If with Q -P G. Then Q is 
Sylow in M and thu, G ~ MN,,(Q) by the Frattini argument. Now H 
is abelian and s" II <;: NG(Q). Wo havo I G: NG(Q)I ~ 1M: NM(QII 
whieh divide< 1M: HI. Thu, I G: NG(Q) I involve, no primes from n. Since 
NG(Q) < G. it has a Hall n-subgrollp which is one for G. We may thlls .,,"me 
that no such M I:Xi~lS, 

Next. suppose /. G :t.,«;) wilh IZI ~ II E n. Then Xz ~ x(l)< with 0(") ~ p. 
TillIS (det(x)h ~ <"" '" I, ,ince x(l) < p. Thorofore. plo(x) and it follows 
that pilG: kor(dot x". Thi> yidd> " normal >ub~roup of index p. a contra­
diction. {Note that we have reproved pal't of Theol'em 5.6 here.} Thus no 
such Z exists. 

Now let H ~ G be a :7[~suhgroup of maximum possible order. Suppose 11 
is not. u I'lull n-subgroup. Then there exists q t 1f with q I! G : H 1_ In particular, 
H t I 01' else H < Q E Syl,,(G) which violates the maximality of H. Let 
X" If have prime order pEn and let C ~ CG(x). Then C < G by the previous 
paragraph and thus C has a Hnll n-subgroup K by the inductive hypothesis. 
Since /1 is abelia". we have H 0;; C and thlls IIII ,,; IKI. Tho maximalily of 
I If I yields I til ~ I K I and If is a Hall Nubgroup orCin particular. q,f I C: HI 
and it follow, that qlIG: CI, 

Let x e P E Syl,(G). Then P is abelian and so I' ,;; C1x) ,. C and p,fl G: CI. 
Thlls p '" 'I, Since r can be any prime divisor oflH I, we havo ",fIHI. There­
fore. q,fl CI <ince H i<a Hall n-,ubgroup of C. We conclude that x centraliz<s 
no elemeTl t of order 'I in G. 

We claim that G contains no dement of order Pli. Otherwise! there exist 
commuting Y. ;: E G with o(y) = p Hnd 0(;:) == CJ. I'lowever. JJ contains a full 
Sylow p-subgroup or G sinc~ C Joc:s and Il is a 1-I~II1t-sl,Jbgroup of C. Thus 
H .... ontain~ a conjugate: or y which we may suppo~e to be x. Since x centrnlizl;!) 
no clement of order q. this is a contradiction and proves the claim. 

Le:mmu 14.2nowyieldsthatxisr~ratiOllalCorr Ia porq:rhusX(I);?;: r - IJ 
by Lemma 14.3. This is a contr~diclion sincer E n and the proof is complete .. I 
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(14.4) COROLLARY Suppose x(l) is prilllcfor e'<ry X E Irr(G) with x(i) > 1. 
Then G is solv~blc. 

Proof The hypothesis is inherited by factor groups and by normal 
su.b~roups and :->0 we m~y aSSume that G is simple. Let Xc lI'r(G) with 
mmunal xli) > I By Problem 3] (I) 0 L . '." .• '~.' X = P > _. et TC 001 {lIlll i!': prime. 
q> p + IJ. SU1CC G Issimple.x IS faithful and Theorem 14.1 yields an abelian 
Hall "-subgroup A eo G. 

• Let I '" ~ e A. Then A eo Cola) and the only prime divisors of I G: Co(a)1 
0'0 5.p + I and hence 5.p. 11 of; c Ire(C) and of;(I)¢ 11. pl. Ihen 

(of;(1), IG: CoI(()I) ~ I 

•. nd by ,Burnside's Theorem 3.8. we have of;(a) ~ 0 Or a E Z(of;). Since G is 
SImple. Z(of;) ~ I and hence of;(al ~ O. Now 

o ~ L WWa) ~ I + P 
~c Irr(O) 

and hence lip is an algebraic integer. This contradiction completes th(: 
proof. I 

In the situation of Corollary 14.4, Problem 12.3 applies since G is solvable 
It follow> Ihat Ic.d.«;)I5. 3 and thus Cm ~ I by Thcorom 12,15. . 

Our next results c?nc~r~ .finding normal sllbgrollp~ of a linear group of 
d~grce rl whose order IS dlvlslbl!: by .a prime which is large when coml'" d 
with 11. " e 

(14.5) THEO.IlM (D. 1.. Willler) LeI G be a 'olvable irreducible lineor 
group of degree n. Suppo,e that 0 Sylow p.subgroup ofC is not normal Then 
n IS diVISIble by a prime power q > I ,uch thaI" " _ 1 0 I d . 

'1 , ,or mo p. 

Proof Let X drr(C) be faithful with x(l) ~ II, Suppose G is a counter. 
example to the theorem with minimum possible: order. We argue fIrst that 
every proper normal subgroup of(; has index divisible by p and has ~ normal 
Sylow p·,ubgroup. 

, Let M -<I (; be proper ~l1d lei \9" _,. ~ .9, be the distinct irreducible con­
stl~,uents OfX.M' Let m ~e the common degree of the .9 i , Then m In and hence no 
prime power q:> I with q;;s: -1.0, or I can divide m. Sine!: IMI < IGI it 
fOllows that M/k~r:91 hasa iI~rmal Sylow /HHlbgroup. Now ()ker fJ

j 
S; k.c~ 

= I and thus M IS Isomorphic to a subgroup of X 

(Mlker 9,) x ... x (M/ker 9,). 
,,~\~. D/ : '-. 

po i;'~~J.'\' :. ~ ..... i;::': ,I. --, 
~ l·V.·': ... ,.' 
~ v~~;" ~ 

• ,,(I ..... "'.,' • 

"" .. "'.'2/;y-­.~ . "v 
". "'/(.!lilil\ \~ 
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It follows thal M has a normal Sylow p~sub8roup which is: necessarily normal 
in G. Since G docs tii.)t have a normal Sylow p,..subgroup, we conclude that p 

divides IG: MI as claimed. 
Now let K be a maxim.1 normal subgroup of G and let P ~ Syl (K). Then 

P <l G and I G : K I ~ p. Since G is not a p"grollp. we have P < K and we 
choose L ;;2 P such that KIL is a chief factor of G. Write IK: 1.1 ~ a and let 
S e Syl,(G). 

Now leS < G and p./'IG: lSI. 'rhus LS 4'1 G. Since KUeS) ~ G, it follows 
that CK/I,(S) ':: K/L. However, C./,JS) <lOlL and we c()~cludc that CK/L(S) 
~ L SIDce S IS a p-group. It follows that II ;;; I mod p. 

We claim th,\! X,. reduces. Otherwise. h' is irreducible and the minimality 
of G yields S <0 LS. Since p,rx( I) it follows that x, is a sum of linear constitll­
ents and hence S is abelian. Thus S SO Co(P) "" 0 and hence p./'IG: C,,(P)I. 
~Y the first part of the proof. we conclude that CG(J') ~ G and P <;; Z(O). 
Therefore, L ~ P x N where N ~ Op.(L) "" G. Since S <l LS and S " N ~ I. 
It followsthat S S C(;(N) "'" G and thus p./'IG: Cc.(N) I. Therefore. CG(N) ~ G 
and N S Z(G). Thus L ~ N J' 50 Z(G) and since XI. E lrr(t), we have n ~ I 
and G is abelian, This is a contradiction and proves that X,. reduces, as claimed. 
.. Since p./'x( I). we hav,:XK " Irr(K). Since XI. f Jrr(l-) there arc two possibil· 
Illes by Theorem 6.1~. Ellher XL " a sum of I K : L I ~ a distinct irreducible 
constituents or el,. XL ~ e"'. with", 6 Jrr(L), and .' ~ a. In thc tirst case, 
(1 > t is a prime power dividing n and a 5 t mod PI a contradiction. In the 
second ea.c. c > I is a prime power dividing nand e' : a .. I mod p. Thus 
e " ± I mod p and the proof i. complete. I 
(14.6) COROI,L~RY (Ito) Let G be a .olvable linear group ofdcgree nand 
Icl p ~ n + I h. a prime. Suppose that a Sylow p-subgroup of G is not 
normal. Then G is irreducible, p ~ n + I, and n is a power of 2. 

Proq( If G is irreducible, then by Winter'. Theorem 14.5, there exists a 
prime power i/ ;;> J that divides n such that q '" -I, 0, or I mod p. Thus 
I' - 1 ;;: n ;l; q <: p - I and hence Ii ~ P - I is a prime power, We con­
clude that n is a power of 2 and the proof i. complete in this case. 

If G is reducible, write X X I + X" where X is a faithful character of a of 
degree fI, Let K, ~ ker X, so that K, ('\ K, I and G is isomorphic to a 
subgroup of (GIKI) x (G/K,). Each 011<" is isomorphic to a solvable linear 
group of degree Xi(l) < n. Working by induClion on n, it follows that each 
GIK, has a normal Sylow p-.ubgroup and hence so docs their direct product. 
Since a docs not have a normal Sylow subgroup we have a contradictioo and 
the proof i. complete, I 

The hypothesis that G is .olvabl" in Corollary 14.6 can easily be relaxed 
to the • .,umption that Gis" p-solvable." We .ay that G is p-salvable if there 

exist subgroups N j -::::I G with 

I;;::::N()s;:NI~·,,~N~=G 

and such that eatlh factor N 1+ liN I is either a p-gro\lp or {)f order prirr'l~ to p, 

(14.7) COkOLLA~Y Let 0 be a p-solvablelinear group of degree n :!: p - 1 

and suppose that a SyloW p"subgroop of G is not oormal. Then n p I is 
a power of 2 and G is irreducible. 

PrQof Assume eithcr that G is .. educible. tJ < p 1 or that rI is not a 
power of 2. Use induction on 10 I, Let M be the next to I •• t term in a p­
SOlvable series for G SO that M < O. O/M is either. p-group or a p'-groupand 
M is p.solvable, By the inductive hypothe.is, M has a normal Sylow p­
subgroup P and thus we may assume that G/M is a p-group. 

Let QIPe Syl,(M/P) forsome prime q '" p. Th. Frattirti argumertl yield. 
MNG(Q) ~ G and thus 10: No(Q)1 ~ 1M: N",(ml. Since P SO Q ;;; N,,(Q) 
and P E Syl,(M). we concillde that p,rIG: No(Q)I. Let S E Syl,(N,;(Q)). Thus 

s" Syl,(G). 
Now SQ is solvable and hence S <l SQ by Corollary 14.6. Since IG: QI 

is not divisible by q. we conclude that q./'IG: Na(S)I· Since IG: N,,(S)I is 
independent of the choice of S E Syl,(G) and q '" p is arbitrary. the r.sult 

follows. I 
It is conjectured that Winter's Theorem 14.5 holds for all p.,olvable 

groups. The conjecture is known to hold for n ,; 2p + I. Unlike the ensc with 
which Corollary 14.7 follows from Corollary [4,6. the fact. for n ;;> p .eem 
quite deep. Even the special case where G has a normal p-complement is open 
if n is significantly larger than 2p. The results which have been obtained all 
seem to depend he"vity on the Olaubcrm:=tn correspondence, and in partic­
ular On Theorem 13.14. The proofs arc too complicated to give here. 

Now we drop all hypothe • .,. ofsolvability or p-solvability, Suppose 0 is a 
linear group of degree n and a Sylow p-subgroup of G is not normal. How big 
can p be? The first bound was established by Bliehfeldt and the best possible 
hound, p :s; 2n + I. waS proved by Feit and Thompson. The Fcit-Thompson 
proof depends on a very deep re.ult of Brauer which gives the bound under 
the additional assumption that p',rIGI, Here we shall prove p < (0 + I)' 
and also show how the Feit-Thompson reduction to the case p' ,r I G I works, 

We need some preliminary iesults. 

(14.8) LEMMA Let H ;;; G be abelian and let .<.1 be the sct of nonprin.ipal 
irreducible constituents of (1 ff)G. Compute ~ ~ min{x(1 )/(X, (lH)O] I y. e Yl. 
Then ",(1) ;;: ~ - 1 for every nonlinear", e Irr(G). 
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Pmof Let.p E 1 .. (G) with .p(I) > 1. Write.pif G 10 + L a,x,'wh<to the 
sum runs over non principal X E Irr(G). Since H is abelian, we have 

.p(I):e; [.pn • .pn] - [.p"ifll' 111] - [.piii. (IH)G) - 1 + L a,[X, (In)"]. 
1';,Y' 

However. lx. (I ,,)"] :e; x( I )1. for X E .'I' and this yields 

.p(I)'; I + (I/~J L ",x(I)'; I + (110)(1/1(1)' - I). 

Thu, a(.p(I) - I):e; 1/1(1)' - I and since 1/1(1) > I we obtain a:e; ",(1) + I 
as desired. I 
(14.9) I_"MMA Let N """ G and suppo'e 9 ~ G with N n C(g) = 1. Let X be a 
character of G su'ch that Ex., IN) = O. Then X(g) ~ O. 

Proof" Let Ii - gN" GIN. Then CGI/AIi);;> CG(ylNIN and hone" 
ICoIN@I20 ICo(g)NINI-ICGwJI. Thus 

L 1.p(9)I' 20 L le(g)I' . 
.,,,In(GIN) ~"lrr(G) 

.Viewing 1 .. (GIN) <;;; 1 .. (G), we conclude that erg) c 0 for e E 1 .. (G) with 
N % ker e. The resuit follows. I 

Note that the abov(: proof is essentially a I'epetition of the proof of 
Corollary 2.24. AI,o. if II and N arc as in the Lemma 14.9. then all <Iements of 
the coset Ny arc conjugate in G and thus the result follows rrom Problem 
2.I(b). 

(14.10) THEOREM (Fei,· Thorn/)soll) Let /I <;;; G be abelian with H n ZIG) 
~ I. Assume for every g e G - Z(G) that CG(O) has nontrivial intersection 
with at most One conjugate of H in G. Let X E lrr(G) with H '" ker X. Then 

(a) X(I)' > III I [X." I,,]'. 

Also, if x( 1) > 1 and H is contained in' nO proper normal subgroup of C. then 

(b) (1 + x(l))' > IHI. 

Pro'!! Let N ~ NG(H) and 

X - {x. G - ZlGlIC(x) n H > l). 

Note that H - (I) <;;; X and lhat N <;;; N(X). We claim that X is a T,i.' ,:' .. 
and that N ~ N(X). In particular. X <;;; N. " 

Let g E G be ,uch that X n X' .. 0. Choose x e X with x' E X. Then ,.' 
C(x) n H > 1 and so C(x') n H' > 1. Also. C(x') n /J > I and hence 
H ~ H' by hypothesis. Thus U 6 N and X ~ X' and the claim is established. 

We h.ve 

ICI ~ IGI[x. X:) ~ I Ix(g)I' 20 x(l)' + IG: NI I Ixtxll' 
9 .. G ..I! III X 

--- ...... 
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and thus 

(I) I Ix(x)I' < INI . 
<oX 

• Now write X. ~. + II, where [ .... IHJ~ 0 and P., = P(l)I". (This is 
possible Smce /1--==1 N ,) Since JJ g; ket X. we have (t. :yf 0 but WI; allow the 
possibili)y that II = O . 

WriteZ- ZIG). Then L"zlx(z)I' = IZlx(l)' and since ZnX =0. 
We conclude from (1) that 

(2) 12Ix(I)' + INI > L Ix(.>;)I' - L 1.(.,) + II(x)l'. 
.ll'eXu.i'; ;leXuZ 

By Lern'ma 14.9. we have .(y) = 0 for yEN - (X u 2) and thus 

(3) L la(x) + P(xll' = IN I (~.~] + 21 N I [~. tJJ + L 111(x)l'. 
x .. x .... z X"XvZ 

Since [a. PJ = 0 and ["'.] :;" I. (2) and (3) yield 

12 Ix(I)' + INI > INI + L 1/1(x}l'. 
~f!.XuZ 

Because HZ 5; X u Z. we obtain 

(4) 12Ix(I)' > L 1/1(.<)1'. 
!I.'" HZ 

Write Xx - X(I)l Then tJz = /i(I)< and ,ince lin = /1(1)1
11

, We have 
II(hz) = li(I)..\(z) forhG,lJ and ZE2. Thus 1/I(x)I' -11(1)' forxEH2 and (4) 
YIelds 

1I(l)'IHIIZI < 12Ix(I)'. 

Thus x(l)' > P( I)' I H I and since /if I) = [x ... 1.,]. the proof of (a) is complete. 
Now assume that no proper normal subgroup of G contains II. Let !/ 

be the set of non principal irreducible constituents of (tllY;' If t/J ~ Y, then II" ker '" and (a) yields .p(1)' > ["H. I .. ]'IHI and 

llill" <. - min(I/I(I)/[.p. (I ,,)"] l.p 6.9"). 

Lemma 14.8 lhen gives for x(1) > 1 that 

X(I) + 1 20. > 11l11" 
and (b) follow,. I 

(14.11) 'I'ImOREM (Feit-Thompsol/··/jlichfeld,). Let G be a linear group of 
degree n and let p be a prime. Assume one of the following. 

(a) Every subgroup of G of order not divi,ible by 1" has a normal 
Sylow p.subgroup .nd p > " + 1. 

(b) p:;" (n + 1)'. 
Then G has a normal Sylow subgroup. 

0" 

;''"'- ..... 
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I'rool Usc induction on IGI. We may thu •• uppose that every proper 
subgroup of G has A norm.1 Sylow p-subgroup. Let P e SytplG) .nd '"ume 
P -jJ O. Since P has a faithful character of degree n " I' and this character can 
have no nonlinear irreducible con.titu,nts, we conclude that P i. abelian. 

If 1'" ZIG);' I, then by Theorem 5.6, We cannot have I' " 1AO) s G" 
and thus plIG: G'I. It follow, that there exists N <l G with 10: NI = p. 
Since N ha' a normal Sylow I'.,ubgrour. we conclude that G i. p.,oIYable. 
Th." G violates Corollary 14.7 since n " p - I and p.." (;. We conclude 
Ih.t 1'" ZIG) = I. 

Now if I ;' Y G I' " P'. then 1', /"" Syl,,(C(y)) and this force. I' ~ po 
.inco C(y) " (;. Thu. P is a T.t. .et. Now suppose that :x e G - Z((;). Then 
C( .• ) has a unique Sylow p-subgroup S and if S:> I, then S is contained in a 
unique conjugale of 1'. It follows that C(x) has nontrivial intersection with 
at most one conjugate of P. 

If P S M oor.j G with M < Gl then P .....;J M and (ho~ P ....a G, t\ contradiction. 
We have ~ow shown that P sati,fies the hypotheses of Theorem 14.IO(b) and 
thuslPI < ("'0) + I)' for every nonlinel1t '" 6Irr(G), 

Since G is nonabclianl the given (ailhrul character rr'itlst have some 
nonlinear irreducible constituent and we conclude that 11'1" (n + I)'. 
Thus p < (n + I)'. contradicting hypothesis (b). We are therefore in the 
situation of hypolhesis (n) and in particular, p'IIGI. Thus p' ,,; 11'1 < 
(n + I)' and p " n + I which is our final contradiction. I 

As WaS mentioned before, Braller proved that if G is a linear group of 
degree nand r')'IGI where p" 2" + I, Ihen a Sylow p-subgroup of G i, 
normal.lt then follows from Theorem 14.1 t(.)that the hypothesis p'),IGI is 
unnecessary. 

There i. a great deal of information known abollt linear groups of degree 
11 in which a Sylow p-subgroup i. not normal and" < p :;; 211 + I. This all 
requires deep results from Brauer's .. modular character" theory and we will 
not discuss it further here. 

There are many ways in which the structurt;; ora group is Iimih::d in terms 
of its degree tiS a linear group, Fol' example. there exist integer valued 
functionsjj such that for linear groups G of degree 0 we have: 

(a) If G is solvable. thon d.I.(G) :s: .1',(0). 
(b) If G is p-solvablc and p' divide. I G; O,(G)I, then, $ .I',(n). 
(c) If G isa p·group and I G: '1>(G)1 c p', then c ::; I,(n). 

A much more general result of this tYPI; is Jordan's tht:orem. 
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(14.12) 'rHEOR~M (C . .Iordan) Let G be a line.r group of degree n. Then 
there exists abelian A "" 0 such that 

I(;:AI $ (,,!l12,(·(,+1)+" 

where n(k) den ole. the number o( primes t; k. 

In (act. the exi.tence of the (unctions f,..f" andr, mentioned above 
follows easily (rom lordan's theorem, although the best known bounds (or 
f"./2, andfl are very much belter than those which can be derived from t1~e 
inequality in Thoorem 14.12 (or (rom any other known bound (or lordan. 
theorem). Ther. is no reaSOn to suppose that the mdex of an abelian normal 
subgroup of maximum pos.ible order in a linear group of degree n can be 
anywhere ncarly a. large as (n!)12""O+ 1)+ ". (For in.tance, if ,,~ 2,th. 
.. correct" bound is 60 rather than 2 . 12-,) ,'he good bounds for the (,,"ctlons 
.I, are proved by methods independent of Jordan's th.ore~. . 

We begin work nOW on a proof of Theorem 14.12 which ,s due to Fro· 
beniu,s, As the reader will sec, this proof has an \lr\usual geomctnc tlavor, 

Recall that. square complex matrix U i. said to be .. unitary" if a' 0 

U" I. Note that the unitary n x n matrices form a subgroup 7f G~I", C), Also, 
if U is unitary, then there exists unitary V such that V" U V IS dlago~al. 
(More generally, this holds for all normal matrices. U, that IS, those ~,h,ch 
sati.fy UU' U'U, where U' 0 DT:) AIS'?j the dta~onal matn~ V U.V 
is unitliry since both U and V are. Wnle V U V, ~ dl~g(AI' : .. , i.,) so that 
the A} are the eigenvalues of U. Since V-I UV IS unitary, II f~II~WS that 
AJ I ~ lJ and this prove, that the eigenvalue' of a unitary matrIX he on the 
unit circle, 

(14.13) U!MMA Let A and B be n x n complox unitary matrices. Assume 
that tho eigenvalues of B lie in the interior of some arC of length n on th~ umt 
circle. Suppose that A commutes with A -, H-' A 8. Then A commule. With 8. 

Proqr W. may conjugate A and B by a uni~ary matrix .0 a~. to diagon· 
aliz. B and hence we may aSSume that 8 = d,ng(o" ... , 0,), SInce a per­
mutation matrix i, unitary, we may rearrange the oJ in any desired order by 
conjugating both A and B by an appropriate permllation matrix. We may 
thus write bJ ~ c'" where ,9, $ 8, :s: '" S ,~" ~ 8, + 11. " • 

Write A ~ (a,,). We shall show that "" ~ O!f b, ;' b,. ThIS Im~~dlal':.lf 
yields that AB ~ BA. Now write C ~ A-IB 'AB. We have A = A 
and B"' ~ B so that C ~ iPIlAB. Also, ,inco AC = CA we have 

;FllAB ~ C ~ ACA- I ~ B-IABA-' m BAB;P 

Now evaluate the diagonal entry, em. (,( C. We have 

E altlflfjlta" ... b," =::;:; C .. m ~ I.: 5;t1a,"~h~altlv , . 
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and Ihus 

L lajllll12lJ~bltl = L la~J~:E".b., , , 
We compare imaginary parts and obtain 

I 1 a"", r:! sin(.9". - .9~) ~ L: l{llll~12 sin(9~ - 9",). , , 
Thus for all m. I ~ m ~ fI, We have 

(. ) 

We now usc (.) to prove Ihal if 9J '" ,9., Ihen a j' '" o. Suppo"" Ihis is false 
and choosej minimal ,uch Ihallhere exists k wilh 9).,< 9, and.either aj' '" 0 
Dr a,} '" O. Take hi ~ j ill (.). If v :£'), Ih~n. eit\':<lr ,,9, ~ .9j in .which case 
,in(9, - 9j) - 0 or .9, < Il j in I'{hich.'i"S~,~'j- 0 -.aj, by the mlDlmalny of 
j. Thy> (.) yi<ids 

I (la},I' + la,jl') 'in(9, - 9j) ":. O. 
,,:00 J !" 

Now for v:> j we have 9j S 9, < ,9) + " and thus sin(9, - 9)) :2: O. AI,o. 
la),I' + la,;I' :2: O. We conclude that for each value v >j, either 

IlI),I' + la'jl' = 0 

or .sin(9, - 9j ) = O. Now 0 < .9, - .9) < n and hence· 'in(9, - .9;) > O. 
Therefore laj,l' + la,)I' = 0 and thus aJ. = 0 ~ a.}. This is a contradiclion 
and complete> Ihe proof. I 
(14,t4) I.HMMA Let A and B be tI x n complex unitary matrices and sup­
pose that the eigenvalues of A lie in an arc of length (J < 1[ on the unit circle, 
Then the eigenvalues of A -I B- 1 AB lie 011 the unit circle between ~G and (f, 

Proof Certainly A - I H- I A B is unitary and so its eigenvalues lie on the 
unit circle, Let a be an arC of length (J which contains the eigenvalues of A 
and write C ~ B- 1 AB. We need to find the eigenvalues of A -'e: 

Let ~ be an eigenvalue of A - 'c and let the column veclor x bea corre­
sponding eigenve:ctor so that A - lex::::; AX and thus ex .191 .tAx and xTCx == 
'!(FAx). Thu, il suffices 10 show Ihal arg(x'Ax) •• and arg(:<TCx)~ •• 
where arg(~) ~ ~/ I ~ I for 0 '" ~ E C. Since both A and Care unilary' with 
eigenvalues in (J it suffices t,o show that 

"slvT U y) e a 

whenever y =1= 0 and U is unitary with eigenvalues in (I., Let U and y be such 
and let V be unitary with V - I U V = D. a diagonal matrix. Let z' = v- 1 y sO 
Ihat 
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sinceV
T 

= V-1.NowifD;:;:;: diag(J1 •••• ,d,,)andz ~ col(zl.".,z,,}.wehave 

z'Dz ~ II:,J'd,. 
Since the 4/ lie: in a and Izdl ;;: a, it. fOllows that L Iz

j
l2 d/ Iic:s in~thc: in­

finite wedge which is the union of all rays from the origin through points of ". 
Since (f < n: and sOme ]Z112 is nonzero. it follows that I IZ;]lcl

l 
=1= a and 

arglL 1:,J'd,)e. as desired. I 

(14.IS) T1IWREM (Frobe"i"» LeI G be a linear group. leI A, BEG and 
suppose that the eigenvaluc:s of A and B lie: in arcs of length (X and fJ r:cspc:c-
tively, on the unit circle. Then . 

(a) If {I < " and A commutes with Ihe commutator [A. B], then 
CA,8] = 1. 

(b) .If ~ < ,,/3 and fJ < It. Ihen [A, BJ c I. 

Proof By Theorem 4.17 We can conjugale all of Ihe element< of G by a 
matrix such that the result.ing matrices are all unitary. We may thus suppose 
that A and B are unitary matrices. Now (8) is j~st a restatement of 
Lemma 14.13. 

To prove (b), conjugale by a unitary matrix which diagonalizcs A. We may 
thus aSSUme that A is diagonal. Construct elements B/ E G hy setting.81) = B 
and 8, ~ CA. 8'-IJ for i:2: I. . 

By Lemllla 14.14. the eigenvalues of 8, lie between - n/3 and n/3 On the 
unit circle for i:C: I and thus for each i ;:: O. they lie in the interior of sOme 
arc of length It. Thus by part (a) we see that if 8, .• , ~ I for any i :2: 0, then 
B/ ~ 1. It thus suffices to prove that B/ 0::::; 1 for some i. 

If M is any complex Illalrix. We define 9{M) ~ Ir(MT M) so that if M = 

(m,,). we have 8(M) ~ I" Im .. I'. Thus 8(M) '" 0 and .9(M) ~ 0 itT M is a 
zero matrix. If U is unitary, We have 

.'I(UM) = tr(MT DT UM) = tr(MT M) ~ VIM). 

Now we compute 

(.) 9{Bl+l - 1) = 9{8,A(B'+1 - I» ~ .9(B,A(A-'8,-'A8, _ I) 

~ I!{AB, - 8,A) ; .9(A(B, - 1) - (8, - I)A). 

Now write BI ~ I = (b.u,,)' Since A is diagonal, we can write A = 
diag(a 1. (l:~, ... • aN)' where all of the t4 j lie inside some arc of length tt/3. The 
(f', v) entry of A(8, - I) - (8, - I)A is a,h - b (/ ; b (,' _ a) 'Nole 

/1. Ji¥ v /IV /I. v . 
that I{l/l. - uvl < L Equation (.) now yields that 

9{8,., - 1) m I Ib"I'la, - a.I' S I Ib"I' = .9(8, _ I). 
/I.." /1.,\1 

where in fact the inequality is strict unless all b/l
v 

;::::: O. 
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If nO Bj ~ 1, we therefore have 

11(80 - 1) > 9(8, - I) > 9(8, - I) > .... 

Since G is a finite group. there arc only finitely many B, and this is a contra­
diction. We conclude t.hat BI = 1 fQr some i and the proof is complete, I 

Observe that we have used our standing assumption that the groups we 
consider are fmile twice in the above proof. The first time was in the appeal to 
Theorem 4.,17 which is false for infinite groups_ This use of finit~ness could 
have been avoided by assuming t.hat G was contained in the group of unitary 
matrices. The second applil.:;.Hion of finiteness in the last paragraph of the 
proof is more fundamental. For instanec. part (b) of the theorem is not valid 
for the full unilMY group. 

(14.16) TII~OREM Let G be a linear group of degree ". Thon there exist. 
abelian A <J G such that 

IH: H " A I ;;; 12' 

for every abelian subgroup Il !'; G. 

Proof Since G is a linite group. the eigenvalues of every element of G 
lie on tho unit cirde. If 9 G G. let .(g) be the length of the shortest closed arc 
which contains the eigenvalu~s of g. Note that 11 is a class function on G. 
Put A = (a E Gla(a) < 1</3>. Then A"" G and A is abelian since the gener­
ators of A commute by Theorem 14.15(b). 

Now let II <;; G with H abelian. By Maschke's Theorem 1.9 we may 
conjugate all of the matrices in G so as to assume that all hG H are diagonal 
matrices. 

Partition the unit circle inl0 t.welve half-open arcs. (lj. Ill>"" 1112> each 
of length ,,/6. Each element h E H determines a function/, from {III;;; i ;;; nJ 
into {jll ,;.i ;;; 12J by writing II = diag("I"'" ",) and selling /,(i) = j if 
(x, E oJ. Note that there are at most 12" different functions.l~ t.hat can be 
obtained this way. 

Suppose X, yEll with J~. ~ fy. Write x.::;;:: diag(tzl>"" <Xn) and y ~ 
diag(Pll"" fin)' Then for cach it tXt and PI lie in the same oJ and hence (l1~1 
lies strictly between -1t/6 and n/6 on the unit circle. Thus xy- I e A and it 
follows that dements in distinct eosels of A r. 11 in H determine different 
functions. Thus I H : A " lJ I ,; 12' and the proof is complete. I 
(14.17) LEMMA Let P be a linear p-grollp of degree ". Then there .. iSIs 
abelian A .." P such that I P : A I divides n 1 

Prool lly Corollary 6.14. P is an M -group and hence if f e Irr(l'), then 
there; ~xi~ts H ~ P with IP; III >;:: .,v(l) Clod such that 1/111 has a linear con 7 

stituent. Choose such a subgroup lJ. for each f E Irr(J'~ 
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Let X be a faithful character of P of degree n and let 0 be the set of all 
right cosets of alllJ. for irreducible constituents f of X. Then lUI;;; "and G 
acts on U by right multiplication. Let A be the kernel of this action. Thus 
IP: A I divides "1 

To show that A is abelian;. it suffices to l'ihow that XA is a sum of linear 
characters, Howevcr~ for each irreducible constituent tjJ of X we have A S lJ ... 
and thus IjI A. has a linea.r constituent, Since A oC:I G. it follows that all irre~ 
ducible constituents of fA are linear and the result follows. I 

ProololTheorem 14.12 Let A <> G be as in Theorem 14.16 '0 that A is 
abelian and 11f: lJ " A I ;;; t2' for every abelian ,ubgroup lJ <;; G. We claim 
that I G: A I ~ (n !)1211(II(IH 1)+ I). Factor I G: A I into prime powers. For each 
prime p leI rp 9 IG: A I,. 

By Blichfcldt'. Theorem 14.1. there e.isl< an abelian Hall subgroup 110 of 
G forthc set of primes >" + 1. We have IG: A I = IG: 1I0AII lI"A : A I and it 
follows that 

n rp = IHoA :AI = 11-10:110 n AI;;; 12'. 
p;'lI+l 

For p;;;" + I. let PESyl,(G) and let H, <;; P be abelian with IP:lI,1 
dividing ,Ii (using Lemma l4.17). Then IP: 11 ,I ,; (II 1), and 

r, = IPA :AI ~ IPA :lIpAlllI,A :AI ~ IP: I' n HpAllII, :11, n AI 
;;;IP: 11,112';;; (111),12'. 

Thus 

n r,:S: (n("I),)12,""+l1 = ("')12"'''''. 
pSH+1 I p 

The resl1h. noW follows. I 
We can also use Frobcnius' Theorem 14.15 in a diffel'ent way. 

(14.18) l·HEO".M Let p ;;, 7 and let G be an irreducible linear group of 
degree" < 2p with" oF p. If the Sylow p-subgroup' ofG are non.belian.then 
p'.I'1 G: Op(GH. Thus in any case. G/Op(G) has abelian Sylow p-subgroups. 

Proof tet P e Sylp(G) be nonabelian ,0 that P'" Z(P) oF 1. Let 
U <;; /" n Z(P) with lUI = p. 

Let X" Irr(G) be the character of the given faithful representation so that 
X(l) = n. Since P is not abelian, 'Xp has some nonlinear irreducible constituent 
f. We must have f(l) = p. Since x(l) -< 2p. we concludo that xp ~ f + /I., 
where A is a. 8um of linear characters. 

Sint."C U s;: P'. we have U s; ker A and since U s; Z(P). we also have 
fu ~ p~ for some linear ~ Elrr(U). Thus Xv ~ p~ + (II - p)lu. Since X is 
faithful. we have ~ oF Iv· 
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Now pick U E U, with J~fll) == elnjlP, and nOte that 2ft/l> < Tt/3 since p ~ 7. 
Therefore. II has only two distinct !!igl:nwilues. namely I and e'1. III!r', and these 
lie in an arc oflenglh <nl) on Ihe unil circle. By Frobenius'Theorem 14.15(b) 
it follows that II commuteS with all of its conjugates in G and thus A ~ 
(Il'ig E G) -d G is abelian. 

Write AA = l' :L: _ I Aj , where the Aj ar!! distinct I!n~ar charac~ers of A .. and 
et = fl. Since U !!:: (u) ~ A. we conclude that e divides [xu, J~J ~ p. Sine!! 
also e 1 tI, we have e = I and t = '1. Now let K be the kernel of the p!!rmutation 
action orG on P.,l. Then IG :KI divides,,' and hence p'kIG: KI. If 9 is any 
irreducibl!! constituent or x". lhen 9 A is the sum of an orb,it or the action ~f 
K on P.,l. Ily delinilion or K, il rollows that .9(1) = I. We conclude Ihal K " 
abelian and so Ihe Sylow p-,ubgroup or K is contained in O,(G). The rc~ult 
follows. I 

We now prcscnt the promised generalization of Lemma 14.3. 

(14,19) TlIIiORliM (Schur) Lel G ha~e a faithful p-ralional character of 
degree II and I~I Po Syl,IG) with IJ'I ~ 1'". Then 

",; t [11/(1' - I )p'J < "1'/(1' - I)'. 
j-O 

The brackets above dt:note the greatesl inleger function and thus the 
"infinil!!" sum has only linitcly many nonzero terms. If n < p - I then aU 
terms in the sum arc zero and the result that. a !::: 0 is L!!mma 14.3. 

Note lhat G is really irrelevanl in Theorem 14.19: the result is really a~out 
P. Also, a p~rational charactcr of a p-group is necessarily rational valued 
since the values lie in Op .. n lOr where "ft, , . 

Supposex E lrr(P) ;sfaithrul and we wISh 10 bound IP I. ObViously,knowl­
edge of x( 1) is nOt sulTicicnt since even if xO) '"" I. P could be an unboundcdly 
large cyclic group. However,l PI is bounded in terms or X(I) and the deg«. of 
Ihe field extension O(X) ;2 O. [f z eZ(P) wilh 0(:) ~ P. Ihen X(z) ~ x(llt, 
where e is a primitive pth root of L Thus G e: O(X) and hence p - I divides 
IO(x):OI. Since IO"..:OI~(p-l)p'-'. il rollows Ihat if P,.I, then 
I O(X) : 0 I is or the form (I' - I )p' for some integer 1 ., O. 

04.20) THEOREM LellPl ~ 1", where p isa prime and" > O. Let X E Irr(P) . 
be faithful wilh x( I) ~ I and IO(x) : 0 I ~ (p - I)p'. Theil 

a ,; If - 1)1(1' - I) + (I + I)f. 

Proof We use induction on I If f ~ I, then P is cyclic and since X is 
[aithful: it follows that O(X) ~ 0," and Ihus / ~ " - 1. [n Ihis case, the 
inequality i, aelually equalily. 
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Now SUPPO$I; f > I. Since P is an Mrgroup, therl: exists a maximal 
subgroup Hand .9 E Irr(H) wilh 9" ~ x· Thus I P: HI = I' and X" ~ If", ,'J

i
• 

where the :J j are the distinct conjugates 01" N under p, Note that the fields 
0(.9,) are all equal and that since .9" ~ X. we have O(X) E 0(.9). 

Suppose 0<xJ ~ O(,~). LeI K, ~ ker .9,. Thus nK, ~ I and II is iso­
morphically conlained in (HIK,l x ... x (ffIK,,). The I/LK,I ate all 
equal, say 10 1". Thu, u ,; pb + 1. Since 9(1) ~ III'. Ihe induClive hYPolhesis 
yields· 

1>,; ((flp) - 1)/(p - I) + (/ + 1)/11' 
and hence 

a'; pb + I ,; U - p)/(p -'1) + (t + i)1 + I ~ U - 1)/(p - I) + (I + I)! 
as required. 

The remaining case is where O(x) < 10(9). Consider the Galois grOllp 
~g = (j1(O(9)/O(x)) so Ihat 1(j11 ~ 10(9):O(x)l. [n parlicular, '§,. lisa 1'_ 
group, Since ~§ fixes x, it permutes .the il'feduciblc constituents .9/ of XI{' 
Sin~c the stHbilizcr of .9 in ~ is trivial. the orbit of 9- under ~ has size IWI. It 
rollows thai 11'11 ~ p and ICl(.~): 01 ~ (I' - 1)1"+ '. Also. the .9, arc ~-eon­
jugate and hence all ker Uj ar!! I:qual. Since nkcr .9 j ~ I. we conclude that 
ker .9 ""'" I. We can now apply the inductive hypothesis to .9 ~ II'r(lf) and 
obtain 

a - 1 ,; (Ulp) - 1)/(1' - I) + (/ + 2)/(p = U - 1)/(1' - I) + (/ + I)flp 
,; U - I )I(p - I) + (I + 1)/ - I 

and the proor is complete. I 

We not!! that if p i= 2. it is always possible.to choose II in the above proof 
so Ihal O(X) ~ 0(.9). The inequalily in Theorem 14.20 is besl possible. 

ProojofTheol'em 14.19 Deline lhe fUnclion ct. on positive integl:rs by 

~(k) ~ f: [kl(P - 1 )1"]. 
'-0 

Since [kl(P - I)p'] => kl(P - l)p' and Ihis inequality is Slriel for large i, we 
have 

ark) < (kl(P - I)) fp-i ~ kpl(P - 1)' 
'-0 

and the second inequality in the stat!!ment of the theorem follows. 
, Since [., + y] :2: [.,] + [YJ, we have ark + I) :2: ark) + .(/). We know 

that his rational valued, where X is the given characlcr ofG. lfxp :;= XI + Xl' 
where the XI are rational valued~ then working by induction· on n we have 
", => ·(XAl)), where IP/ker xd ~ p". By Ihe usual argumenl. a ,; ", + ", 
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and so 

as desired. 
We may now suppose that Xp is not the sum of two rational characters. 

It follows that xp = D-, ~i' where the ~, E lrr(PJ constitute an orbit under 
the Galois group '§ = (4(0,';0). Let ~ = ';,. Then ker " = ker e for all i 
and thu, 1 = nker " ~ ker ~ and ,; is faithful. The stabilizer in '§ of ,; is 
(4(Or./O(e)) and it follows that the orbit size r = 10(e): 01 = (p - tJp' for 
,orne t :l: O. Letf = e( I) = ei(l) for all i sO that n m (p - 1)p~f'. Now 

.(n) = 1 + p + p' + ... + p'f 
= (J - IJ/(P - \) ·1· f + pf + ". ·1· p'.f 
~ U - I)/(P - I) + (t + 1)/ ~ a, 

where the last inequality is by Theorem 14.20. I 
As an application of Schur's Theorem 14.19. we prove the following. 

(14.21) THEOReM Let G be a p.solvable linear group of degree n. Let 
PE Syl,(G) and IP:O,(G)I p'. Then ., 

a ~ L [n/(p l)pl]. 
1"0 

The proof of Theorem 14.21 depends on some standard fact' about p. 
solvable groups. The Ilr,t is nearly trivial, namely that subgroup, and factor 
groups of p-salvable group. are p-solvable. The sc<:ond fact i, a special case 
of what i, often called" I.emma 1.2.3" since that was the designation in the 
paper of J'. Hall and O. l'ligman where it first appeared. 

(14.22) LEMMA (Hall-Higman) Let 0 be p-solvable with O,(G) = 1. 
Then Co(O,.(G)) !: O,.(G). 

Proof Let II ~ O,.(G) and C = Co(O,.(G). Then C "" G and C is 
p-solvab\e. Let D = O,.(C) '0 th_t D <l G and thus D s;; H. H H ;p C, then 
C/D is a nontrivial p-,olvable group and 0r·(C/D) = t,ThusO,(C/D) > \ and 
we let EID = O,(C/D) and P E Syl,(E) so that P > t. 

Now D 5 H s;; C(C) !: N(P) and thus P ""I'D = E ... G. It follows that 
P <J G. Since P ,. I and 0,(0) = I, this is a contradiction and the proof is 
eampl"te. I 

Proof 0/ Theorem 14.21 Let U ~ O,(G) and H/U = O,.(G/V). By the 
Schur-Zassenhaus Theorem, U is complemented in H and we may choose a 
complement K. Let N ~ NG(K). Since 0 permutes the set of complement. for 
U in f/ and H is transitive on this set. it follows that 0 - N H = N U. Let 
S E Syl.(N) and put Go = KS. We have N n U !: S 5 Go and 

IG; Ulp = IN: N n VI, = IGo : N nUl,. 
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We claim that N n U ~ 0,,(00 ) and thus it suffices to assumc G = Go· 
To prove the claim, nOle that N n U <l N and so N n U <I G. and thus 
N n U ~ V = O,(G.). Since V <l G., K <l Go and V n K = I, we have 
V;; C(K) and thus VU/U;; C(KU/U) = C(H/U). Since O,(G/U) = I, 
Lemma 14.22 yields C(H/U);; H/V and hence VUlt! 50 H/U and VU !;; If. 
Since VU is" p-group and V c Syl,(H), we have VU = V and thus V s;; U. 
Therefore, V !: N n U and the claim i. established. 

We may now a~sume that Go ~ G sO that K. is a normal p·complcmcmt for 
G. Let X be a faithful character of G with x(f) = n. For e •• h irreducible con­
stituent 9 of X., let ~ be the canonical extension of ,9 to 1.(9) and let ,9* = 
(.9)" e Irr(G). Note that any field automorphism of 0IGI which fixes 9 also 
fixes 9*, and it follows that ,9* is p.rational. 

Choose a .et 9' of representatives for the G-orbits of irreducible con­
stituent. of X. and define I/t ~ t" ... 9*. Then 

n ~ x(l)., L .9(1)1(;: loW) I ~ L ,9*(1) = I/t(\). 
hY I''!',Y' 

Also x.and~. have the same sets ofirreduciblc constituents nnd sO ker I/t n K 
= ker X n K = t. Thus ker ~ is a p-group and ker ~ 5 O,(G). Now appli­
cation of Schur', Theorem 14.19 to Gjker Ij! yield. the desired result. I 

Write ~,(k) Lin_. [k/(p - I)pl). With further work one can replace 
the inequality a S .,,(n) in Theorem t4.21 by " :;; ~,(t'")' where I' i if 
P ~ 2 and I' (P - f)lp if I' .. 2 is not of the form 2" -t- t. With these im­
provements. equality can be obtained for all n. If Gis ,olvable, thi, improve­
ment is due to J. D. Dixon. The general p-solvable case was done by I). L. 
Winter and depend' on the results of Chapter 13. 

Suppose G is a primitive linear group of degree N. In other words, the 
identity map is a primitive representation in the sense or Chapter S. By 
Corollary 6.13, it follows that every abelian normal subgroup of 0 is central 
and thus by Jordan', TheQrem 14.12 thor. arc only finitely many p"s.iblities 
for the group G/Z(G). Th.se have been explicitly enumerated for certain 
small values of n. We give a sample of this type of result although this proof 
is not typical. 

(14.23) l"tOOREM Let G be a primitive linear group of degree 2. Then 
I G: Z(G)I ~ 12,24, or 60. 

Proof Write Z ~ Z(G) and let XE (rr(O) be faithful with X(l) = 2. If 
H .. Gis non.belian, then X. e (rr(H) and it follows that Z(H) " Z(x) = Z. 
Thus if 9 e G - Z, then C(g) is abelian. 

~-'---

'1·.::: .' 
:.1 :1,: < 

. , 
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Let Y be the set of maximal abelian subgroups of G. Then clearly G ~ 
U.'I' and Z ~ ny. If A, BEY' wilh A " B > Z, then C(A ".~) is abelian 
and contains both A and B. Therefore A = 8 and thus G I~ a disJoint umon: 

(j = £ u U (A - Z). 
.. !" 

For A EY we have [x., X.] = 2 and lxz, Xz] .. 4. Thu~ 

L Ix(x)I' = 21AI- 41Z1 = 21A - ZI- 21ZI. 
.~IIA-Z 

This yields 

IGI = L Ix(x)I' = L Ix(x)I' + L L I X(x) I' 
;.;.,.Cj .>;;eZ ...... 9' x .. .A-J!· . 

m 41£1 + 2 L IA - ZI- 21Y'1IZI 
A"j" 

~ 41Z1 -I- 2(1GI - 1£1)- 2sIZI 

wheres = 1.'1'1: We thus obtain IG:ZI = 2, - 2. 
Now !I' is a union of conjugacy class.cs or subgroups. If A IS y, we want to 

compute N ~ NG(A). If A < N then N is nonabelian and XN ~ lrr(N). ,-low­
evcr, XA = A + ~ with ,\ ¥- /..11 follows that( N : I N(.I.) I ~ 2 and the restriction 
of X to IN(),) is reducible. Thu, IN(A) is abelian and hen~. A ~ I.(),), We' 
conclude that for all A E y, we have I N(A): A I ;;: 2. Also A -4J G. ' 

We now consider the group G/Z ~ (j of' order 2s - 2, Lct .'T~' 
{A/ZIA E.'I'} so that iT partitions ~ and liTl = s. Also, iT i. a union of 
conjugacy classes of subgroups or G. Write !T ;:;;;;: iT 1 U ,tT 2 u ... u :r r' 

where the .'TI are the distinct conjugacy classes. Let (lj be the common si7.e of 
the subgroups in .r,~nd let I, = l.rd. _ _ 

If Be.'T" then IG:N(B)i = IV:BI/2 Or IG:N(B)I ~ IG:Bln"d hence 

(I) 

We also have 

(2) 

(3) 

I, = (s - I)/a, or C, ~ 2(.- I)/a,. 

LC, = s, 

L I,(a, - I) = 2(s - I) - I, 

and all 'j > 1 and (ll > I. We may assume that a i .:5: az :5; ••. :5; ar and that 
if a l ~ alT I then tj ~ 'i·~ I· 

It a, > 2 then L 1,(., - I)", 2 L t, = 2s which contradicts (3). Thu • 
• , ~ 2 and I, =.< - 1 or (s - 1)/2. However, if c, ~., - I, then (2) yield. 
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II == I, a conlradiction. Thus 'I = (s - 1)/2. If ilZ ;:]I 2, then 12 ~ (oS - 1)/2 
forcing tl !!:: I, which is impossible. Thus ~2 ~ 3. If a2 ~ 4, then 

, 
2(s - 1) - I = L I,(a, - 1) <: (s - 1)(2 + 3 L I, ,. , 

= (s - 1)/2 + 3(s - (s - 1)/2) 

= 2(s - I) + 3, 

a contradiction. Thus ., = 3 and I, = (s - I )/3 Or 2(s - 1)/3. 
Suppose c, = 2(s - 1)(3. "hcn 

s <: c, + c, = (s - 1)/2 + 2(s - 1)/3 = 7(, - 1)(60) s _ I 

and hence s = 7(, - I )/6 which yields s = 7 and I G : £ I = 12. We now sup­
pose that c, = (s - 1)(3. Since I, + c, = 5(s - 1)/6 < s, we have r <: 3. 

If a, ;:, 6, Equation (3) yields 
, 

2(s - I) -I = L t,(a, - 1) = (, - 1)/2 + 2(s - 1)/3 + L,,(a, _ I) 

:<: 7(s - 1)/6 + 5(s - I, - I,) 

= 7($ - 1)/6 + 5(s - 1)/6 + 5, 

a contradiction. Thus tl3 :;:::: 3, 4, Or 5. 

,-, 

If a, = 3 = a, then I, :> I, and so c, = (s - .IJ/3. Thi, yields 

s:<: c, +', + c, = (s -'1)(2 + (s - 1)/3 + (s - 1)13 

and again 5 = 7(s -1)/6andIG:ZI = 12.Supposoa, = 4.lfl, = (s _ 1)/2, 
we have 

s <: (s - 1)12 + (.< - 1)/3 + (s - 1)/2 ~ 4(s - 1)/3> s _ I 

and thus s ~ 4. This yi~lds 1 (;1 :;., 6, which is impossible since llJ must divide 
I~I by Lagrange's theorem. Thus I, ~ (s - 1)/4 which yields 

s:<: (s - 1)/2 + (s - 1)/3 + (,' - 1)/4 = I3ls - 1)112> s - 1. 

Thus s ~ 13(s - 1)/ J 2 and 5 = 13 and I G : Z I = 24 in this caSe. 
The remaining case is (l;:t = 5. If tl = 2(,~ - 1)/5, this Yields 

S ;:, (s - 1)/2 + (.< - 1)/3 + 2(s - 1)/5 = 37(s - 1)(30) s _ I. 

since this has no integer solution, we have tJ = (s _ 1)j5 and 

s<: 31(5 - 1)/300> s- I 

and s = 31. Thi, gives I G : Z I = 60 and tho proof iscomplcte. I 
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We rm::ntion that all three CaSeS of Theorem 14.23 cAn occur. If G = 

81_(2, 3~ we get G/2 2' A. of order 12. If G GL(2, 3), wc get G/2 ;;, :E, of 
order 24 and if G ~ SI.(2, 5), we get G/2 2' A, of order 60. In fact. A •• 
lC •• and A, are the only po,"ibilities for G/2, 

Pr.blem, 

(14,1) Let 0 be a linear group of degree n, Show that there exists another 
linear group 0' of degree n such that O/Z(G) 2' O'/Z(G') and det(g') ~ 1 
for g' E G', Do this in such a way that 0" Is Irreducible Iff G is irreducible, 

Hint Let I be the 11 x n identity matrix and let S ~ (a/laee, a" ~ 
det(,,) for ,orne 9 E Gj. Consider GS <;;; GL(n, C). 

(14.2) tet XE Itr(G) be p-ratlonal and faithful and assume that 

x(l) < kIp - !) 

for some k :::;; p. Show that t.he Sylow p-subgroups of G are elementary 
ahelian of order <pk, 

(14.3) Lel G be an irreducible. p-solvable linear group of degree p/J> 1, 

Let N ~ 0,.(0) and V/N ~ O,(G/N). Show that V is nonabeHan. 

(14.4) Lei 0 bea linear group of degree n and suppose th.t n i. not divisible 
by any prime power q > I such thai q '" 1,0, or - I mod p .where p is some 
prime, Assume that G has a solvable irreducible normal subgroup. Show that 
a Sylow p-subgroup of 0 is norm.1. 

Hint Let p. ~ Syl,(S) where S is normal. irreducible, and solvable 
and consider C ~ Co(P.)"" G, 

(14,5) Let 0 have. normal p-complernent N .nd as.,ume that a Sylow p •. 
subgroup of 0 is not normal. Suppose that G i. a linear group of degree p - I, 
Show that N/(N ("I 7-(0) is a 2-group and thus N is nilpotent. 

Hint Let PeSyl,(O}, Show that C.(P)!: l-{N~ 

(14,6) Let 0 b. a linear group of degree pi, where p Is a prime, Suppose 
there exists p-solvable M <l 0 stich that M does not bave a normal SyloW 
p-subgroup, Show that Gis solvahle. 

(14.7) Let G be an irreducible tinear group of degree p + 1 where p is an 
odd prime, Lei P ~ Syl,(G) and Stlppose P -¢ G, Assume that G has a normal 
p-complcment. N, Show that p + I i. a power of 2. 

Hlnu Lc::t G be a minimal ~ounterexample and le1 q be an odd prime 
divisor ofl N: CH(P) I ' Let Q e Syl,IN) and ,how that N.(Q) is abelian. 

Problema 261 

(14.R) Replace the hypot.hesis that G has a norrn~1 p-cotnplemcnt in Prob.­
lem 14.7 by the weaker condition that G is p-solvable. Draw the same con­
clusion. 

/linls Let V 0,,(0) and M/U ~ 0r,(G/V). It is no 1<)5' to .ssume 
that G/M is a p-group and that or'IG) ~ 0, If V ~ Z((i), let T ~ I,,().). 
where 1 is a linear constituent of Xu and 1. is the given faithful character or G. 
Show that X·/' has an irredueibleconstituont of degree {>and that M ("I T <J M. 

(14,9) Let G be a linear group which is generated by two elements.:l' and y. 
Suppose that 'each of x and y have only two distinct eigenvalues, Show that 
the irreducible constituents of 0 (that is. of the given faithful represent.tionl 
have degree at most 2. 

Hint If V is a nonzero vectorspacc ()Ver C and Vb V2 , V3 • and l'~ are 
subspaces such that V = l1 + ~ whenever i :f. j, then there exists a subspace 
U ~ V such that dim U = 2 and V n l"i -# 0 for all i, 

(14.10) Let G be a ,olvable linear group of degree II. Show that G has a 
nilpotent normal subgroup or index ~ n!. 

(14.11) Let p be a prime. Show that for every integer rI :> O. there r.:xists a 
p-,alvable linear group 0 of degree n with I P: Op(GJI <: p', where P E Sylp(G) 
and 

~ = f [nip'], 
1""1 

-.'.~- - -

, " 

, 



15 Changing the characteristic 

Some of the deepest and most powerful re.uits in group representation, 
theory involve "modular" representations. that is, representations over 
fields of prime characteristic. These are important for at leasl t.wo reas~ns, 
First, if K, H <I G, with K ~ II, and /11K is an eleme!,!ary a~ehan p-group, 
then /11K may be viewed ItS <III F[G}module, wher~ F IS ~he field of order p. 
In thi~ situation, the representation theory can g,ve dw:ct s~ructural 10" 

formation ab()ut G. Perhwps an even more important. way in Whl~h the ch~r .. 
actcristic p representations or G are relevant is that they can ,give new 10" 

formation about the characteristic zerO situation, This is especutlly. the cas.c 
when I G I is divisible by I' since then it is possible 10 obtain results whIch rclate 
the p-sub~rollps of G with the p'·op.:rtics of Irr(G). . . 

Our emphasis in this chapter will be On lhe relauonshlp bel ween the 
absolutely irreducible characteristic p representatIOns of G and frr(G). 
Following R. Brauer, who was the originator of this theory, we Sh~1I focus 
our attention on characters rather than on modules Qr represen~atlOns.(In 
faGt, we shall not even mention the indecomposable but not IrreduCIble 
modules which seem to be crucial for l1lany of the deeper result •. ) . 

The objective ofthi, ch"pler i. to familiarize the reader with the prinCI~al 
delinition. and the most basic resuUs of the theory. We do not attempt to gIve 
a comprehen~ivt: Itl;:'iltmc:nt or the subject and we ~hail riot prove every fact 
that it> mentioned. . 

We e~tablish SOllic nOli:1lion which will remain fixed throughout this 
chapter. Let R be the full ring of algebraic inlegel's in C and le~ p be a prime. 
We construct a particular lield F of characteristic p by choosIng a ma"mal 
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ideal M :::! pR of Rand selting F a RIM. (Note Iharthere is a certain amOUnt 
of .rbilrarin ... here .ince M is not uniquely determined.) Let" denole the 
natural homomorphism R - F. Since 1'1* = p* = 0, il follows thai char(F) 
= p as claimed. 

(IS.l) LEMMA Let U " (e € Cltm ~ I for SOme m E Z withp,f'mj. Let R, F 
all" * be as above. Then 

(a) U s; R; 

(b) * maps U isomorphically OIl to .F' ; 
(0) F is algebraically closed and al¥ebraic over its prime field. 

"Proaf Clearly Us; R and so. is dell ned On U. Ifa E U _ (I), tlt"en a isa 
primitive nih root of I for some II > I withp,f'n and hence 

,- , 
1 + x + ... + x'-' ; (x' - 1)/(x - I) ~ n (.~ - a'). 

'-I 
Setting x ~ I, we conclude that 1 - a divides n in R. If a" ~ I, then (J _ a)' 
~ 0 and thlls 1/' O. Since p' ~ 0 and (p, n) = I, it fOllows that 1* = 0, a 
contradiction. Thus * maps U isolnorphically into r. 

Ifa e F, then a a* for 'ome a E R and there exists monic! c l[xJ, with 
j'(u) ~ O. Let K ;;; F be the prime sublleld. Then 0 '" r E K[x) andr(a) 
I(u)" O. Thlls F is algebraic Over K. 

To complete the proof, let E b<: an algebraic extension of F, Then 
U· Ii F' S;; E' and it sumces to show that E' s;; U' in order to conclude 
thaI U' = F" and that f is algebraically closed. Let Ii E E'. Then P is alge­
braic OVer F and hellce Over K and thus fI" ~ I, where m ~ I K(iJ) I _ 1. 
Now p,f'm and.o U· Contain. m roots ofxffl 

- I. Thus P E U· and the proof is 
compl~te. I " 

Conlinuing wilh the above notalion, let X be an F·,·epre.entation of a 
group G. Let.'l' be the set of p-regularelements oCG, that is, elements of order 
not diviSible by p. We dofine It function '1': .:I' ... C as follows. Let x • Y' and 
let "1,6" ... , ',0 F' be the eigenvalues of l(x), counting multiplicities. 
(ThusI = deg 1 and r c, - "'(x) wherc '" is lhe F-character afforded by;t;:.) 
For each i, thoroexists a ullique u, • U su~h that(u,)" - e,. Let 9'(x) ~ r U i • 

The:: funotion tp: Sf' - R ~ C is called the BralUtf ch~r(-Ictf.'r ('Ir G alTordcd 
by.I, Note that similar f"rcprcscntat,ions afford equal Brauer characters and 
thaI Brauer characters are constant On conjugacy ~Ia .. e., Both of these 
statements follow from lhe f.ellhall(.<) andP-' X(x)P have the same eigen­
values. Also, if x E.'I', then '1'(",-') = \OW 'ince the eigenvalues of .~(.,- ') are 
the reciprocals oftho.e ofl'(e<) and fOtJ'E Uwehave(ii)" ~ (u-')" ~ (U")-I. 



GMplli!lr 18 

(15.2) LBMM~ Letl: be an F-r.prcse~tation of G which affords the Brauer 
character I/> and the F·eh.racter ",. For g c G. let x ~ gpo E /1'. Then 'p(x)' 

= "'«(I)· 

I'roof We have 9 r- xy. where x. y E <g). p,r-o(x) and o(y) i. a power of p. 
Replace'l: by a similar representation '0 a. to a •• lIme that ~(g) i. in lIpper 
triangular form. Since :£(g) ~ :£(x)l:(y) it follow. that the eIgenvalues a, of 
.l!(g) can be factored. " = 6,0,. where 6" .••• 6r arc the eigenvalues of l(.<) 
arid (h,)"'" = l. Since o(y) i. a power of P. we have 0, = I and a, ~ ',. Thu, 
"'«(I) = ",(x). That "'(x) ~ 'p(x)" i. immediate from the detlnition of ",. I 

Lemma 15.2 provides one reason why we only bt>ther to dellne Brauer 
characters on p.regular element" this i, .ulliclent to reconstruct the full 

F.eharact« afforded by ;1'. 
Some words of calltioo arc appropriate here. Given a group G and a 

function, ",: .'I' _ C, where 51' is the set of p.regular c1ement~ of G. it is n~t 
always meaningful to ask if 'P i. a Brauer character lInles' the Ideal M ~ R ,s 
specified or ,orne Olher additional information is given. Examples eXISt where 
I/> is a Braller character with respecllo some choice of M and is not one when 
some other maximal ideal is chosen. Also, if a is an alltomorphisrn of the 
complex numbers and <I' is a Brauer ch~\"acter of G. then ({'ff need not also be a 
Brauer character where IP' is detlncd by ",'(x) ",(x)' for x G Y. 

(15.3) I .. liMMA Let I/> be a Bralle" character of G. Then 1/>. the complex 
conjugate function, is al~o a BnHler character. 

f'roof Let:£ be an F.represcnlMion affording 1/>. where F ~ RIM, as 
\I,ual. For g e G. deftne i1(y) Q l(y-')' and observe thn! '!l i.<ln F-reprcscn­
tation of G. If "" ... , 'r are the eigenvalues of l(y), then " • ' .... , • r - , 
are the eigenvalues of :£(y)-' ~ .'£(g" ') and hence of 'Il(y). The result nOW 

follows. I 

Let ;{" ...• ;1:, be a scI or repre.entative. for the similarity classes of 
irreducible F.represcnlations of G and let "', be the Brauer character afforded 
by ;'E,. We say that the 1/>, arc irreducible Brauer characters and we write 
IBr(G) ~ (I/>,}. When we U'e this ""tat ion. it i. understood that a particular 
prime p and maximal ideal M have been lixed. 

It is routine to prove that sums of Dra:ucr characters are Brauer char .. 
acters and that every Brauer character is of the form r ",I/>" where Ihe ", ~ Z 
a.re nonnegative and not all zc;rO. To prove that the!pj are linearly independent 
we need the following fact from algebraic number theory. Although it is not 
terribly deep, we omit the proof. 

• ~ " _ _ ~ ___ .....ot 
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(15.4) LP.MMA Lot." .. ., "m E C be algebraic ove,' 0 and let 1 be a proper 
ideal of R, the ring of algebraic integers. Suppose that Ilot all " = O. Then 
there exists (3 E C such that /I., E R for all j but not all /I., E I. 

Proof Omitted. I 
(15.5) -ri'EOREM The irreducible Brauer characters 'p, arc distinct and 
linearly independent over C. Also. if L .,I/>~x) '" 0 mod M for all x E.'I' with 
" E R. then all " '" 0 mod M. 

Proq/' We prove the second statetnent "rst. Since the :t, are ab.olutely 
irredu"~ble. we have l,(F[G)) = M r.(F). where 1, = deg ;1:,. It follows that 
we can choose b, e F[G]. with ",,(b,) = I. where "', is the character afforded 
by )i,. Also. by l'heor.m 9.6. we may suppose that ",,(hj) : 0 if i '" j. 

We have L .'I/>~x) '" 0 mod M for all.< E 51' and thlls L: .,'",.ell) : 0 for 
.11 g e G by Lemma 15.2. It follows that L,.,"",,(h} = 0 for all.!. and thlls 
.,' ~ 0 for all i. This proves the assertion. 

. Now let E be the algebraic closure of 0; in C and suppose that r ~,"', ~ 0 
w,th ~,e e. If not all " ~ 0, we apply Lemma 15.4 and choose P with all 
p~, E R but not all pa, EM. Since L (/i.,)1/>, ~ 0, this contradicts the first ,art 
of the proof. Thlls all '" = 0 and the 'p, are linearly independent ove~' E. 
Since the 1/>, have values in E, il follow. by elemenlary linear algebra that 
they remain linearly independent over any extension t1eld of E. I 

The principal reason th"t Brauer characters are important i. that they 
provide a link which connects Irr(G) with the characleri,tie p representation. 
ofG. 

(15.6) 1'HUORr,M Let X be an ordinary character of 0 and let ~ denote the 
restriction of X to .'1', the set of p·regular elements of G. Then ~ i. a Brauer 
character of G (for any choice of M). 

. In order to prove Theorem 15.6, we need to consider a somewhat larger 
nns than R. As always, we assume that we have fixed a particular maximal 
ideal, M:! pRo Let R; ('//lI~, (Ie R, Ii¢ M} so C and observe that l! is 
a ring and R '" R. Let M; ('//lI~ E M, /l G R - M}. Then M is an ideal of 
j{ and every element of R - M has an inverse in R. It follow. that M is the 
unique maximal ideal of It We call R a ring of lo,"al i'mo,,,,, for the prime p. 

We extend the hamomorphism., R - F to R by detining (~/(3)' = a"/p'. 
Note that M" is the kernel of this extension and M = M" !"r R. 

(lS.7) l.eMM~ (Nakayama) Let j{ and M" be as in the preceding and let V 
be a finitely generated it-module. Suppose V ~ V M + tJ for ,orne ,ub. 
module U s; V. Then U = v. 

~----.... ---~- --_. '-------
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Proof Since V is finitely generated, we can choose V,lt 1.'.2, -", VR~ Vsu~h 
lhat V ~ L v, M + U. Do this with the minim~1 posSIble n. If n - 0, lhen 
U ~ V and we arc done. Suppose n ;" 1 and write , 

, 
0,,::::; L')jnt j + 14, ,-, 

whcrcmjEM and uE U. rhus 
,-I 

v,(1 - m,)6 L v,M + U~ ,-, 
S· • ., have 1 - m "i1. -fiJ andlhu,l- m,i'inveriibleinRand 

mce mil e I"', we /I ~ j .~ U d II . ntradicts 
"",,-I .-;, oJ. U It follows that V ;:::: £...j~ I VJ.,IYl + an 11S co , 

VIIE,£.,.I_I VI''''''' I 
the minimality of 11 and completes the proof. 

Suppose I is a C-rcprcs:cntatpn or G with the property that all e,n~ricsi~ 
the matrices 1(0) for (J E G lie in R. We can construct an F-rcprcscntahOn 
of G by soiling ;{'«(J) ~ Xli/I'. that is. we apply * to every-entry of 1(91: 

The following include:s Theorem 15.6. 

(15 H) ''''''{)Il~M Let.{ be a Q:::'represcnlation of G . .-rhen th~re. ex~ts a C· 
re~re,entation 'D similar 10 l; ,uch lhal all entries In 'D(o) I.,e III ~ for ~I 

G If V is any such representation, then the F-representatlon V ,affor s 
~h: Brauer character 2 where X is lhe ordinary character afforded by l; (and 

by ~l). 

Prool LeI E be the algebraic c1o.ure of (I in C. By Ihc rcsu~1S of Chapler 
9, every C.repf<senlation of G is similar to one of the. form 3 for .ome. E· 
representation ~I_ It therefore suffices to assume that I IS ,an ~~representatlon 
and to produce a similar E~representation, V with entnes III R.. an 

LeI V be an E[G]-module col'rospond'ns 10 l; and let V ...... v, be so 
E.ba,is for V. Lei W be the R-,pan of the finite .el {v,g II $ , $rI. 9 (' G) 
that W is a finitely generated .R>modulc which is: G-Invarumt. Let 

" W ~ W/wNi 
be the natural homomorphism and view w/wA1 ~s an F-vector. space 
via (w,)c<' ~ (w~)! fo'·~. it LeI {IV.r} be an F·baSis for w/w~ sO that 
'" ,i1.)< - w/wNi and W ~ w4 + L w,it By Nakayama s Lem~a 
~!7~)we h~e W;c;;: L Wj R and thus the wJ ~pan V over.£ ~ince W containS 

an Erbasis: fol' V. 'd' e S ppos'e that 
We claim that the w) ilre linearly mdepen ent over ,U . 1 

,~ ° 'Ih NEE and nol all ~J ~ 0. By Lemma 15.4, we can mulUp Y 
i... WJIX) = WI, "'J ~ i"{ h til • .!!Ill 0 

. bl "" E' and assume Ihat all "J € R <:; l< butt al no a ~J • 
by a 'oulta (~ " ')! _ '~(IV T'N * and lhis contradicts the linear independ· Now == '- wJ(;tj ~ t... j~) • 

c:nCe of the Wjf and proves the chum. . 
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Now let 'LI be the E~reprcsentHlion of G corresponding to V with respect 
lo the basis {wi} SO lhat tH~/) ;;:;: (alj), when wig .= I Wjll/j_ However, Wjg e W 

'" L w/i. .nd so all "If'" R. This compleles the proof of Ihe fi"st assertion. 
Now for p~rcgular 9 f; G, we need to compute the eigenvalues of 

~).(g) ~~l(g)*. Let I be the characteristic polynomial of 'D(g) so that 
f(xl ~ del(x l - ~l(g»). Then II! R[x] and /* EF[.,] is lhe charaCleristic 
polynomial of~)(g)*. Write/(x) ~ n(x - A;) and nOte lhat the eigenvalues A, 
lie in R s:;; R. Then/*(x) ~ n(x - A,·) and hence the eigenvalues of'D*(y) 
are lhe -<,'. Thu, ~(g) = LA, i, Ihe vailic of the Brauer character alforded by 
V· at the clement g_ The proof is completc. I 

111 the foregoing proof, it i:-; not the Case that the character X uniquely 
determines the F-represenlation 'V. up to ,similarity. 11 is possible that X is 
affordcd by another C-representation ~l with entries in R such that ~l)'" and j'" 
are not similar over F. Of course, X does uniquely determine the Braucr 
character i and we may write 2 = L n<i''P where t:p rUns over IBr(G) and 
o ~ n E Z. The cot:fficients nIP ar~ uniquely determined because of the linear 
independence of IBr(G) and since n<i' is the multiplicity of a particulal' irre~ 
ducible F-rcpresentation as a constituent of ~'., it. follows: that ~ ... and 3* 
have the same irreducible constiluents with the same multiplicilics, Sinec 
'tV· and 3· need not be completely reducible, it do~s not, follow that they are 
similar, 

(15.9) OF.HNITION Let X e Jrr(G) and leI J be lhe reslriction of X 10 the p. 
regular elements of G. Write 

The uniquely dcfined nonnegative integersJXtf/ are the decomposition numbers 
of G for the prime p. 

We view the decomposition numbers as. forming a jlrr(G)1 X jIBr(G)1 
matriX,called thcd~compositiotl marrix.. Allhough thcdecomposiliol1 numbers 
arc not even defined until the maximal ideal M is cho~en, it is a fact (whose 
proof we omit) that the decomposition matrix ofG for the prime p is uniquely 
determined up to permutations of the rows and columns. 

(15.10) Tl-tEUR.P.M 'fhe d~~ornposition matrix (d .KiP) has linearly independent 
columns. Also, IOI'(G} is n bnsis for the ~pacC' ofC~valued functions defined 011 

p~rcgular clements of G and constant on conjugacy classes. 

Prool Let V be the space of p·regul.r class fUnctions and lei W <;; V be 
Ihe span of JBr(G). Let U be the span of Ihe columns of (d,.) so Ihat 

dim U ,;; IIBr(G)1 ~ dim W ,;; dim V, 
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where the equality follows from Theorem 15.5. The theorem will follow when 
we show that dim V S; dim U. It therefore suffice< to find a one-to·one linear 
map ftom the dual space P of V into U. The ciement. of U arc column. 
indexed by X 6Irr(0). For 0 e ii, define u = col(~(J!)). To show that u e U. 
observe that .(J!) = ~('r .. d,.4') = L. ",.~(<p). rhus u is a linear combination 
of the col(d,.) for <P 6IBr(G). We map P .... U by.,..... col(o(J!)). 

If "(J!) = 0 for ail X" Irr(G). we claim that " ~ 0. To sec this. let 9 E V 
and extend.9 to a cl ... function 9, of G. Write .9 1 = L a,l so that 9 = La,)! 
• nd 0(8) ~ ° as desired. The result now follows. I 
(15.11) COROI.LARY '''e numher of conjugacy classes of p-regular ele· 
ments of Gis equal to IJ £Ir(G)I. This i, also the number of similarity classes of 
irreducible K-representatlons of 0 for every splitting field K of character­
istic p. 

Prooj The first assertion is immediate from Theorem 15.10.1-0 prove 
the second statement. we may repillce K by its algebraic clOSUfO by Corol· 
lary 9.8. Assuming that K is algebraically closed. it contains an isomorphic 
copy of F which is an algebraic closure for I,. By Corollary 9.8 again, we may 
assume that F K. The result now follows from the fact that nonsimilar 
Irreducible F-representations afford distinct Brauer characters. I 
(15.12) COROI,LARY If II' e iBr(O). then there exist. X elrr(G) with d,. '" 0. 

Note that for each X € Irr(O). It i. trivial that there exists <p E 18r(0) with 
tI,. '" 0 since 0 ¢ X(I) ~ r. d .. tp(1). 

The interesting case orthis theory is when p II G I. The reaSon for this Is 
given by the following. 

(15.13) THEORI1M Supposep../'IGI. Then lBr(G) = Irr(G). 

Proof In this cas., the group algebra F[O] is completely reducible and 
thus by Corollary 1.17 we have IGI ~ dim f[G] = L(deg )1,)', where the 
;tj arc a $¢t of rcpresentati~R for tht.:: similarity classes of irreducible F ~repre .. 
scnt.tions. If )1, affords 4', E IBr(O). then deg I, ~ 11',(1) and hence 

L rp(1)2~IGI= L X(I»)=L(r d,.4'(1),2 
Ipcllh(IJ) l'i'lrr!G) x '1' ) 

It 4' ", ~,then L, d,.Ii" ~ 0 and if II' = ~,then Lx d,.d" ;;, 1 by Corollary 
15.12. It follows that these inequalities are all equalities. 

We now have Ix (d l"r~ ~ I and hence for each C{J, there is a unique X 
such that d,.'1' "# O. and in fact ti,,,; :at 1. Since ~l d1.<pdx" :;:::0 0 if ({) #; ~" it 
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follow. that for each X" Irr(G~ there is a unique <p with d,. '" 0. We cOMlude 
that ~ ~ ~ ~ 4' .nd the re,ult follow,. I 

A necessary condition that a (unction 9: Y -4- C be a Brauer character jg 

that for each Subgroup H!;;; G with p../'IHI. the ,"striction 9 is. Brauer 
character and hence is an ordinary character of 1/. This is som~thing which 
can he checked. 

It is trivial that every 4' E IBr(G) is a C-Iinear combination of the Uratler 
character, 2 for X E G. Thi. may hesecn byeXlcndinglp to a cia .. function ofO . 

(lS.l4) l1i1iO~"M Let II' E 18r(0). Then 'P i. a Z-lIne.r combination of 
WXEirr(O)). 

['rooj Extend <p t? a class function ,~ of G by setting $(g) = <p(0,.). It 
suffices to show that 9 IS. generalized character of G. We app<alto Brauer's 
Theorem 8.4(.). 

Let E s; G he elementary and write E ~ P x Q, whcre P is a p.group and 
p../'I Q I. If geE, write 9 = xy WIth x € P and ye Q. Then ,~(g) = <p(y) and so 
.911 Ip x <PQ' By Theorem 15.13. <Pq is a character of Q and hence a. is a 
character of E. 11 follow. that .9 is a generalized character and the proof i. 
complete. I 

We digre,. to show another way in which Theorem 15.13 can he used. 

(15.15) LEMMA Let E he an algebraically closed field of characteristic not 
dividing I NI, where N is a group. Let H act On N and suppose that C.(n) ~ I 
for ,II 1 '" n" N. Let 'D be a nonprincipal irreducible E-rcprescntation of N 
and wnte '!l'(tI~ = 'll(tI) for tI" Nand he fl. Then th. representations 'I)' 
arc pairwise nonsimiiar ror h E H. 

Proq{ Let K be the algebraic c1o,ure in E of the prime sub/ield of E. 
Then ID = ~'l' for ,Orne irreducible K·representMion .3 of N. It suffices to 
show that the 3' are pal~wlse oonsimilar by Corollary 9.7 and hence we may 
assume that K ~ e. 

lf char(E) = O. then (up to isomorphism) Ii r;; C and the representations 
me)'are pairwise noosimilar by Theorem 6,,14 and Problem 7. I which prove. 
this ca'e. 

Suppose char(E) a p. Choo.e • maximal ideal. M ;2 pR of R and let 
F = RIM as usual. Then F;; E and we may assume F ~ E. Let 'IJ afford 
II' r;IBr(N) ; Irr(N). By Theorem 6.34, the characters 4" for h E H are all 
distinct and the result follows. I 

The following result is often quite useful. 
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(15.16) THEOREM Let G be a ~'I'obenius group with kernel N.and lel K be. 
field with characlcri~lic not dividing I N I. Let V be a K[G}module and sup. 
pas< that Cv(N) = O. Lot II be" Frobeniu; complement for G. Then V has a 
basis which i, permuted by II wilh orbits of "20 I H I. Also, If tl 0 ~ II, then 
dim Cv(Ho) = I tI: flol dim CvUl). 

Proof The second statement follows from the tirst sinc~ if b is a b~sis 
permuted by II, lhen dim Cv(Ho) is equal to the number oforb,ts oflhe aclIon 
of tl 0 on b. Since each orbit of H 0 on b has size 1110 I, the assertion follows, 

To prove the first statement we argue that it suffices to assume ~hat K IS 

algebraically closed. Let .I be a K-rcpresentation or G correspondmg, t~ V 
and let E ~ K, The condition that eveN) __ 0 is equivalent to the restrictIon 
.I,., having no principal corlstilut:nl and this proP.crty i~ inherited ~Y (t~),v 
by Theorem 9.6. The I,;onclusion of the theorem 1S cq~l\lalc:nt to In bc~ng 
similar to a I'epresentation 11 in block diagonal fOl'm with each block being 

E d \1IE "1 the regular representation of H. If we can prove that (In) an 'V are simi ar, 
lhen.t and'll are similar by Problem 9.5. It follows thM we may replace K 
by anyHextension fidd and thus we assume that K is algebraically closed. 

Now let .. K be a r(:presentative sct ofirl'educible K[NJ~modules. Since It. 
acts on the sct of similarity classes of K-reprcsentatiOIlS of N, we can define a 
corresponding action or fI on 1. Let.II 0 S ..It ~ a set of representati~cs for 
the H-orbits of nonprincipal K[NJ-modules III ...If. In the notatIon of 
Definition 1.12.let 

w ~ l: M( V) ~ V. 
M",At.., 

We claim that V ~ L '111011 Who This will suffice to prove ~he result since 
we obtain a basis fof' V by choosing any basis for Wand taking all II -trans­
lates. To prove the claim, observe that..K = U"~H (..I( oY' u {U}, where U is a 
principal module. By Lemma 15.151 this union is disjoint. Since V .... has nO 
principal eonstituenl, Lemma 1.13 yields 

V ~ L ",11 ( L M(V»). 
M'II(rIIt..,)" 

The result now follows from Lemma 6.4. I 

We now reSume consideration of the general case where p can divide 101. 
We introduce the concept of "blocks" which is at the heart of Brauer's 
theory. . 

Forcach X E lrr(G), we have lhealg.bra homomorphISm w,: Z{C[G~) ---+ t 
as in Chapter 3. The function Wx is determined by its values on the conjugacy 
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class Sums KJ which form a b.%is for Z(C[G]). FurthernlOrc, tilt: values 
w,(K,) lie in R. For X, ojJ E Irr(G), write X - ojJ if w,(K,)' = (u.(K,)* for all i. 
Thls clearly establishes an equivalence relation On (rr(G). , 

(15.17)' D1lFIN,',"ON Ap-blockofGi'"subsetB ~ lrr(G) u IBr(G)suehlhat 

(a) B f1 Irr((;) is all equiv~.lence class under the relation ..... defined 
above. 

(b) B n IBr(G) = ('P" IBr(G)ld,. ,. 0 forsome X E B n Irr(G)). 

F.rom its definition, it appears that the equivalence relation ...... on Irr{G) 
depends On the choice of the maximal ideal M. In fact, this is not. true. 

(15.18) TI1E<)~"M Lel X. ojJ e Irr(G). Then X alld ojJ lie in the sam< p-block 
iff wiK) - (j),iK) lie:s in every maximal ideal of R which contains pR ror 
every class sum K. 

Proof The "if" statement is clear. Assume x ...... 1/1 and fix K. Let c( :::;; 

(j)x(K) - w\ir(K). We shall show that cit. E pR for some integer n and the result 
will follow. 

Lel ~4 ~ (1(01,40), the Galoi' group, "nd lel a c 'fl. Let" be a primitive 
IGllh rool ofullily '0 lhat s" = e" for SOme m, with (m, IGI) = 1. Let gEG 
be.in the class with sum equal to K and let L be the Sum of the class containing 
gm. We have X(g)" = x(g"'). Also I C(g) I = I C(gm) I ,ince (y) ~ (yO). It 
fOllows thai w,(K)" = w,(L) and similarly w,(K)" = OJ.(L). It IDllows thot 
~. = w,(l.) - "',(L) G M since X _ ojJ. 

, L<l f(x) ~ D ... (x - ~.) E (0 <"'\ R)(x] = Z[x]. Since ~"E M for all 
(J' E ~,'all of the coetlicicnts of/ex.cept for the lc:ading One lie in M I'i If. ~ pZ. 
Thus 0 = f(~) '" .. " mod pR, where n = I WI. The proof is now complele. I 

Although it is clear from the definition that every X € Irr(G) lies in a unique 
p-block, the analogous stalomenl.boul I Br(G), lhough true, is nOl so obvious. 
To prove il, we rclate lhe p-blocks of G lo lhe F-algebra, Z(F[G]). 

We extend the map .: R ---+ F to a ring homomorphism., R[G] ---+ F[G] 
by ,elling U' ~ U for 9 ~ G. (H<re, R[G] is simply tho R-span of lhe group 
elemen!s in C[GJ.) Since the cia., sum, K, form a basis for Z(C[G]) and their 
itn.~e, K,' G F[G] form a basis for Z(F[G]), il follows thal Z(R[G]) ~ 
R[G] n Z(C[G]) maps Onto Z(F[G]) via '. 

Now suppo," X E Irr(G). Th<n "', map, I':(R[G) to R "nd we can <kfine 
w, ': Z(F[G]) ~ F by setting Inx "(z') ~ '",(;)' for, € Z(R[G]). This i, well 
defi,!led since if ~1' Z2 E 7,,(R[G]), with Zl· ::: z:z*, then z 1 - Z2 has coefficients 
in M and thus (m,(z, - z,W = O. It iSlriviallo chock thal "I,.: Z(P[G]) ---> F 
" an algebra homomorphism and lhat if X, ojJ e Irr(G), then w,' = w.' iff 
X - ojJ; that is, iff X and ojJ lie in the >ame p-block, 
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LeI 81(G) be Ihe SCI of p-blocks of (i, If BE BI(G). leI )'B ~ w! for 
Xc B " II'I'(G), Thus B _ '0 i. a ono-Io-onc map from BI(G) inlo Ihe set of 
algebra homomorphisms Z(F(G]) ~ f, 

(15.19) THEOREM Let (jl E IBr(G), Then (jllies in a uniquo p-hlock Ii, If 'II i. 
an irreducible F-rcprcset\lation which affords (P. then \ll(lI) /I:';;: ),n\u)1 fol' all 
"E Z(F[G]), 

Pro,,!' By Corollary 15,12, <I,. i' 0 for some X E Irr(G), Let Ii < BI(G), 
with X e B. Then (jl E /J. Let 'II alford 'P, We will be done whon we .how that 
'!)1,,) = A"i,,)1 for all II E ZIF[O)) since this equation uniquely determines I,. 
and thus uniql1ely determines B. 

Let X be a C-reprcsent~Hion which affords X and which has entrie:; in n 
(Theorem t 5,8), Thus .'tl\l aflords the 'Brauer chal'acter X and by the linear 
independence of IBrIG). it follows that ~I has multiplicity d,,, :> 0 as a 
constituent of X·, Now let /J E Z(F[G])and write u ""' z* for some z E ZIR[G)}, 
Then 

.PI") ~ I(1)' ~ ("",(1)1)- ~ ..", *(,,)1 ~ A.(II)1. 

Since 1) is a constituent of X·, the result follows, I 
We ddine a gf(lph with Irr(G) as i(s vertex set by linking /., 1./1 E Irr(0) itT 

there cxigts (p c 18r(G) such that ti,t/! Mld doJ,.p are both non7,ero, This is callw 
the 8r'lIIer g,·aph. If X and of; arc linked by'P, it follows th.t r. and of; lie in the 
~a.mc p·bl()ck. namely the unique one which contaiTls CfJ. This proves the 
following, 

(1$,20) COROLLARY Lct B be a p.block of G. Then B " 1,,((;) is a union of 
connected compon.;nts of the Brauer graph. 

We shall scc that in fact Ii (') Irr(G) i. a single connected component. 
One oflh. prinCipal benefi" of considering blocks in various applications 

of the theory is that in certain circumstances. we can replace equations like 

I x(x)x(y) ~ 0 
ll!irr(ri) 

(which a!'ise from thc second orth"gonality relation) by equations like 

I x(.,)x(y) O. 
xo:1rr!(i).,,\!1 

where /J is a p.bloek, In parlicul'H. this holds whenever .x, and Y, .re not 
conjugate in G, We shall prove a wenk form of this "block orthogonality." 

For eaeh (jle IBr(O) we define 

<I'. = 2: d,.X· 
):';lrr(G, 

The iP's are called projective charilcters of G. {There is no connection with 
projective rl!:presentatjons in the sense of Chapter 11, butlhere is a connection 
with projective modules in ring theory, The <!;I's ale also called" prinCipal 
indecomposable: characters" in the literature.) 

(15,21) LEMMA tet ,of s;; Irr(O) be a union of connected components or 
the Brauer graph and let IN {(jl E tBr(G)I <I,. ¢ 0 for some X € .of). let 
x, Y. G with p,fo(x), Then 

I x(x)x(v) ~ I <p(x~. 
X". ".rtf 

Proof For X e .of. we have 

X(.,) ~ I d ,.,p(X) 
1P~!1i 

since d,,, ~ 0 for .111' E !Br(O) - 91, Also. if <P E if. then 

"'.(v); I d,.x(y) 

" " 
since d,. ~ 0 for all e E l",(GJ - • .t. 

Now 

and the proof is complete, I 
(15.22) COROt,CARY For each <P E !Br(G) we have "'.(Y) = 0 if plo(y). 
Furthermore, IPI divide,S "'.(1) where P e Syl,(O). 

ProQf' Let:x e G be poregular and let pi o(y), By the second orthogonality 
relation we have 

2: X(x)xlY) ~ O. 
;(lrlrr(G) 

By Lemma 15,21 with.of ~ Irr(G) and f!I = 1 Br(O), we conclude that 

r cp(x)<l>.lY) ~ O. 
~ClI8,(O) 

Since this holds for all p-regular "E G, the linear independence of IBr(G) 
yields "'.(Y) 0 for all ,po 

The second .. atement follows since IPI(<I>.)" I,,] = <1>.(1), I 
(15,23) COROLt.~RY (Weak Block Orthogonality) LeI x. YEO with p.j'o(x) 
and plo(Y). Let 8 be. poblock of G. Then 

L x(x)X(y) ~ 0, 
1:" fI,.., Irr(G) 

-,~,.,----
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Proo! Apply Lemma 15.21 with.91 ~ Irr(G) n Band i!I ~ IBr(G) n B. 
Since <I>.(y) = 0 for all '1'. the result is immediate. I ' 

Before going Oil to devc:lop more of the theory of blocks we digress to giv~ 
an application of what WI: have already done. 

(15.24) THEOREM (Brauer) Let G be a simple group of order pQqhr where 
p, q, r are distinct primes. Let S e Syl,(G). Then S ~ CG(S), 

The p·block containing IG is called the principal block. 

(15.25) LEMMA Let G be simple and let B be the principal p-block of G. 
Suppose X 6 B n Irr(G) and x(I) is a power of p. Then X ~ lG' 

Proof Let 9 " G and let K " CEG] be the sum of the elements in CI(g). 
the conjugacy class containing g. Then m,lK) ~ ICI(g)1 and since X and 10 
lie in the same p-block, we have 

(0 ) X(y)ICI(y)1 ~ "',(K) " ICI(y)1 mod M. 
x(i ) 

NOWletPESyl,(G).lfP ~ l,thensincex(l)dividesIGI,wehavq(l) ~ I 
and by simplicity X = I G' Assume then. that P > I and take g E ZIP) - II}. 
Then p,j'ICI(y)1 and '0 ICI(y)i ;1;0 mod M since M n l. ~ pl.. Thus (0) 
yields X(g) .. O. However (x(l). ICI(g)l) ~ I and BUrl\Side's Theorem 3.8 
yields that 9 E Z(X). Since g io I and G is simple, it follows. that X e;; IG _ I 

Proof of Tileorem J 5.24 Suppose CG(S) > S. Then there exist. x E G 
Df Drder pr or qr. Say u(.<) ~ pr and let B be the pdncipal p-blo.ck of G. By 
Corollary 15.23, we have 

We claim that the second sum is zero. If X E B n Irr(G) and X .. IG and 
qh(I). then rlx(l) by Lemma 15.25. Since rlo(x). we hav~ xix) - 0 by 
Theorem 8.17 and the claim follows. We conclude that -l/q IS an algebra,c 
intl:'=~t:r and this contradiction cornph:tc:s tht: proof. I 

for X E Irr(G). let e, E Z(C[G]) be the idempotent corresponding tD X" 
By Theorem 2.12 we have 

X(l) ,,­
e, ~ TGT .,;,/wll/. 
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Note that in general. ex f R[G] (wht:rc R is a ring of local integers for ,,) and 
so we cannot find idempotent, in F[G] simply by applying 0 to eX' Since 
e i e" ~ 0 if X '" VI, sums of the various ex's are also idem po tents and we shall 
consider when such a sum lies in R[Gl Note that if.r;; ~ TI'I'(G). then the: Set 
dcanberccoveredfroms = I:x .. ~exsinces(::::;= {XEJrr(G)jse,;: i= OJ. 

(15.26) THEOREM (O.'i'im(~) Let oW bea connc:cwd component of the Brauer 
graph and letl = LX!I;";'( f?;.' Write! ;::: L a~g. Then 

(a) ", ~ (I/IGI) L" ... x(l)X(Y); 
(b) ".EjUDrall~EG; 
(c) a, ~ 0 if plu(g). 

Proof Statement (a) is immediate from the formula fOl' ex in Theorem 
2.12. By Lemma 15.21; we have ", ~ (I/IGI) L., .. ,p(I~. where iJd ~ 
I<p e IBr(G)I d,. l' 0 for some X E ""). If plo(g). then <I>.(y) ~ 0 by Corollary 
15.22 and (c) follows. 

Now aSSUme that p,j'o(g). Lemma 15.21 then yiold, 

", ~ (I/IGI) L <1>.(I)q;fyj. 
'1' c ~11 

However. I PI divide, <1>.( I) where p" Syl,(G) and thus <l>.(I)!IG I E Ii:. Since 
q;fyj e R. it follow, that ", E R and (b) is proved. I 

(I 5.27) 'rHEOREM The connected components of the Brauer graph arc 
exactly the Sets Irr(G) n B for p-blocks B. Furthermore. every set.oI EO Irr(G) 
such that L,-", e, E R[G] is a lInion OfselS of the form lrr(G) n B. 

Proof We prove the secDnd statemenl lirst. If X" Irr(G) is affDrded by 
I, then l(e,) is Ihe identity matrix and Ire.) = 0 if", .. X. Thus m,re,) ~ ( 
and w,le.) ~ 0 for'" .. X. Writef '" L ... e,.1t follows thatX E.9I iff", (f) = I 
and otherwise '",(f) '" O. Thus X e.ol iff "',(f)0 'f O. Now iff ~ R[b), then 
all OJ,(f)O are equal as X runs OVer Irr(G) n .B for a block B. The assertion 
follDw •. 

Now lot .01 be a connected component Df the Brauer graph. By Theorem 
15.26, ~ ... e, ER[G] and thus .91 i, " union of set, of the fDrm Irr(G) n B. 
Since tach Jrr(G) II B is a union of connected (,;omponc:nts of the Braut:r 
graph. the I'esult follows. I 

We now have three dille-rent characteri;a:ltions of the St:t~ B II Irr(G), 
Tn addition to their ddinition as equivalence classes under _, they 31'e also 
the connected components of the Brauer graph and they are t.he minimal 
nonempty subsets.oI E Irr(G) such that L" ... e, E R[G]. 

The following is a strengthening of Theorem 15.14, 
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(15.28) LEMMA Let B be a block of G and let 'P € IBr(G) n B. Then 'P is a 
;Z-lintM combination of Brauer characters of the form ~ for X 6Irr(G) n Ii. 

Proof By Theorem 15,14. there exist ", G 7L slich that qJ Ll',ltr(G) ",,2, 
Thus <p ,9, oj. II., where 

ano 

Now we; e~pl'css 8H ~.t'ld .9 0 in tcrm~ oflBr(G) using the d~compo~itjon 
numbers Ii" for 1,<l8r(G). If XeB, then ,I,,, ~ 0 when J1¢B and hence Ii. 
is a linear combination of jlEi B. Simil:1l'1y, if I. if. B. then £I ul 0 when J.I. € B 
and hence {)Q is a linear combination or/~ ¢: 8. The equation qJ 9" + ,10 and 
the iine(lr indcp~ndence or l13r(G) nQw yidd (p =: .98 and the proof is com .. 
plete. I 

(15.29) THEO."M Let Ii be a p.block of G. Then 

IB n Irr(G)1 '" IB '" 18\·(GH. 

Let X E Ii n Irr(G). Then the following are equivalent. 

(a) IB n Irr(G) I ~ IB '" IRI'(G)I. 
(b) ptliGIIx(I)). 
(e) Il n Irr(G) = (xl. 

Also in Ihis case, 8 '" IBr(G) ~ W. 
Proq( Let D = (d,.) be Ihe decomposition matrix and let D. be the 

submatrix cQrresponding to the rowS a.nd columns indexed by elements or n, 
For each <p E B, the part of the corresponding column of D outside of D. 
consists o(zel'l)$,. Since: I.hecolumns of D arc linearly independent by Theorem 
15.10, it follows that the colulllns of D. are linearlY independetlt and thus 
DR ha:5 at least as many rowS as columns. 

Now a~~lImc (a), Then D" is a square oom:ingular matrix and we let 
DN ' \ m (a.,). For fixed x€ Irr(O} n B, we have 

x 

and so X is a linear combination of the 041 and hence vanishes 1.'111 elements Qr 
order divisible by I' (Corollary 15.22). If P 6 Syl,(G), then I PI [X., I,] ~ x(l) 
and (b) follows. 

Assuming (b) we have 

e, ~ (xUlIIGI) I: x«(I)(/€ /![G] 
"IiC; 

and so /J n Irl'(e) ~ (xl hy Th<,<".", 15.27. 

,,' 
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Finally assume (e). Then 

0", IlBr(G) n BI S Ilrr(e) n 81 
and (a) follows. AI,o, if Illr(e) rt 8 (<p). then 'P m b~ for some bE;r. by 
Lemma 15.28. Thus ~ ~ d,.<p _ d,.bg and d,.h; I. It follows that d I 
and the proof is complete. I ,. 

Note that Theorem 15.29 provide, an alternate proof of Theon:m 8.17. 
Also observe that if pt I G I, then each p-block contain. a unique irreducible 
ehar.cter. 

We use Theorem 15.26to obtain fllrther connections hetween the p·blocks 
of G and Z(F[G]). For each BE BI(O), writef. ~ E,. 00 \",GI e,. This Osirna 
i""",poren' lies in Z(R[G]) and we let eN ~ .ro-" Z{FlG]). . 

(15.30) THEOREM We have the following. 

(a) l.re.) ~ I and ). •. (e.) = 0 for blocks B ~ B'. 
(b) The e" are idempotents. and e'lIes, ~ 0 for B #- B', 
(c) es is an F -linear combination of class sums of p-regular claSSes. 
(d) E <. = I. 
(ej If )..(z) ~ 0 for all B < B1(G~ then z is nilpotent. 
(C) The J.. are all of the algebra homomorphisms Z(f'[G]) ~ F. 
(g) Every idempotent of Z(F[G]) is. sum of some of the eR • 

Pro~r (a) For X E Irr(Gj, we have w,U.) ~ I if X E 8 and otherwise 
"',cr.) ~ O. If X e B', then w: c l •. and (a) follows. . 

(b) Sincef.f.· ~ li ••. ,f. We have •• e.· ~ ,5 ••.••. Since l.(e.) ~ I, we 
have e. ~ O. 

(e) Immediate from Osima'. Theorem 15.26(.). 
(d) I: f. ~ L e, - 1 and thus L" - t - = 1. 
(e) Let ~I be any irreducible F-repre.entation of G and let 'D afford 

<pEIBr(G) n 8. Then 'D(:) ~ JI,.(:)! ~ 0 by Theorem 15.19. Thus z i. in the 
Jacobson radical, J(F[G]) .nd hence is nilpotent (Problem 1,4). 

(f) Let,l,; Z(F[G]) - F be an algebr. homomorphism. Then kef JI has 
cOOimenoion I and so Z(F(GJ) ~ ker !, + F. I .nd !, is determined by it. 
kernel. If ,\ ~ 1., then ker JI, ~ ker JI and we can choose f, E ker JI. with 
.l(z.) # O. A"uming A ~ (A,), let z n f,. Then .lorz) 0 for .11 8 and 
hence z is nilpotent by (e). However, .l(z) ~ n .!('.) ~ O. 'rhis i, a con· 
tradiction. 

(8) Let e 6 Z(F[G]) be an idempotent, Then e ~ e I: e. ~ I: ee. and 
it suffice. to show that either ee, ~ 0 or ee, _ '.' Suppose ee, '" O. Then 
since eel i. not nilpotent and "'("') ~ 0 for 8' .,I B, we have Aolee.) .,. 0 
and thus ),,.(ff.) ~ 1 - !,ole.). Thus A.,(e,.(1 - e)) ~ 0 for all B'" 81(0) and 
sincee,,(1 - e) ~ (e,.(1 - e))', we have e,.(1 - e) m O.ndtheresultfollows. I 

---"_.- . 
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We now discuss some of the connections between block theory and the 
collection of p.,uhgroups of O. We work in the situation of Theorem 15.30. 
If.:>f' is a conjugacy class of G we consider the Sylow p,subgroups of CG(x) 
for x 6 X", These are c,;llled the p-de!ecl groups for .Jf, They constitute a 
conjugacy class of p-subgroups of C. The collection of p-defect groups for.x­
is denoted J(X"). 

We usc the notation X for the sum in F[O] of the elements of the 
class S .0 lhal the X form a basis for Z(F[O]). If Be BI(G), write e. = 
L llJ,.Jf').f so thut. aJl is a uniquely determined function from the set of 
classes of 0 inlO F. III fact, a,,(S) - «III G I) Ix< ,,,,0,,,, x(l )X(y»- for yeS 
by Theorem 15.26(a). By 15.30(0) we have a"(S) - 0 if S does not consist 
of p~regular clements. 

Sincc t - '-ti".) - L u.(S).!.(X),il follows that for each B € BI(G), there 
exists at least one class..K such that aatX} =1= Oand AB(X) i= O. We call SUGh a 
class a defecI class for B. 

(15.31) THV'REM (Mill-Max) Let.:>f' be a defee! class for BEBI(O) and 
let I) E J(S). Let fi' be any class of G. 

(a) If a,,(fi') .. 0, then J) contains a defect group for 2'. 
(b) If )..(2') .. 0, then J) is contained in a defect group for fi'. 

To prove the min·, max theorem, we define the Brauer homomorphism PP' 
Let /' <:; 0 be a p-subgroup. Let N = No(P) and C = CG(p). We map 
II,' 1;(1'[0]) ~ Z(F[N]) by 

IIp(X) - I x, 
xcX"C 

and extend by iilll!arity. Since ,x: (l C is a union of classes of N; we do have 
P,,(X) " 7.(P[N). 

(15.32) CIlMMA The map lip: £(1'[0]) ~ Z(F[N) is an algebra homomor· 
phism, 

Proof If suffices to check that II,,(X :i) - fJ,,(X)II,,(Y) for classes S, fi'. 
For c e C, let .01 = {(x, y)lx eS, ye2', xy - cj and 

d. = (x,y)lxES ("\ C,ye2''' C,xy = cJ. 
Then Idl- is the coeftidenl of c in II,,(X :i) .nd Id. I' is the coeHicient of c 
in /i,,(X){I"(Y). It thus suffices to check that Idl " Id.1 mod p. 

Since P <:; C(c), il follows that P acts on d by (x, y)' - (x', y') for U E P. 
Then ,01" is exaClly the set of fixed points of d under the action of P. The 
result follows. I 
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(15.33) LJlMMA Let P be a [I-SUbgroup of 0 and let fJ, be the correspond ing 
Brauer homomorphism. Let z - I a".:f". Then PAz) .. 0 ill' P i. contained 
in 'Ome D e J(.:>f') with ...... O. 

Proof The sets X ri C(P) are disjoint for dist.inct c1assl!s Jf' and thus 
the nonzero elements orthc form fJI'Pi') are lincady independenl. It follows 
that PP(z) .. 0 iff (ip(X) .. 0 for some S with a", ". O. 

Now PAS) ¢. 0 ill'S ("\ C(P) ¢. 0 and this happens ilT P <:; C(x) for 
some x e X". Since I' ~ C(x) iff P is contained in some Sylow p-subgroup or 
C{x), the result follows. I 

(15.34) I.EMMA Let BE BI(O) and let 2' bc a class ofG witha.(2')" O. Let 
P e b(fi') and N ~ No(P). Then there exists" E BI(N) such lhat 

'-. ~ lip).,: Z(F[O]) ~ Z(F[N]) ~ F. 

I'rool liy Lemma 15.33, p,!,e.) 7- O. Since lip is a homomorphism, 
e = (ip(e.) is a non,ero idempotent in Z( F[N) and So i. not nilpotent. Thus 
there exists bE BI(N) with '-,(e) .. O. Let J1 - PpA,. Then J1(e.) - A,(e) .. 0 
and J1 is an algebra homomorphism 1;(F[G]) --. F. Since I'(e.) .. 0, we have 
I' - ).. and the pl'oof is complete. I 

Pro~r oJ Theorem 15.31 If a.(Y)" 0, let Peb(fi'). Then ).. _ lip)., 
for some.h E BI(N(P» by Lemma 15.34. Since S is a defect ciass, we have 
o ¢. ,-,,(X') = ).,(P,(X)) and so fJp(.i') .. 0. Thus P is contained in some 
defect group of S by Lemma 15.33. Now (a) follows. 

Now apply Lemma 15.34 to Jt::. Since a,/.S)" O.we have.!. ~ (i"A, for 
some bE BI(N(D». Suppose .!.(.£") .. O. Then {lD(2') ¢. ° and hence D is 
contained in a defcct group of Y. 

(J 5.35) Dr.FIN.T.ON Let B be a p-block of G. Then lhe p.defecl. group. of the 
defect classes of B are called defect groups of B. The set of these is denoted 
J(B). 

(15.36) COROI.CARY Let B" BI(O). Then J(B) is a single conjugacy class of 
subgroups. 

I'rool Let S I and S, be defect cla>ses for O. It .uHiees to show that 
b(S ,) - b(,:>f' ,i. Let D, s J(S,). By Theore", 15.31, each of the I), contains a 
conjugate of the other. The reSlllt follows. I 

Which p-subgroups of 0 can hedefcct grollps for blocks'llt isa facl. (which 
We shall not prove) that a ddect group for a block is necessarily of the fOfm 
I' " Q for some 1', Q ~ Sylp(G). We prove the weaker assertion that 0 (G) 
is contaim:d in every defect group of a block.. II 
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(15.37) l.flMMA Let P = O,(G), Then P <;; ker \j) for every irreducible 
F·rcpresentation ~ of G. 

ProC!1 Since P has a unique p"t'egular class, the principal representation 
of P is its unique irreducible F.representation by Corollary 15.11. 11'1) is an 
irreducible F·representation of G. then the restriction \j), is conlpletely 
reducible by Corollary 6.6. 'rhe result follows from these two facts, I 
(15.38) 'fHEOR~M Let X be a class "r G and assume that X ("I C(O,(G}) 

0· 'fhen :i' is nilpotent. 

p",({ let P O,(G} act on X by conjugation and let I!) be an orbit of 
this action. Then IIIJI > I and sO pillVl, Let x6lV, If yEIIJ. then y = x' ~ 
x[." II) for some U E P. Since P <d G, we have [x. u] ~ P and so ()J <;; "P. 

Now let \j) be an irreducible F·repr.sentation of G so that P <;; ker~) by 
Lemma 15.37 and thus ~) has the constant value 'I)(x} on the coset x P. There­
fore L,<, 'D(y) = Itlll'll(x) = 0 since pllllJl. We thus have 'll(:i') = 0 for all 
irreducible 'D and hence .1' E J(F[G), the Jacobson radicaL It follows that 
::!' is nilpotent, I 
(15.39) COkOLLARY Every defect group for a p.block of G contains O,(G). 

Proof Let Be BI(G} and let X be • defect class for B. Then ;'.If} '" 0 
and hence:i' is not nilpotent, Thus X n C(O,(G)) '" 0 and it follows that 
0iG} '" D for every D € J(X}. I 
(15.4Q) COROI.I.AkY Let G be p •• olv.blc with O,,(G) = I. Then G has a 
unique p.block. 

Proof let B. B' e SI(G}. We claim that ;'.(e.,) ~ a •. ({1)). Since this is 
independent of B. the re.ult will follow. W. have ~.(, •. ) ~ L a •. (X)~.(::!'), 
where the sum runs OVer classes X. Since A,.(l) = 1, it suffice. to show that if 
;)(" {I}. then-either a •. (X) ~ ° or A.(::!') ~ O. 

let P ~ O,(G), If A.I::!') " 0, then ;)( n C(P) ",j2I. However. the HaU­
Higman" Lemma 1.2.3" yields C(P) so P and thus X ~ P. Since ;)( " (1 j, 
the elements of X are not p.regular and thus a,,(X) '" O. The proof is com· 
plete. I 

If 8" BI(G), let D be a defect group for H and write I Dip', We call d the 
deject of B and write d d(a). (This i. well defined by Corollary 15.36.) We 
show how to compute d(8) from a knowledge of B n Irr(G} or B ("I I6r(G), 

W. mention that if m, n E Z with p.rn,then min e It Thus if plm. we have 
min e pi! SO a. 
(I S,41) THF.I)RSM Let I G I ~ p'm with ptm and let Be BI(G) with d(B) a d, 
Then p'-' i, the largest power of p which divides all X(l) for X e Irr(G) n B. 

t.·· 
~~ 

"" 
f.' 

'," , 
'" . 

zsl 

Pro~r Let X be a defect class for H and let g E .or·. Theil I,'" I = 
I GI/IC(g)1 and so p'.' is the p-p.rt of IX-I since I VI = p' for V ESyl,(C(g)~ 
Let X" B n Irr(G). We have 

o of. A.I,1'} ~ (Ill,)'(::!') ~ (xlf/)I.:1f'IIx(I))*. 

Since X(g)~R and x(g)IXl/xll)eA ,(1'. we conclude IhatIJnlx(l)~M 
.nd hence the p.p.rt of IX I cannot exceed thai of X(I). Thus p'-' divides ril). 

The coefficient of g in the Osim. idempotent f. is given by 

a, ~ (I/IGI) 1: xlllXlg) 

and thus 
t~ 8 ," lm(j} 

a, = (l/IGI) 1: <I>.(I)<P(g) 
'" ./1'1 r'l1"f((~' 

by Lemma 15.21 (sillce II is p-regular). 
We have 0 '" II.,(X) = a * and ",f!VI. However, p'I<I>.(I) by Corollary 

15.22 .nd thus <I>.(I)/IGI E ~ for all <p ElBr(G), We conclude that <pM'" a 
for some <p ~ IBr(G) ("I B. 

Now <p(g) is ~·Iinear combination of x(g) for X E (rr(G) n 8 by Lemma 
15.28 and lhus xlIi) f a for some X 6 Irr(G) n B. Now x(g)IX-l/xll) = "E R 
and X(g) = ";((1)/1;)(1. It follows that x(I)/IXI ¢ M and so the p·part of xli) 
cannot exceed p'-'. The proof is complete. I 

(15.42) COROLLARY In lhe situation of Theorem 15.41. p'-' is lhe largest 
power of p which divides .11 <p(J) for <p 6 [lJr(G) n 8, . 

Proqr In facl (x(I)lxE Irr(G) n H} and (<p(I)lq> E IBr(G) n B) have the 
same grealest common divi.or. This follows since each x(1) i •• Z.lineat 
combination of the q>(1) u,ing decomposition nllmber~ and e.ch ,p(l) i. a 
Z·linear combination of the ;((1) by Lemma 15.28. I 

. In connection with Corollary (5.42. we mention that '1'(1) need not divide 
I GI for '1''' IBr(G). 

In the situat~on ofTheotem 15.41. if X E a " Irr(G), then the p.p.rt of x(1) 
CIIn be written 111 the fotm p'-'+'. where h ;?; O. The integer h is called the 
height of X, Brauer h •• conjectured that all X E Irr(G) " B have height zerO iff 
a dere<;! group or B is abelian. Note that if d(B) ~ I and X G B h .. positive 
hei,ght. thon p' divide. xlI) and thus 8 n Irr(G) = {xl by Theorem 15.29. 
Th .. forces d(B) = 0, a contradiction. Thus if d(B) I. lhen .11 characters in 
B have height zero. 

Suppose H 0; G and bE BI(fI). Let A ~ A,: l,(P[H)) _ F be the Corre. 
spondingccntt.1 homomorphism. We construct a linear map ;.0: 7)F[G)) _ F 
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by setting 

It Inay be that ;Y is an algebra homomorphism, in which Ca::iC XCi 'CO AS for 
some unique 8 G 01(0), When this h~ppens we say that b" is de filled and we 
write bG 8, The block he is called the ind,,«d block. 

(15.43) 1.IiMMA Lct hGBI(J/) for H sO and suppose hG is defined. Then 
every defect gl'oup for b is contained in a dt:fect group for be;, 

Pr{)(~r Let .Jf' be a defect cl"" lor bel and let /) € b(b). We have 
o '" (.1,)"(Ji') ~ I,ll:: 9). wherc!!' run. over the classes of II COIlI«ined in.:r. 
In partiClll~ul')f'/' l'I Ii # 0 and there cxi~ts:t ~ .:t'" n H such thal ..1./)(2) :f; 0, 
By the Min-Max Theorem 15,31. there exists Pe:b(2') with f) £; p, Now 
P E Syl,(C.(.<J.i for SOrtie x E!!' S X and thu, the"e exists S c Syl,(Cc(.<)). 
wilh S '" P. Thu, I) ~ S E J(Jf') ; bib"). I 

The Bi'Jut:r homomorphism can be used to give a sufficient condition for 
induced block, to be defined. 

(15.44) LEMMA tel p", G be a I)-subgroup and let qP) '" H S N(l'). 
Then bG is defined for all bE BI(H). If b E BI(H) and BE 1JI(0), Ihen I>" ~ B 
iff ..1.11 = {JpAb. where PI' is the Brauel' homomorphism. 

l'r04 The image of /ip: Z(F[GJ) -. ?,.{F[N(PjJ) actually lies in Z(F[H)), 
Let .<: l~F[/lJ) ... F be an algehra homomorphism and lot 

I' ~ /I,,!.: Z(/'(O]) - Z(P[HJ) ... F 

so that J~ is an algebra homomorphism. We claim lhat J.i. =. )..G, 

Let C = C(P) Ii H and let f be a cia •• of O. Wrile 2:".-0/1 x = II + ., 
where II ~ L,-"ot: x. Then !."(Ji') = !.(" + v) and 1'(.:1/") = J(fJp(Ji')) u !.(u). 
WI.; must thcrefol'e ::;how that A(V) !;...: 0, Now v is a sum of elements of the 
form g, where!/:' i. a cl.ss 01 H such thaI .!it' n C ~ 0. Since P <l H we have 
qO,(I1)) S C and il follow. that g i. nilpotent by Them'em 15.38, Thus 
).(9) 0 and hence !.(v) 0 and A" ~ I' as claimed. 

If!. ;t" then!." (i,A is an algebra homomorphism and be B i. 
defined, where B is the unique block such Ihal A. fI,!.. I 

Brauer'. first and second" main theorems" COncern induced blocks. 

(15.45) THEOREM (l'il'.'/. Malll) Let /)!;; G be • p-subgroup and I.t 
N ~ N(D), Then I> ,-. 1>" is a bijection of 

(b € BI(NliD e J(I») o~IO IB e BI(O)I /) € J(B)). 
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(15.46) LEMMA Let I' be a p-.ubgrollp of (;, Let C ~ qP) and N = N(I'), 
Then X h>.)(' r. C is a bijection of Ihe set of classes 01 G wilh p-d.fect group 
P onlo the sol of cla~ses of N with p-dcfcCl group P, 

Proof Suppose P € b(,,)(,) lind x. Y E JI' " C. Then P E Syl,(C(x)) and 
I' E Syl,(Clv)), Wrile y x'. Then P, I" e Sylp(C(y») and hence P ~ pO' for 
SOme C G Clv), Then gc E Nand y x"'. It follows thaI Ii' eX" C is a class 
of N, Clearly P G b(..'t') «nd the map .;1f' ,-.:>r r. C is one-to-one. 

II Ii' is a class of N with I' E .5(!!'), leI Jt'" be the unique class of G which 
contains !!'. Now !!' s; C since !!' n C I' 0 and C <I N, If x E .ft', let 
P SSE Syl,.(CG(.,). If S > P, then P < NsfP) ~ S" N s CN(x). Since 
S f"'1 N is a p-grouPI thi$ contradiclti P 6 l5(,:l'), We conclude that. P S € (5{,X ..... ) 
and cA·, H!!,. The proof is complele. I 

Pmoj' oj" Them'em 15.45 Write iii = (b c BI(N)I D G ,I(b)). If h Fill. Ihen 
h

G 
is dcfmcd by Lemma 15.44, Lel hG 

u:::: IJEBI(G), Since DEt~(b}1 we have 
D ~ P for SOlne PGS(8) by Lemma 15.43. We claim thaI D = P. 

tet 2' be a defect class of h and let .)r 2 ':l' be a class of G, Thc:n ~.' (l C 
=!!' and /).0(,1.") by Lemma 15.46. By Lemma 15.44 We have 

2.,(Ji') ~ J.,(/i,,(Ji')) ~ .<,(9) "" O. 

8)' the Min-Max Theorem 15,31. it follows that o contains some defect group 
of B. Thus P' '" D S P for ,ome 9 c G and hence D = P e 0(B) as desired. 
Thus block induction maps 1M into {BE BI(G)ID E .5(B)). 

Now let BE BI(O) with De NB). Let .')(' be a defect class for B. Theil 
(/sf.:1/") "" Oand D e 6(.)(,), Thud. = /ivA,for some h E IlI(N) by Lemma 15.34 
and hence b" = B by Lemma 15,44, We must .how that h G fJd. LeI P E J(b) 
so Ihat D ;; P by Corollary 15.39 since /) <J N. By Lemma 15.43, P is COil­
t.ained in SOme defect ~roup for D and we have 1) ~ p ~ D' for some y E G, 
Thus D = I' E 6(b) and b ~ ill. . 

Finally, let h" b,cr'l wilh hi" ~ n = h,". Lot!/:' b •• class 01 N with 
D '" P G c(!!'), If /) > P, tlie" by the min-max theorem, .<,,(g) = 0 = 
.<.,(9), If f) ,~ P.lhen by Lemma 15.46,..'t' = C" J(" forsome class J(' or G. 
'I,!lell '\"'(.0) = '\",({ID(,*")) ~ .l.h(r) for i 1,2 and hence the Ab, agree 011 all 
1/.' for classes Z whh defect group contained in D. By the min-m~lx theorem~ 
it follows that ~'I(e".l ).",(1',,) I and thus bl b" I 

To Slate Brauer's l·secl..'lfld main theorem" we:: need to introduce " gener~ 
alized decomposition numbers." 

(15.47) LEMMA Lot n E 0 with ()(~) = p' and let C = C/i(n). FOr X e I rr(O) 
and q>.lIlr(C), Ihere exist unique d:.€R" li:l!p. such that 

x(xn) = L d;.q>(.~) 

for all p-regular x G C. 
~tlBrtCj 
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PrOt!! Write Xc ~ 2: a.!/I with ",. E 1: and IjJ e Irr(C). We have !/I.(e) ~ 
1jJ( 1 )/'. for some line.1' I'. e Irr(:7,:(C)). Then !/I(.<n) = !/I(x)",,(n) and therefore 

x(xn) - L a./J.(n)d •• <p(x) 
I/Iclrr(Ch"liIMr(C) 

and so we take d;/p; Lilli IlIrrtC) (J.,Jj.,.(n)llt/lop, Uniqueness follows from the 
linear independence of IBr(C). I 

The algebraic integers d~1P arc called generalized. decomposition flumbers. 
Notc that if n = 1, then C ~ G and d;. = d ... Also. if 9 eGis arbitrary, we 
can take 11 s g, and x = gr' and thus express X(g) in terms of gener.lized 
decomposition numbers and Brauer characters. 

Note that if b is a block of C = C(n) for a p-d.ment n then h" is defined 
by Lemma 15.44. 

(15.48) THEORUM (Second Main) tet X e Irr(O) and <p E IBr(C), where 
C ~ Co(n) for some p-el.ment n" G. Let X" B e BI(O) and <p e b E BI(C). 
Then d;. ~ 0 ifb" ~ B. 

Proof Omitted. I 
Theorem 15.48 is extremely powerful and oseful. We give a few con· 

sequencc~, 

(15.49) CORO',LARY Let X 6 Irr(G) and 9 e G. Suppose g, is not contained 
in any defect group for the p-block containing X. Then X(g) ~ o. 

Proq{ Lot n ~ g, and write 9 nx. where x e C(n) i. p-regular. Then 
X(g) 2:. d;.<p(x). If d;. ~ 0 then <p E b. BI(C(n)) and X e be. Let Q e 6(b). 
Then n e O,(C(n)) S;; Q by Corollary 15.39. Also. Lemma 15.43 yields 
P E c(bQ

) with Q ~ P and thus It ~ p. a contradiction. Thus all d;. ; 0 and 
the result follows. I 

Note that Corollary 15.49 generalizes Theorem 8.17 since if X has p.defect 
zero. then the subgroup 1 is the unique defect group for the p-block COn­

taining X. 
If 8 is a class function of G and Be BI(G), write ,9, ~ L,,',,(") o. [8, xJx 

so that!} == LII .. R1(Gl 8 •. 

(15.50) 1'HaOREM let ,9 be a class function of 0 and let" E 0 be a p-elernent. 
Suppose ,9(,,-,) = 0 for all p-regular x e C(,,). Then ,9,.(11X) ~ 0 for all such x 
and all Be BI(G). 

Proof We have 

o = .9("x) ~ L [.9, XJx(7tx) = L (8, x]d;.<p(x) 
x I; Irr(G') 1 j; Irr(G); II'~ 'Rt((~) 

PrQblel"OlJ 

for all p-regular x E C(n) m e. The linear independence of IBr(C) yie,Js 
2:",,,(0) [9. X]d:. : 0 for each 'P e IBr(C). If <P" 1 Br(e) r-.. b with bE BI(C), 
Theorem 15.48 yields d;. ~ 0 for X'" he and thus L: .. ,,,,m 0 , .. UI, X)d;. ~ O. 

Now let,.t a U{b " 'IIr(e)II, E BI(C), b" ~ 8). Then ror each <p E." we 
have L,,' [,9, XJd;. = Oand thus 

,9.(7t .. ) = 2: [,9, xJd;.,p(x) ~ O. I 
1:eB~ 'f1~,wI 

(lS.51) COROU,~RV (Block Orthogonality) let g. he G be such that g, 
and h, arc not conjugate in G. Then 

L X(g)X(h) = 0 
xc1rr((i)nB 

for every p-block B. 

Pmof Write 8 m L:"".(Q, x(h)X and let n = (I,. If.< ~ C(lt) is p-regular, 
then n ~ (nx). is not conjugate to h, in G and hence 9(n.<) = 0 by the second 
orthgonality relation. Thus 0 ; ,9.(g) 2:". X(g)X(h) by Theorem 15.50. I 

Proble",s 

(15.1) Let D be the decomposition matrix for O. The matrix DT D ~ C is the 
Carrun matrix. (The rows and columns of C are indexed by 18r(O),) For <p, 
BE Illr(G), let Y., s (I/IGI) 2:" ... <p(x)iJ(X), where.9' is the set of p-regular 
clements of G. Define the matrix r = (y •• ). Show that r = c- ' .. 

Hinr Lei X" be the part of the charaoter table corresponding to the 
p-regular classes and let Y be the Brauer character table. Then X. DY. 

(15.2) (a) Let tp,,9 e IBr(G) lie in different p-blocks. Show that 

L tp(x).9(.<) ~ o. 
xo ... 

(b) Let X.1jJ e Irr(G) Ii. in ditTerent p-blocks. Show that Lu ... ;((x)i/i@ 
sO. 

(IS.3) Let 101 m p'rn with p.{m and let IjJ e lrr(O) v IBr(G). Define the class 
function, S. by S;,(x) = p'ljJ(x) if p.{o(x) and S.(x) ~ 0 if plo(,,). Show that 
S. is a generalized character of G. Conclude that det(C) is a power of p, 
where C is the Cartan matrix as in Problem IS. 1. 

(15.4) (a) Show that {<J>.I<pEIBr(O)) is a basis for the space of cia .. 
functions on G which vanish on 0 - il'. 

(b) If <P, I' E IBr(O). show that (1/10 I) L, •. ~ <J>.(X),'(x) = ~ ... 

(15.5) (a) Show that the product of two Brauer characters is a Brauer 
character. 

---- --.~ -- ~ -
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I~) If 'po I' E /Br(G), define:;:: on 0 by :;::(x) ~ <1>.(x)l'(x) for p-regular x; 
E(x) ;;;:::: 0 when I'lo(x). Show that =: is a nonnegative integer linear com­
binalion of (<1>,1 V E !Br(G)). 

(c) If 'P. I' E /Br(G), show lhat <1>.<1>, is a nonnegalive integer com­
bination of (<1>.lvE IBr(G)). 

(15.6) Let il,' b~ the colh:ction of classes of G which are dt:fecl classes for 
blocks of defecl d. Show lhall {B e BI{G)ld(B) = d) I " I'GI. 

Hi", Let A S; Z(F[Gj) be lhe span of the Jf for Jf" E ,"'. Then lhc re­
strictions of the algebra homomorphisms AS to A are linearly independent 
for those B wilh defect d. 

(15.7) Let N ~ 0,.(0). Show that if X. '" E lrr(G) lie in lhe ;arne p-block. 
then XN and ~N have the same irreducible constituents. If n dt:notcs the num· 
ber of cia"es of G conlained in N. conclude that I BI(Gli :e: /I. 

(15.8) Let f' E Syl/,(G). Show that the number of p-blocks of G with defect 
group P is equal 10 the number of p-regular classes of N(P) contained in C(J'). 

Iii", Usc Problems 15.6 and IS.7. 

(15.9) Lei N bc a normalfl-complement. for G and leI :Y be lhe scI of orbits 
of the aClion of G on Irr(N). For each BE BI(G), leI I!!(B) denote 
(gelrr(N)I[XN •. 9] ",0 for some xcBn Irr(O)). Show lhal B .... I!I(B) is a 
bijeclion of BI(G) onto .cT. 

(15.10) In lhe situation and nOlalion of Problem 15.9. show lhal o(B)_ 
U •• O(HI Sylpo(·9)). 

Hint> If X E Irr(G) •. ~ E Irr(N). and [XN, .9] '" 0, then fU,(K) ~ w,(K), 
where K is any conjugacy class sum of G for a class contained in N. If jf'" is a 
defect class for Band P € Syl,(I,,(9)) for som< ,9 € I!!(B). show that P liKes One 
of the classes of N conlained in X and conclude thllt P is contained in a 
defect group for B. 

Appendix 
Some character tables 

In the following tables. each conjugacy class is. denoted by the order of its 
clements. If there arc more than One class of dt:mcnts of ,I given order. they 
will be distinguished by sUbscrlpts.. 

~ o ~ 1:. 
IGI~24~2' X 3 

Class: I 2, 2, J 4 
lC(y)l: 24 4 8 J 4 

ICI(y)l: I 6 3 8 6 

X,: I I 
X,: I -1 I -I 
X,: 2 0 2 -I 0 
X4: 3 I -I 0 -I 
X,: 3 -I -I 0 

Not/.., Class 21 is the class of tran~posilions, 

287 
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2. G ~ SL(2, 3) 4. G = PSL(2, 7) ~ GL(3, 2) 

101 ~ 24 2' x 3 
I G I ~ 168 = 2' x 3 )( 7 

Clas", 1 2 4 3, 3, 6, 6, 
Class: 1 2 4 3 7, 7, 

I elll) I: 24 24 4 6 6 6 6 
lC(g)l: 168 8 4 3 7 7 

IC1(y)l: 1 1 6 4 4 4 4 
IC1(g)l: 1 21 42 56 24 24 

X,: I 1 
x,: 1 1 1 1 

Xl: 1 1 (J) w' W (j)l Xl: 6 2 0 0 I -1 

X;I: I 1 I ",' co ",' OJ 
X,: 7 -1 -I I 0 0 

X.: 3 3 -I 0 0 0 0 
x.: S 0 0 1 1 1 

X!i: 2 -2 0 -I -1 1 
XII: 3 -I 0 • " 

x.: 2 -2 0 -w ,....... {JJ1 co (1)1 X.: 3 -1 0 01 ~ 

X7: 2 -2 0 _w 2 -w (il' '" Irrational Entries ~ = (-I + iJ7)j2 ~,+ e' + ,',wheree = e""'. 
lrratiomll Entries 0) !J":.I e1 1f.1{3, 

S. G = A. ~ PSL(2, 9) 
, J. G = A, ~ PSL(2, $) ~ SL(2,4) I G I '" 360 - 2' X 3' )( 5 
\. I G 1 = 60 = 2' )( 3 x 5 Class: 1 2 4 3, 3, 5, 5, 

Class: 2 3 5, 5, 
le(g)I: 360 8 4 9 9 5 5 

lC(oll: 60 4 3 5 5 
ICI(g)I: 1 45 90 40 40 72 72 

IC1(g)l: 1 15 20 12 12 
Xl: 1 I 1 1 1 i 

Xl: 1 I I 1 
X,: 5 1 -I 2 -1 0 0 

X,: 4 0 I -.1 -1 X,: 5 1 -I -I 2 0 0 

X,: 5 1 -1 0 0 
:h: 9 I I 0 0 -1 -I 

X.: 3 -I 0 ", ., x,: 10 -2 0 1 1 0 0 

X,: 3 -\ 0 ., ", ;(6: 8 0 0 -1 -\ ", . «1 
X,: 8 0 0 -I -I ", ", 

Irrational Entries ., c (1 + .j5)/2 = I + e + " and" '" (1 - .j5l/2 Irrational Entries ", '" (1 + .j5)j2 ~ 1 + • + ." and., = (I - .j5)/2 
1 + 1:1 + eJ • where e.= e1:lll1/ !!, ) '. 1 + gl + &), where e = el •

I
/$, 
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6. G ~ SL(2. 8) 8. Gill MIl 

I G I m S04 ~ 2' x 3' x 7 I a I m 7920 = 24 X 3' x 5 x II 

Class: I 2 3 9, 9, 9, 7, 7, 7, Class: I 2 4 8, 8, 3 6 S II, II, 
lC(g)l: 504 8 9 9 9 9 7 7 7 lC(g)l: 7920 48 8 8 8 18 6 5 II II 

ICI(y)!: I 63 56 56 56 56 72 72 72 ICl(u)l: I 165 990 990 990 440 1320 1584 720 720 

X,: I I 1 I I I I I Xj..: I 1 I I I I I I I I 
X,: 8 0 -I -I -I -I 1 .1 I X,: 10 2 2 0 0 I -I 0 -I -I 
X,: 7 -I -2 I I I 0 0 0 x,: II 3 -I -I -I 2 0 1 0 0 
x.: 7 -I 1 p, /1, p, 0 0 0 X.: 10 -2 0 a IX I I 0 -1 -I 
X,: 7 -I I p, II, p, 0 0 0 X,: 10 -2 0 it • I 1 0 -I -I 
X.: 7 -I I fI, {I, /1, 0 0 0 X,: 16 0 0 0 0 -2 0 I (I 1i 
X,: 9 0 0 0 0 ., ., 0<, X7: 16 0 0 0 0 -2 0 I il p 
X,: 9 0 0 () 0 a, " " X.: 44 4 0 0 0 -I I -I 0 0 
X,: 9 0 0 0 0 a, " " x,: 45 -3 1 -I -I 0 0 0 I I 

XII): 55 I I -I 0 0 0 
JrrmiQfWI 1~liIrit!s (;(1 = e + 1;°, (X:;l = t:~ + r.:!. lind !X3 11!:1 I;'J + Coil. where 

iJi p ~ ( I + i,jil)/2 £ = e""'./I, '" -(b + Ii'). (I, -(Ii' + Ii'). and li3 -W + Ii'). where I frat iOllal Entries 0< t: + C"l + r." + eS 

Ii e:.llll'jf·), + r/', where Po ;; e~tfl/il. 

7. a ~ PSIl2. II) 
lal 660 = 2' x 3 x 5 x II 

• 1· ..... ' .... 
Class: I 2 3 6 5, 5, II, 11, .,,\\~ 1.1 it" 

~ "--. ',:\ lC(g)l: 660 12 6 6 5 5 II 11 ~ ~~~\~ - ·j·2· ICI(g)l: . 55 110 110 132 132 60 60 ;;;.0: tj!~ :,:,", 
:::> ~'!":""IA ". 

• ;!'~~~~ :f/ " 
~ , ',( ,-

XI: I I I I I I 1 ~ 11. :~'·.I~::::: ;/ ,,:' 
X,: 10 2 -I 0 0 -I -I ·'It:/'Iiln;:.Q. 

to -2 I I 0 0 -I -I ... ~~-- , 
X;i; 

x.; II -I -1 -I 1 1 0 0 
x~; 12 0 0 0 ., ., 1 1 
xC): 12 0 0 0 ~, " I I 
X,: 5 1 -I I 0 0 

~ ~ 
X.: 5 I -I I 0 0 /i 

["Ulia,wi Emrif., " = (-I + )$)/2 m C + 0'.", = (-I - 0)12 = 
e' + ". where ,= e""'. Ii = (- I + i,jIT)!2 ~ 6 ... 0' + o' + cI' + 0', 
where 6 = el,.j/II, 
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There exist several excellent bibliographies in group theory and character 
the~ry (for instance in the book. by Huppert [26J, Dornhoff [15J, and 
Curtis and Reiner [12J) and so, instead of giving a comprehensive list of 
publications, we sball only mention ,orne of the items which .re directly 
I'elevant to the variolls chapters of this book, 

General Some other book' on characters and representations are 
Dornhoff (15J, Feit [16J, and Curtis amI Reiner (12], Each of these has a 
point of view somewhat different from lhe others and from this book. As a 
«forence on group theory We mention Huppert [26J which also has an 
exlensive chapter on characters, Finally, we come to Burn.ide [10). This 
cla$sic, although somewhat difficult for the modern reader, contains a 
wealth of material. 

Chapter I Further relevant information on rings and algebras can be 
found in Curtis and Reiner [12) and Herstein [25). 

Chapter 2 Other methods exi.t for obtaining the basic «suits about 
characters such as the orthogonality relations. For instance. instead of 
using the oontral idempotent. of C[O], Feil (16] and Dornhoff [15] use a 
matrix approach which results in additional informalion, namely the Schur 
relalions which appear here as Problem 2.20. 

Cltap'er 3 There is, of cours., a large literature in algebraic number 
lbeory. A rer.renee for those part. of the subiect mo.l relevanl to group 
theory is the appropriate chapter in Curtis and Reiner [12]. The proof of 
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Bibliographic notet;l 

Theorem 112 given here was di .. ovcred (independently) by O. Glauberman 
and the .uthor. For .nother proof, see (4.2) of [16), Whitcomb's ",suit On 
isomorphism of integer group rings occurs in Whit~omb [37J . 

Chapw 4 The Brauer-Fowler proof [8] oj' Theorem 4.11(0) does not 
depend on char~cters. They obtain a Slightly better bound which is of the 
same order of magnitude. 

Chapter 5 There i •• great deal more to be said abollt the relationship 
between permuta.tion groups and representation theory: For infltance. see 
Chapter V of Wielandt [38J and Section. V,20 and V,21 of Huppert [26]. 

, ~hapm 6 Clifford's results appear in Ref. [II). This paper include. 
SIgnificantly more than Theorem 6.5; it also has part of Theorem 6,11 and 
bears heavily on Chapter II. The" going down" Theorem 6.18 and its duo I 
Problem 6.12 appears in Isaacs (28), however Corollary 6.19 goes back to 
Ilurnside's book [10]. A result on relative M-groups which is more general 
.than Theorem 6.22 occurs in Price [35]. 1'heorems 6.22 and 6.23 give 
sufficient conditions for a group to be an M-group which geneialize a result 
of Huppert (Satz V.l8.4 of Huppert (26)). The connection, between the 
extendibility of 8 and det(,9) are due to Gallagher [19J. A proof of a version 
of Tate'. Theorem 6,31 without characters appears as Sat7.IV.4.7 of Huppert 
[26J and Thomp,on's proof (including Problem 6.20) i, found in Ref, [36). 

Chapter 7 A proof of Theorem 7.8 for the cas. lhat IPI' 8 that dOes 
not depend o.n .. modular characters" has recently been' discovered by 
Glauberman [22]. For. prOof of ThcQf<m 7.10 witholtt .h,u •• tero, sec 
Bender [2). A large fraction of the known applications of character theory 
to "pure" group theory are either directly or indirectly related to the 
content of this chapter. We mention as examples Sections 28 and 32 of 
Feit [16]. 

Chapter 8 ~raue~'s Theorem 8.4 occurs in Braller and Tale [9] and in 
some of Brauer s earher papers. Banaschewski'. Lemma 8.5 appears (in a 
somewhat more complicated form) in R.f. (I]. Dade's Theorem 8.24 and it. 
consequence Theorem 8.26 appears in more general form in Ref. [13]. 

Chapter 9 An alternate source lor much of this material is Curtis and 
Reiner (12]. 

Chapter 10 The more ,tandard ".r,ion ofThcorcm 10.7 is due 10 Brauer 
and Witt (Theorem 70.28 of [12] or Yamada's note. (41)). Theorem 10.12 
appears in Goldschmidt and Isaacs [24]. What amounts to a special case or 
Theorem 10,16 occurs in Burn.side [10] as Exercise 8 on page 319. That every 
Integer can occur as a Schur tndex was proved by Brauer [5) using groups 
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similar to those of Theorem 10.16. A great deal of further information can be 
found in Yamada [41], 

Chapter J J M lich of the theory rdating projective representations with 
the properties of a character triple was originated by Clifford [II]. Our 
more character theoretic setting of Clifford's work occurs in Isaacs (31). 
Berger's TheOl'em 11,33 appears in more general form in Ref, [3]. 

Chapter 12 Much of this material is 1hl! work of Passman and the 
author and appears in Isaacs and Passman [33, 34], and Isaacs [29], Also 
rdevant are Isaacs (32), Berger [4], and Garrison [20). 

Chaplet 13 This chapter is taken almost entirely from Glauberman's 
paper [21]. Parts of Theorems 13,6 and 13,14 also appear in Isaacs (27). 
A proof of Theorem 13.25 can be found in Isaacs [31]. 

Chapter 14 The literature On linear groups is very extensive and we 
mention just a sample. Dixon's book [14) is a good reference. For informa~ 
tion On solvable and p-solvablc linear groups, see Winter (39, 40] and 
Isaacs [30). We also men lion lhe Icclure notes by Peil and Sibley [18] for 
results without solvability hypotheses. 

Chapter 15 Brauer's pap."s [6] and [7) arc good sources for further 
rt:adine,. On blocks and Brauel' characters. There is also a chapter On the 
subject in Curtis and Reiner [12]. The material is treated from a different 
point of view in Part B of Dornholf [l5] and in Feil's notes [l7]. 
Goldschmidt's no!« (23) provide a dcvelopmenl of the subject along lilles 
similar to those used hert:. 
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