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Character theory provides a powerful tool lor proving theorems about
finite groups. in fact, there are spme important resulis, such as Frobeniug’
theorem, for which no proof without characters is known. (Until fairly
recently, Burnside's p°¢* theorem was another outstanding example of this.)

Although a significant part of this book deals with techniques for applying
characters to * pure®™ group theory, an even larger part is devoted to the
pruperties of charucters themselves and how these properties reflect and are
reflected in the structure of the group.

The reader will need to know some basic finite group theory: the Sylow
theorems and how to vse them and some elementary propertics of permuta-
tion groups and solvable and nilpotent groups. A knowledge of additional
topies such as transfer and the Schur-Zassenhaus thearem would be helpful
ut 4 few points but is not essential. The other prerequisites are Galoig theory
and some familiurity with rings. In summary, the content of a first-ycar
graduate algebra course should provide sufficicnl preparation.

Chapter | consists of ring theoretie preliminaries, and Chapters 2-6 and
8 contuin the basic material of characler theory, Chapter 7 is concerned with
one of the more important techniques for the application of characters to
group theory.

The emphasis in all chapters except 1,9, 10, and 15 is on characters over
the complex numbers rather than on modules and representations over
other fields. In Chapter %, irreducible representations over arbiirary fields
are considered: and in Chapter 10, this is specialized to subfields of the
complex numbers. Chapter 15 is an introduction (and only that) to Brauer's

vii
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i, ; Character. theory provides.a means of apblyiog ring theoretic techniqucs

_to the: eludy ol‘ finite groupe. Although much of the theory can be developed

i other wnys. it seems: ‘more-natural to approach characters via rings: (or’
more uecurately, algebru). The' purpose of this chapler is to provide the
render wilh the ring. theoretle prerequmtee nceded in the rest of the book.

Many of the results in this chapter are true in more getieral contexts
than those mnsndered here. Nevertheless, an effort has been made 1o avoid
excess generality and'to prove only that which will be needed later,

(1.1) pErmITION - Let F be a field and let A be an F-vector space which is
also a ring with 1; Suppose forallce F and x, y € A, that

Do . (ex)y = e(xy) = x(ey).
Then A is an F-algebra N !

B,
K3 We mentmn some e:amplee of algebras over a field F:

b *'(a) M/F)is the algebra of n » n matrices over the field F.
7“(b) Let'V be an F-vector space. Then End(V), the set of F-linear trans-

,formatluns of Vi3 an F-algebra under the following conventions. If x,

y€End(F), then xy is defined by (o)xy = ((v)x)y and if c € F, then cx is
deﬂmd by (a)(cx) = (cu)x. OF course, (n)(x + y) = (v}x + (K)y.

Thls is 8 good plaee 1o dlgresn briefly to discuss some notational con-
ventions which will be used throughout this book. In writing scalar multipti-
cation in a vector space, the scalar may be written on either side of the vector

1




i Chapter 1

to which it is applied. Similarly, functions are writién on whichever side is
convenient, but the rule for function composition is always “ f means do [
first, then g." Because of this rule, in those situations where function composi-
tion is impartant Las in example (b)], it will ugnally be convenient 10 write
functions on the right.

We now return to another example of an algebra, the one of primary
importance for us: the group algebra,

() Let G be a finite group. Then FIG] is the ser of “formal™ sums
{}.eca.4la, € FY. The structure of an Feveetor space is given to F[G) in the
obvious way and the element of F{G] for whicha, = L and a, = Oifh o g is
identified with g. This identification embeds G into F{G and in fact G is a
basis for F[G]. One result of this identification is Lo give a new meaning for
Y. a,4. We may now view this expression not onty as a formal sum, but also as
an actual sum, a linear combination of the basis vectors. Finally, to"define
multiplication on F[G], wec multiply the basis veclors according to their
group multiplication and extend linearly to all of F[G]. Tt is routine 10 check
that this defines the structure of an F-algebra on F[G].

The construction of F[G] suggests a general method "6[ constructing
algebras which should be mentioned. Let A be a finite dimensional F-algebra
with F-basis v, ..., v,. We have then ooy = 3 ¢;5 0, where ¢, € F are the

multiplication constants of A with respect to the basis {v;}. Itisclear that thess -

constants determine the algebra, 5o that any r-dimensionat algebra may be:
specified by prescribing n® constants ¢,y € F. Of course, only a small subsct
of all possible sets of constants define an algebra since most sets of constants
define multiplications that wurn out, to be nonassociative,

From now on, the word “algebra™ in this book will mean a finite di-
mensional algebra, We make a few observations and definitions before going
ot to prove anything,

Let A be an F-algebra. Then F-1 = {clle e F} iz a subalgebra of 4
comained in the center Z{A) since {cx = ¢{1x) = c{x1) = x(el) for x .4
It is-sometimes convenient 10 identify F with F - 1 and thus to view F as a
subalgebra of A.1f 1 is a left or right ideal of A asaringand x e fand c e F,
we have cx = (¢1)x = x(¢]1) e ] and [ is a subspace. (If we had not required
algebras 10 contain 1, then ideals would not automatically be subspaces,)

If / is an ideal (this means two-sided), then A/ has the structore of an. Fr,

algebra it & natural manner. Ce b I A

If A and B are F-algebras and ¢ is a ring homomorphism from 4 1o B

with (1) = 1, it is not necessarily true that @ is an F-linear transformation,
. to T | o

(1.2) perImON  Let A and B be F-plgebras. Suppose that ¢ 4 = B
satisfies - ) o

Lot ' il
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(&) elxp) = plx)p(yfor all x, ye A;
- (b) e()=1;

(¢} ¢ is an F-linear transformation.
Then ¢ is an alyebra homomorphism or an F =homomorphism.

(1.3) uveAMITION  Let A be an F-ulgebra and let V be 4 finite dimensional
F-vector space. Suppose for every v V and x € 4 that a unique vx e Vis
defined. Assume for all x, ye 4, v, we V.and ce F that

@ v+ wix = ux + wx,
() olx + y) = vx + vy,
(€} (ex)y = v{xp),
{d) (eox = clox) = efex),
© vl=r

Then ¥V is an A-module.

Let V be an A-module, Each x € A defincs a map X V' — V by v px.
By (a) and part of (d) of the definition of a module, xy € End{}). By (b), {¢)
(c), Iand part of (d), the map x — ¥, isan algebra homomorphism A — End( V):
Its image is denoted by A,

Son?e important examples of modules are the following 1f 4 = End(V)
ll.wn ¥ 15 an A-module in a natural way. If 4 = M (F ), then the row space n}
dimension n over F is an A-module under matrix multiplication, 1f A is any
lalgebra. then A itself is an A-module under right multiplication, This module
15 called the regular A-module and is denoted by 4°,

IV is an A-module and W < V is an A-invariant subspace, then Wisa
subnw_rdu!c of ¥, Thus the right ideals of A are exactly the submaodules of 4°
If Wis a submodule of ¥ then the space VW becomes an A-module in the'
usual manner, Note that if 7 is a proper ideal of A, then the objeets 4/1
_ A/, and (A/1)" are all defined and al diffcrent, being respectively an algebra,'
an lA-n?odule, and the regular (4/Imodule. However, A®/l is an A-module

which is I:,mnihilalcd by I (ie, if v e A1 and x e, then vx = 0), and so it
may be viewed as an (4/I}-module. As such it becomes (470",

If V and W are d-modules, a lincar transformation @V oW isan
ﬁ-humomarphism if p(vx) = @(v)x for all v e V and x € A. An A-isomor phism
18 an _A-hqmomorphism which is one-to-pne and onto and, as is the usual
_ ;uu:??, ,11: V¥ and W a;;e A-isomorphic, they are exactly the same *as seen
0y A" For instance, in this situatj : annihil:

i of ehomen o 15 situation they are annihilated by exactly the same

The set Hom (¥, W) of A-homomorphisms from V to W has the structure
of -an .f'-‘spacc by (ee)(v) = cippv) for c€ F and (o + Hr) = olv) + S(o).
In additton Hom (V, V) is a ring [remember, 3 is defined by (V)9 =
(v@}], and in fact Hom (V. V) is an F-algebra, 1t is exautly the centralizer
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““iProaf Let V be an F[G)-module with submodule W Lat Uy be an
F-subsp_mce of ¥ which is complementary 1o W ie, V= W 4+ Uy Let p be
the pmtlcclion map of ¥ onto W with respect 10 Uy, Now g is n linear trang:
formation which i3 pot neocssarily an F[Gl-homomorphism. The object

of Ay in End{V) and is denoted E,(V), 1f E = E_{V), then V {3 an E-module
and EV) = A,.. Loter in this chapter we shall find a sufficient condition

for equality here,
{14} nEMNITION Let V be a nonzero A-module. Then V s irreductile

ifits only submodules are 0 and V. / ::1[ ;:e ;gmaindér of the proof is to modify 2 in order to create an F[G]‘homozw‘_\%
phism, T

It is obvious that if ¢ € Hom,(V, W) then ker ¢ and im ¢ are sub~ Define & V = W by AR / ol N '~5'j ,
modules of ¥ and W, rcgpectively. The following important lemma is now vh bl Lottt ‘.»m*"»:.}n“lg,-l,f D (.\ Pl 7:'3:# ':‘f,
i i R T - s e - [ aTiga fe
immediate. ~ R e R O
(1.5) LEMMA (Schur) If ¥V and W arc irreducible A-modules, then every . oo MLt eed AROANY SIS
nonzero clement of Hom ¥, W) has an inverse in Hom (W, V). ' Clearly, § is F-linear, To show that 9 is an F [GJ-homomorphism, we comwm'.:i“j

An immediate consequence of Schur’s lemma is that if V is an irredueible e R 1 . T
A-module, then E (V) is a division algebra, ie., every nonzero element is Hoh) G| "zaql{uhg)g G| );,(P(l’haifhg) h = Hohh

invertible,
(1.6) COROLLARY Let F be algebraically closed, 4 an F-algebra, and ¥ an
irreducible A-module. Then E (V) = F. 1, the set of sealar multiplications
on ¥

FProgf Clearly, F.1 < E,(¥). Let # & E{V). Then § is a linear trans-
formation of a finite dimensional vector space V over F am! so has an sigen-
vilue A Then 9 = A1 e E,(F) and is not invertible. Thus 3 — 41 = 0 and
9=MerF 1asclimed. |

To justify the study of irreducible modules we remark that for certain
algebras, cvery module is a dircct sum of irreducible ones, and thus to know
all irreducibles is to know all modules for these algebras, Jt happens that
group algebras over fields of characteristic zcro are among these fortunate
algebras. This will follow from Maschke's theorem which will be proved

shortly, '

{1.7) DpeERNIMON  Let ¥ be an A-module. Supposc for every submodule
W < V, there exista another submodule U < V such that V= W L U
(the dot indicating that the sum is direct), Then V iz a completely reducible
module.

Observe that icreducible madules are completely reducible as are all
modules over fields (i.e., voctor spaces), ‘
{1.8) pemNITION  An algebra A is semisimple if its regular moduje, A° is q o
completely reducible. . (1.11) " Lemma etV be an 4-moduls and suppose ¥ = Y ¥, where the ¥,
(1.9) THEOREM (Muaschke) Lot G be a finite group and F 4 field whose T arejirreducible submotiules, Then V' is the direct sum of some of the 1,'s,
characieristic does not divide |G}, Then every F[G]-module is completely 1 Proof Choose W =V maximal with the property that W s the direct !
reducible, I sum:of some Vs If W« ¥, then V, & W for some a. Since v, 18 irceducible, [

\ * i

sifice hy runs over G as g does Tor fixed h.

Jwe W wehave wg e W lor'all g € G and thus @{wg) = wyg. It follows
that Hw) = w. Now let U/ = ker. 9, an F[G]-submodule of 7 We have
Hv)e W, so that ) = He) and Ky — Ho) = He) ~ Koy = 0. Thus
ve )+ (o — HheW + U and Vm W + U. Finally, f we W U
we have w = X(w) wm 0,80 that V = W + U and the proof is complete, '

A consequence of Maschke’s theorem is that F[G] is semisimple if

char(F).t|G|. The converse of this statement is also true a =
' : 5 nd the read
referred to the probiems for a proof, ¢ reader Is

(1.10) * THBOREM * Let V be an A-module. Then V is completel ,
iff it is 8 sum of irreducible submodules, . mpletely reducible

LT R “ : s

. Proof Suppose ¥ = T ¥, where the ¥, arc irreducible. Let W o ™
By ‘ﬁm‘le d;m*qnsionality, choose U = V maximal such that W A U = 0,
W‘e,clmm that W + U = ¥ Otherwise. we may choose ¥, % W+ Uand
thus (W4 U)n V, =0 by the irreducibility of V.. 1t follows that
W A (U + ) = 0.and this vidlates the maximality of U, Thus V = W 4 U .
and ¥ is completely teducible, ‘

Capvermly.'suppou- V is completely reducible and let § be the sum of all
of the irreducible submodules of V. If § «< ¥, we may write V m § + T with
T v 0. By finite dimensionality, T contains an irreducible submodule whieh
15 a-contradiction since T N § m 0, ‘
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we have W A V. = Oand W, = W 1. ¥, > W, This violates the maximality
of W and we.conclude that W = V s desived, & - . & b :

We sec from the previous two results that the dompletely ' reducible
modules are exactly the direct sums of irreducible modules. It follows that
in order o know all modules for a group algebra over a fleld of character-
igtic 0, it suffices Lo know all irreducible modules. y

{1.12) opEFpumon  Let V be a completely reducible A-module and let M

be 8n irreducible A-module. The M-homogeneous part of |4 denoted M(V), i
. is the sum of al} those submodules of ¥V which are isomorphic to M.

Observe that if M & N, then M(V) = N(V).'As will be-shown ghortly, if |
M and N are nonisomorphic irredugible A-modules, then M(V) A N(V) Q;' o

If ¥ has no submodules ispmorphic to M, then M(V) = 0.

(1.13) Lemma Let ¥V =T - W be a direet sum of A-modules with Wi-
irreducible for all i, Let M be any irreducible A-module. Then

(@) M{V)is an E¥)submaodule of V;

(b) M(V)=T (WIW & M} , S

{c) The number (V) of W, which are ispmorphic to M is an invariant
of ¥, indcpendent of the given direct sum decomposition,

Proof {(a) Lel 9cE (V) We nced to show M(V)9 EjM(V?; 1t suffices
to show that if W & V and W = M, then Wi & M(K). This is sufficient
because M(V) is the sum of such W, If W9 = 0, there is niothing to prove: if
W3 # 0,then since W5 is s homomaorphic image of the irreducible module W
we have W8 = W = M, Thus W3 5 M(V). Mo e

(b) Clearly, ¥ (W W, & M} S M(V), Let x, be the projection map of ¥
onto W, Now let W ¥, W= M. If m{W)# 0, then nAW) = W, and
W = W) Thus n{W) < 5 {WIW, = M) for allj. However, W < 3, n{W)
and hence W = 3 (W[ W] 2 M). It follows that M(V) € 3 {WIW, & M).

(c) By (b), we have dim M(V) = nu(V) dim M and it is immediate thaﬁ
nylV)is an invariant, | .

By part (b) of Lemma 113 it follows that & completely reﬂgciblc module is
the dircet sum of its M-homogencous components fot distinct M. In par-
ticular, M(V) n N(V) = 0if M % N, _ oo

We wish o discuss “all iereducible A-moduies.” This posaﬁ ae:me
difficulties. First, we really mean “all isomorphism pl_assea of irreducible
A-modules.” Lt would be convenicnt to have a representative set of A-modqus.
By this we mean a set .4(A) of irreducible A-modules with the property that
every irreducible A-module is isomorphic.lo exactly one element of M(A),
Sincc modules are external to the algebra, it is not clear how onc can find &
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representative set for a given algcbra A, To do this we need to produce a
sct of A-modules large encugh to contain copies of all irredueibles, The next
lemma shows that the set of homomorphic images of A" suffices,

(114} LemMa Let A be an F-algebra. Then every irreducible A-module is
womorphic to a factor module of A®, If 4 is semisimple, then every irrcducible
A-module is isomorphic to a submodulc of A°,

Proaf Let V be an irreducible A-module, choose 0 # ve ¥, and definc
8: A~ V by Xx) = vx. Then 3 is clearly F.linear and #{xy) = vxy = Hx)y
s0 that 9 € Hom (4% V). Now, veim § & V and hence im 3 = V since V
is-irreducible. Lel W = ker 3, Then V = A%/W. If A is scmisimple, then
A* = W 4 U and A°/W = U, The proof is complets, |

Now fix a representative se1 #(4) of irreducible A-modules, By part (b)
of Lemma 1.13, we have V =Y - 4. qyM(V) for every completcly re-
ducible A-module ¥ Suppose A is 2 scmisimple algebra. We can then
8pply the above 10 A° and write A° =Y - M(A°}. It turns out that M{(4*) is
actually a two-sided ideal of A, For notational cotivenience, we write M(A)
for M(A°) in what follows,

(1.15) THEOREM (Wedderburn) Let A4 be a semisimple algebra and let
M be an irreducible A-module. Then

(a) M(A)is a minimal jideal of A;

(b) if W is irreducible, then it is annihilated by M(4) unless W = M,
(<} Ihe map x == x,, 15 one-to-one from M(4) onto 4, < End(M):
(d} A(A) 15 a finite get,

Proof 1f x g A, the map 3,y xy satisfies 8, ¢ E (4", Therefore, by
Lemma 1.13{u), xM(4) = M(A)3, = M(A) and M(A) is a left ideal. Since
M(A) is a submodule of 4°, it lollows that it is an ideal of A Mipimality will
follow after (c} is proved,

If Wis an irreducible A-module with W ¢ M, then W(4) ~ M(4) = O by
Lemma 1.13(b). Since W(A) and M(A) arc ideals, we have W(A)M(A) = 0,
By Lemma 1,14, A® has a submodule Wy = W and W, = W(4), so that
M(A) annihilates W, Since W = W, they have the same annihilutor in A

* and (b) follows.

By (b), it follows that xw = 0if x € M{A) and M ¥ W I now follows from
the dircct sum decomposition 4 = Y - y e xoa,M{A) that for y € A, we have
Y = Xy Where x is the component of i {n M{A), We conclude Lhat the map
X x,, maps M(A) onta Ay, 1f x e M(A) and xy = 0, then it follows from (b)
that x unnihilaies every irreducible, and hence every completely reducible
A-module, Thus x = 1x € A% = 0 and (c) is proved,
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To show the minimality of M(A), let [ « M{Ad) be an ideal of A. Now
M(A) is a sum of submodules isomorphic to M and thus there exists M, =
MAVMos M. M, &1L AS My I < Mg and M, = M is irreducible, we
have My n [ = 0. Thus MyI < My~ 1 = 0and { annihilates M, and hence
also M, Therefore, if x e I, we have x), = 0, However, x — x,, is one-to-one
for x € M(A) and thus x = 0. We conclude that 7 = 0 and the minimality of
M{A) 13 proved, .

Finally, M(A)# 0 for cvery M by Lemma 114, and yet
A =7 yauaMlA) is finite dimensional. It follows that |.#(4)] is finite
and the proof is complete. |

Observe that each M(A4) is actually an algebra, its unit element being the
component of 1 in M(4) under the decomposition A = ¥ - M{A). Since the
Map X — X, is an alpgebra homomorphism from A 1o Ay, it follows from (¢)
of the thcorem that Lhe restriction of this map to M(A) is an algebra iso-

morphism from M(A) onto Ay,

Since M (AM,(A) = 0 for M, g M, it follows that every ideal of the
algebra M(A) is in fact an ideal of A. We conclude from the minimality of
M(A) as an ideal of 4. that M(A) is a simpi¢ algebra, i.e, it has no nontrivial
broper ideals, Thus the preceding theorem asserts (among other things)
that a semisimple algebra is a direge sum of simple algebras. This is & some-
what more usual statement of Wedderburn's theorem, (It is also true that
every s:mplc algebra is semisimple. This follows from Problem 1.5.)

To review the situation now; group ajgebras over fields of characteristic
zerc are semisimple; semisimple algebras are direct sums of ideals M(A)
and M{A) is naturally isomorphic to Ay Whal rcmains is to study the simple
algebras A,;. This is the purpose of the “double centralizer ™ thegrem which
follows. The prool we give here is based on an idea of M. Rieflel.

1t should be remarked that the hypothesis that 4 i3 semisimple is nctual]y
superfluous since the theorem is really about A, which is automatically
semisimple when M is completely reducible, See Problem 1.6.

(1.16) TuEorEM (Double Centralizer) Let A be a semigsimple algebra and
let M be an irreducible A-module, Let [ = E (M}, Then Ey(M) = A,,

Proof Tt is no loss to replace M by an isomorphic module, and a0 by
Lemma 1,14, we may assume that M = A" Let | = M(A)sothat M S I,

It is clear that A, g EgM) so we prove the reverse mclumon Let
3 € Ep(M) 50 that (ma)3 = (mS) for o€ D. If m & M, define o, M - -A by
(x)ty = mx. Sincem € M isarightidealof A, wchavnmx e Manda,, M—!M
llaca and x e M, we have (xa)t,, = m(xa) = (mi)a = (xa)a. It fol]ows
that &, € E,(M)} = D, Thus for m, # ¢ M, we have ,

{% (mn)8 = (no, )3 = (n¥)a, = mind),

of looking at modules. f YL

Algebras, modules, and representations g

Now fix n g:M with n » 0 and let & be the unit clement of . We have
And < I and by the minimality of the ideal I, we have e€/ = And and
¢ m 3 a.nb, for suitable a,, b, & A. If m € M, we have

 m=memmy anb =Y (ma)nb).
Sinde tha, € M and nby e M; Equation (+) yields for alt m € M that
m9 = ): «ma.)(nbms Z (maM(nb)9) = m T akinb))9),

Thus 8= uy e A., where u }:a.((nb.}s) The proof iscomplete. | =

Q :’17) COROLLARY Let' A bea semnslmple algebra over an algebraically
closed field F and let M be an irreducible 4-module. Then

{a) Au = End(M);
() dim(Ay) = dim(M(A)) w dim{M)?}
1) MdA”) = dimiM)..:

Fnrthermore |f A’(Ai isa repmematwe set of irreducible A-modules, then

1 {d) dlm(A] 2.,,—. _m,dim{M)‘
{e) i Z{ A} = | ()]

Prouf By Corolléry 1.6, E4{M) = F - 1 for irreducible M and thus A, =

E,. /(M) = End(M) Byelemmtary liner algebra, End(M) = M/F), the rlge-
braofd x dmatrices, whered = dim M. Thusdim A, = dim(End(M)) = a2,
Since M(A) & Au. w:: have (B). How MiA) is the direct sum of ny{4°)
isomorphic capies of M, thus d* ; - dim M(A) = m\y(A°) dim M = dny{A),
and (c} follows, SmoeA ): .,.,“,.,M[A}. (d) is immediate from (b).
‘ Flnnlly, Ict bl Z(M(A)) Mow AN = Ay E (M) = A,, A Ful
= F - i, Thus dim 2™ = dlm(Z(AM)) =1, Clearly, ¥ - ,,...wz & Z(4)
and dlm(z ZM) o | A(A)). However, il z Z(A), write z m 3 g™, g € M(A).
If ue M(A). then ua™ = uz = 2y = a“u sinee the distinct M(A)'s apnihilate
each other. Thus a¥ € ZV and Z ZM = Z{A). The proof is complete, |}

(R BT

Although the word reprmntnhons" conatitutes one third of the title
of this chapter, 80 far nothing has been said about them. In fact, that isn't
teally true, because as we ghall sce, representations are just a different way

‘.i M"l

' (118} DEFINITION’ Let"A ‘be'an Falgebra, A representation of A is an

algebra: homamorphisin' %: /A — MJ(F). The integer n is the degree of X
Two representations X, 1) of degree n are similor if there exists a nonsingular
n ¥ n matrix P, such that X(a) = P~ 19(a)P for all a ¢ A.
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. - Clearly, similarity is an equivalence relation among represcntations. Als:o,

if 9 is a representation of degrec n and P is any nonsingulat n X n MALrx,
then the formula X(a) = P~ 19(a)P defines a new representation X.

1t is easy to build modules from representations and tepresentations from
modules. §f X is a representation of degree n of the F-algebra 4, let V be the
a-dimensional row veclor space over F. If ve Vand X 18 any n % n mMatrx
over F, then pX € ¥, Define va = vE(a) for ac A. It is rouline to check that
this gives the structure of an A-module to K.

Conversely, if M is an A-module, choose an F-basis for M and let ¥(a)
be the matrix of a,, with respect to this busis. It is now easy-to chcck.thal X
is a representation. Note that a different choice of basis might give a different
representation (and usually does). \

Starting with 4 representation X, constructing the module V as above,
and then choosing the appropriate basis for V and constructing the cor-
responding representation will result in the original representation E '

Suppose V and W are A-modules and 8 € Hom (¥, W). How does this
situation look from the representation point of view? Choose bases £y and cf'w
for ¥ and W. Since 3 is a linear transformation from ¥ to Wit hasa matrix
P with respect 10 the given bases. Note that P is m x n where m = dim ¥
and n = dim W, Now, thc fact that (va)d = (v9)a for all vV and 2€ A
yiclds ¥(a)?* = PD(a), where X and ) are the represcntations given by V
and W with respect to the bascs £y and 4y, 1f 3 is 2 module isomorphism, then
P is nonsingular and the above matrix equation yields that 3’.. and ‘1) are
similar representations, In particular, the different represcntations ansing
from a given module with different choices of basis are all sirmilar, Gl

The above reasoning may be reversed to show that if the representations
ariging from V¥ and W with respect Lo bases &y and 4y are similar, then V
and W are in facl isomorphic modules. It follows that there 15 a natural
one-lo-one correspondence between isomorphism classes of 4-modules and

similarity classcs of representations of A. ‘ ‘ .
¥ Visan A-moduleand W < V iz a proper nonzero subn;qc;lplq, choci)ag:_ )
basis £, for W and extend this 10 £, a basis for V, MNumber £y 50 that the last
m vectors are 4y, where m = dim W. Let X be the representation of 4
corresponding to ¥ with respect 10 the basis £y and fet P be the represchta-
tion corresponding 1o W with respect to the basis £y Tt is t:ll’-‘“:ﬁ%ﬂ?’..‘.‘? su:;&l‘q_r_
a € A that X(a) has the form o "b.::; . L
3a) Wa) R T
*“’"’(o 0 L ;

Furthermore, 3 is a representation corregponding vo V/W, Note that it isa
function from A into (n — m) % m matrices (where n = dim V), but 1 ig no

. ) bR g a . .
a representation. - oot bar

Problems 11

'The representation X is said to be in reduced form and one similar to X
isreducible, Thus the irreducible representations correspond to the irreducible
modules,

If there exists a submodule IV < ¥ in the above situation, with ¥V =
W 1 U, then the basis for W may be extended to ¥ by adjoining to it a
basis for /. When this is done, the result iz that We) = 0forallac 4. It
follows from this discussion that if X 15 any representation ¢orresponding to
a completely reducible mogdule, then X is similar Lo a representation in block
diagonal form, where each of the blocks is an irreducible representation.

Problems

(L.1y Let ¥ be an A-module. Show that V is completely reducible iff the
intersection of all of the maximal submaodules of V i3 trivial.

Hint  To prove “if,” cmbed V into a sum of irreducible modules. Recall
that our definition of * module™ requires finite dimensionality.

Note  This problem is “dual™ to Theorem 1,10 which implies that ¥
is completely reducible i it is the sum of its minimal submodules. Theorem
1.10is true much more generally than we have proved it. 1t holds for arbitrary
modules over rings. Problem 1.1, however, is not vatid in this grester gencr-
ality. A countcrexample is the regalar module of the ring of integers 2.

(1.2) Let X and 9) be representations of an F-algebra, A. A nonzero matrix
P is said 1o intertwine X and 9 if PX(a) = Dl(a)P for all g € 4. Assume ¥ and
P are irreducible.
(#) If Pintertwines ¥ and ), show that P is square and nonsingular,
{b) Assume that F is alpebraically closed and that P and @ both inter-
twine ¥ and ). Show that ¢ = AP for some ig F.

(1.3} Show thal an algebra A is semisimple il every A-module is completcly
reducible.
{1.4) Lot A be an algebra, For A-module V, let of(V) = {ac A|Va = 0.
Let JIA) = (\pwoaear® (M), where .#(A4) is a representative set of irreducible
A-modules, Show

(@) #(V)is an ideul of A for all ¥

(b) VJ(A) < V for every nonzero A-module V.

(&) J{A)" = O for some inleger n,

{d) 1If}is a right ideal of A4 and I™ = { for some m, then I S J{A).

Naote  The ideal J(4) is called the Jacobson radical of A; /(1) is the
anmihilator of V and a right ideal 7 with I" = 0 is said o be nilporent,
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{1.5) Prove that the following are equivalent for the algebra A,

(a) J(A) =0,

() A has no nonzero nilpotent right ideals,
{c} A has no nonzero nilpotent ideals,

(d) A is semisimple,

Hine Tf V is irreducible, then &/(V) is an intersection of maximal right
ideals.of 4,

(1.6) Let Abean algebra and V a complesely reducible A-module, Show that
the algebra A, is semisimple.

Note A consequence of Problem 1.6 is that the hypothesis. that A is
semisimple in the Double Centralizer Theorem L, 16 may be dropped since this
theorem is really about A4, for an irreducible module A4,

(L7) Let 4 be an algebra and V an irreducible 4-module. Show that
| H(Ay)| = 1. '

(1.8) Let G beagroup, H © G a subgroup and F a field with characteristic
prime to |G : H). Let ¥ be an F[Gl-module with submodule W, Suppose that
there exists Uy, = V, an F{H]-submodule such that ¥ = W 1 U,. Shom
that there exists an F[G]-submodule U € V with ¥ = W 4 U, ‘

Nate This gencralization of Maschkes Theorem: 1.9 is due to D.
Higman,

(1.9) Lel G be a group and F a field of charagteristic p. Suppose p||G| and
show that F[G] is not semisimple.

Hint (3697 = Q.

{1.10) Let M be an A-module. Show that M is completely reducible iff
MJ{A) = 0. ‘

Hint  A4/J(A4) is semisimple. L

vy

i
- Lot b

2 Group representations and characters

Sy L. Lo,
¢

¢ Let G be a finite group and let F be a field. Suppose X is a represcntation
of F[G] with degree n. Since X is an aigebra homomorphism, X(1) = I, the
identity matrix.:Iv follows for g & G that X(g).is nonsingular and X(g)™! =
X(p= ). If we restrict the function X.t0 G = F[G), we obtain a group homo-
morphism{rom G into the general linear group GLAn, F), that is, the multipli-
cative group of nongingular # % n matrices over F. :

(2.1) oernrmon  Let F bea field and G a group. Then an F-representation
of G is a homomorphism X: G — GL{n, F) for some integer n,

»YWe have seen that a representation of F{G] determines ap F-representa-
tion'of G by restriction: Conversely, an F-representation X, of G determinesa .
mpm'cm?tioﬁ X of F[G] by hnu?r exiéntion. That is, .
AR TR ;':a!‘iij.-"l‘. i el Lod Sl . ° b

S i Vo Al Al .
Mg a5 i, oo (Y a,d) WE-“&M)» - v
Wéshall vsually*lisa the'sarmie Symbol i6"deiote both an F-representation

of G and the' corresponding representation of F(G). Also, the adjectives

[P

" “gimilar” and, “irreducible”. will be applied to F-representations of G as if

they. were thé corresponding representations of F[G]. Some caution is
necessary heve since if F 5 E, a larger field, and X is an F-representation of G,
then X is automatically an E-representation. It is entirely possible, however,
that X is irreducible as an F-representation, snd yel is reducible as an
-E-represeniation, We will explore this situation in gome depth in Chapter .

.., One further triviality which should be mentioned now is the following.
If N =a (7 and X is an F-representation of G with N < ker X, then there is a

13
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unique F-representation X of G/N defined by ¥(Ng) = ¥(g). This formulu can
alzo be used to define the representation X if ¥ is given. Note that ¥ is
irreducible iff X is. We shall often fail to distinguish between X and X.

The trouble with representations is that they contain too much informa-
tion. If X is an F-representation of G of degree n, then for each element of G
we have n? entries in (). Some of this data is clearly redundant because it
distinguishes between similar representations. The idea behind character
theory is to throw away most of the information and 10 save just encugh to be
useful, This is done by calculating the traces (that is, the sums of the'diagonal
entries) of the matrices in question. Recall that if A and B are anytwon x n
matrices over a field, then tr(48) = tr(BA).

(2.2) opeRNmon  Let ¥ be an Fercpresentation of G. Then Lhe F-character
X of G gfforded by X ig the function given by X(g) = tr X(g).

As is the case with F-representations of G, we may view F-characters as
funcuions on al) of F[GJ. Note that if the characteristic ehar(F) # 0, then the
conslant function O is an F-character, On the other hand, if char(F) = 0,
then 0 is definilely not an F-character because x(1) = deg X, where X is an
Ferepresentation of G which affords . In this case, we say that ¥(1) is the
degree of y. P "

Most F-characters of a group ¢ are not homomorphisms of any kind.
However, if 4 is 2 homemarphism from G into the muliiplicative group of F,
then X{g) = (ligy is an F-representation of G of degree ' which affords 4
as its characler. Characters of degree | are called linear characters, In
particular, the funation 1, with conslant value 1 on G is a lincar Fecharucter.
It is called the principal F-character, o .

(2.3) LEMMA (a) Similar F-representations of G afford equal characters,
(b) Characters are constani on the conjugacy classes of a group,

Proof I[P isnonsingular then te{P™' 4+ P) = tr{P. P~ d) = tr(4). Both
(a) and (b) follow from this observation, To see (b), observe that X(h™'gh) =
X(h)"'X(g)X(h) if ¥ is a representation of G, and hence. tq(_I.(h"‘gh)}g

trXg). B Jubace e o0 C
.t AL T S P L LR R

We make one further general observatiot Irx and'9) ‘are’ F-representa

' by o IR T " . Coai

tions of G, then NN X )
DRI e . A

. 177 B L S
d@)‘[ 0 ‘ﬂ(ﬂ)] .

is also rn F-representation. Since tr g} = ir E(g) + tr Dig), it follows that
the set of F-characters of G is closed under addition, v o

.
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We now restrict our attention (o the special case that the field F = C,
the complex numbers, We emphasize, however, that the subficld consisting
of the algebraic clements in € would work exactly as well, and in fact with
only minor modifications, most of what follows works for any algcbraicatly
closed field of characteristic not dividing |G|

Let us establish some notation. Fix a finile group G and choose a repre-
sentative set of irreducible C[G)-modules, HC[CY) = (M,..... M)
Choose a basis in each M, and let X, be the resulting representation of
€[G). Let y, be the character afforded by X,. It follows that the set I rHG) =
{1+ %) is the set of all irreducible C-characters of G {that is, characters
afforded by irreducible representations), Henceforth, the word “character”
will mean C-character unless otherwise stated,

Sincc sums of characters arc characters, it (ollows that X=Xl myisa
character whenever the n, are nonnegative integers which are not all Zero.
Convcrs_cly, if x is any characier of G ufforded by a representation X cor-
responding toa module ¥, we can decompose ¥ into a direct sum of irreducible
modules. It [oltows that x is the sum of the corresponding irredugible
characters, We have, in fact, x = ¥ ny (V.

. Corollaey L.17(d) asscrts that dim{C[G)) = 3}, (dim M))%. Since
g:::?ncl[gj = |G] and dim M, = deg ¥, = y,(1), we obiain the fundamental
ula

lGI = iix;“):.

[Uscems nalural at this point to ask how we can determine the inleger &
purely group theoretically, without looking al represcntations. By Corollary
1.17(e), we have k = [H(CIG = dim Z(T[G]).

(2.4) THEOREM Let Ay, X0, o, be the conj

4 0y K X Jugacy classes of a group
G LetK =3, xgC[C]. Then the K, form a basis for Z(C{G]) and if
‘K:KJ = .4, K., then the multiplication constants a;. are nonnegative
integers,

_ Proof Tiis clear that the K, lie in Z(C[G7). Moreover, they are lineatly
independent because they are sums of digjoint sets of clements, If 7 =
Y a,g e LG and he G, we have z = h™'zh = Y. a,¢" Comparing the
coeﬂic!'ents of g* on both sides, we obtain e q,, In other words, the
coeflicients o, have the constunt value a, for all g€ X, It follows that z =
2 K, and thus the K, span Z2(C[C)

To find ay,,, pick g € X", Then a;;, is the coefficient of y in K, K, From
the definition of multiplication in a group algebra, this is |{(x, y)[x e ¥,
Y& X, xy = g}|. Since a,;, is the cardinality of a set, it is a nonnegativ'c
integer. ||
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(2.5) coroLLaky The number k of similarity classes of irreducible repre.
sentations of G is cqual 10 the number of cotjugacy classes of G, :

(2 6) corRoLLARY The group G is abelian iff every irreducible character
is linear,

Progf  Let k be the number of elusses of G, Then k = |Gjiff G is abelian.
Now (G| = Y¥ay 2(1) and x(1} = ] for all i, 1t follows that k = |G| iff
x{1) = 1 for all i. The proof is complete. |}

We have not yet proved that the ¥, are distingt, To see this, we introduce
a little more notation. From (he results of Chapter 1 we have the direct sum

€G] = ¥ - M{CIG).

Let 1 =Y e with ¢, € M{C[G]). Since M(C[G]) annihilates the module
M, il i # j, we have Zi{¢)) = 0 in this case, It follows that X(e) = X{1) = I,
Therclore, xle) = 0if i # jand gfe,) = x(1) # 0 and we conclude that the y,
are distinct as functions on C[G). Thus the x, are also distinct as funcuons
on G.

We may now restate two of Lhe earlier results in a slightly more convenient
form.

(2.7) coroLLARY Let G be a group. Then |Ire(G)| equals the humber of
conjugacy classes of G and
L ) =igl.
rulr{ic)

For certain very small groups, the information ¢ontained in Corcllary 2.7
is suffivient to determine the trreducible character deprees. For instance, if
G = T,, the symmetric group on three symbols, then G has exactly three
conjugacy classes and |G| = 6. It follows that the y{1)are 1,1, and 2,

Actually, the preceding argument with the e/s yields more than the fact
that the y,'s are disting. A class function on a group G is a function, ¢! G — C
which is constant on conjugacy classes, All characters are class functions,

(2.8) THEOREM Every class function ¢ of & can be uniquely expressed in
the form
p= Y Ak
PRI

whare a, € . Furthermore, ¢ Is a character iff all of the 4, are nonncgative
integers and @ # 0,

Group raprasentations and charsctera 1§ 4

Proof “The set-of class functions of G forms & vector space over C whose

- dimension is the number of classes of G. We claim that Irtr{G) is & basis for this

ce. Since ! |Irr(G)| = k4= number of classes, it suffices to show that if
a;p; = O,then each a, = 0. This is immediate by evaluation at e,.
The sen:md ntntenumt has already been proved. |

CIy E,., n,%, is & character, then those 7, with n, > 0 arc called the

llrreducnblc constituents of x. In general, if  is a character such that y — ¢
(i8 miko & character or is zero, then ) is called a constituent of x. An important

oonsequence ‘of 'l'lworem 2.8 is the following,
(2.9) coroOLLARY Let X and 9 be C-representations of a group G. Then

»

X and T are similar iff they afford equal characters,

Proof We already know that sumﬂar representations afford equal
charcters,

Let V and W be C[G]-modulés corresponding to X and 9 respectively.
Then X affords the character ¥ 4, (V)y and 1) affordi 2. n {W)x,. I these
characters are oqual, it follows that ry (V) = ny (W) for all i. Therefore,
v and W are nsomorphlc to ‘identidal direct sums of irreducible C[G)-
modules and’ thus are isomorphic and X and { are similar as required. ]

v . N

" Fora partlcular g,mup G, the irreducible characters are usyally presenied
in a character table: 8 (square) array of complex numbers whose rows
correspond (o the gz, and whose columns correspond to the classes X7,
An example of a character table is the accompanying one for the symmetric

. group , om fnur B}'mbols
fl'

per oy 1 (1) (1234 (1234 (123)
c@: 24 4 8 4 3
a1 6 3 6 8
w11 1 i 1

B £ 1 =1 1 =1 1

Xt 2 0 2 0 -1

‘a3 ] -1 =1 0

xs 3 =1 -1 I 0

. In this table, the classes are denoted by writing a representative element
g in its cyclic notation, (The reader is reminded that in a symmetri¢ group,
two elements are conjugate iff they have the same eycle structure,) The sizes
of the centralizer C(g) and of the corresponding conjugacy class Clig) are
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given for convenience, although they are not, properly speaking, a part of
the table. Further character lables are given in the Appendix (page 287).

It is rather difficult to describe the process by which these tables are con-.
structed. Usually, various combinations of ad hoc arguments and general,

theorems are necessary. As the student learns some of these theorems, he is
urged to try to construct some character tables on his own, The important
point is that it is very much easier to construct a character table than it is to
construct representations.

Theorem 2.8 tells us that every class function is a linear combination of
irreducible characters. For example, if G = I, and plg) is defined to be the
number of points moved by g € G, then ¢ is a clasz function. and iz a linear
combination of rp, xs...., xs. Thus the row (0, 2, 4, 4, 3) is & linear combina-
tion of tha five rows of the given table. It turns out that there is an easy method
for computing the coefficicnts, practically by inspection from the table.
This is done by using the so called “orthogonality relations,” which we are
about to derive. These relations are also extremety usefu! in the construction
of character tables, o X

Before we leave I, we should comment on the fact that all of the character
values, which a priori are only known to be complex numbers, in fact turn out

to be integers, (OF course the y{1), being the degrees of representations, are -

always positive integers.) It is not always trug that all character values are.

ordinary integers, although frequently a large fraction of them are, Tt is true,

however, for all symmetric groups. All of this should become clear later.

The key to the orthogonality relations is to compute explicitly the
coctheients of the group elements in the &5 in terms of the characters. To
do this we use the character p of G afforded by a representation corresponding
o the regular module C[G]° This regular character p will be computed
in two ways.

(2.10) Lemma [IfgcGand g # |, then plg) = 0, Also p{1) = 1G),

Proof We must choose a basis for C[(¢]° to obtain a corresponding
. representation, We simply take G, in some ordering, as the basis and let R be
the corresponding representation. If M(g) = (a,j), thena; = Qunless 7,9 = g;,

in which cass a;; = 1. Since p{g) is the number of g sati#ying @ig = g, the

lemma follows, |

Since p is a character of G, it may be cxpressed’ss an integer linear
combination of the y,. We do this explicitty,] 7, »# | ™imens o

¥ ‘ -
PR R T B T

2.11) rEmMA o= Yo, xd1)y. TR

tih
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. me)j' If V is any C[G]-module, it may be decomposed s a direct sum of
irreducibles. The character afforded by a corresponding representation

is_an(V)x,. Now by Corolliry 1.17(¢) we know that ny (CLG]Y) =
dim M, = y(1). The result follows. [

It is suggested (hat the reader use Lemma 2,11 and the character table of
I, to compute p cxplicitly for this group, and check the result against
Lemma 2.10,
(2.12) THEOREM e = (/IG)) ¥ cq xdDxdg ™ )g.

Proof Write ¢, = Z“ g. By Lemma 2.10, we have -y =
Lemma ' M ave ple, =a,|Gl.
mma 2.11 thus yields i ) WGl

4,1G| = ;)u(l)xJ ey

Since

e N =XledE g™ = {;) @) :; : #j’
i) = I

wehave yfeg” ') = iy~ ')d,;, where the Kronecker 8,,isQor | depending on
whether { and j are unequal or equal. We now have

a,|G| = x{ljx{g™")

» . and the result follows, §

(2.13) THEOREM (Generglized Orthogonality  Relation) The following
holds for every h e 6.

lh
F7i

. Pr{?af_ The e, li¢ in trivially intersecting ideals of C[G] and thus eg; =0
if i # J. Since | = } ¢;, multiplication by o, yields ¢, = ¢,. We now sub-
stitute the furm‘ula of Theorem 2.12 into the equation & = de, and com-
pare the coefficients of the group elements on both sides.

" The cocflicient of a fixed i € G on the right hand side is (3, /1 G |y D (k™ !
and that on the left-hand side is G

1
— =1y _ =
iG] L1 =2,

(1 1Y -
Jt_(Tc)TJT;(_) L g™ gy ).

. The tesult now follows by equating these expressions and substituting A

for k=4, |




PO
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By taking f = | in Thcorem 2.13 we obtain
(2.14) CorOLLARY (F:‘rsr Crthogonality Relation)

|Gl E IJ(Q)X_KQ' ) = élj'

gt

Since the expression (7™ !) has come up several times, we digress for a

while to discuss its connection with x{g) and some related questions,

(2.15) rmMa  Let X be a representation of G affording the character x and
let g 2 0, et n = ofg), the order of g. Then

(1) XE(g)is similar to a diagonal matrix diagle,, ..., €/);

(b} & 1:
T 5 and | 2(g)] < 201):

&) xigy=
@ xg"") = 1)

Proof 'The restriction of X to the cyclic group ¢g) is a representation of
{g> and hence it is no loss 10 assume G = = {¢). By Maschke's theorem and
other results of Chapter 1, it follows that X is similar to & representation in
block diagonal form, wnh irreducible representations of G appearing as the
diagona) blocks. Since & = (g is abelian, Corallary 2.6 asserts that its
irreducible representations have degree 1, and thus ¥ is similar 1o a diagonal
representation. Now (a) [ollows, and we may assume that ¥ ig dingonal. We
have { = X{p") = X(;)" = diag(z,", ..., &,"). Therefore (b} is proved, It follows
that [&] = | and |3 & <Y le)) = j = x(1). 1 is clear that xig) = ¥ &, 80
that (¢) follows, Now X(g~') = X(g)~' = diagle,",...,5,”") s0 that
g™ =Y gL Since |t =1, we have ¢,” = 5 ahd xfg“{) @) The
proof is mmplele |

Combining Corallary 2 14 and Lamma 2.15(d), we obtain
IG! z XI(Q)W = 61!

[

This suggests the following definition.
(2.18) oerTioN  Let ¢ and 9 be class functions on a group: G Then

L@, 8] = TEI ): #(9)%g)

15 the Inner product of @ and 3,

Some of the obvious properties of this “inner product” are

@ [o8 =%k

(b) [, ] = 0 unless @ = 0

i

T

b
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(€} [e1@1 + 292, 3] = ¢ 1[04, 3] + ¢3[002, 90:
@ [e.e)9, + e8] =710 8,1 + Tle. 8,1

Therefore, [, ] has all of the propertics usually used to defing an inner product
in linear algebra and analysis, (In fact, this makes the space of class functions
into a finite dimensional Hilbert space.)

‘We know that Irr(G) is a basis for the space of class functions and it is
the content of the orthogonality relation that it is, in fact, an orthonormat
basis, that is,

L. =8,

This yields the promized method for expressing an acbjtrary class function in
terms of the irreducible charaeters; for if [, x] = ¢/  then ¢ = 3 ¢y,
Another applimtion of the inner product is to determine instantancously

whethcr or not 8 gwen chanwter s lrreduclhle

(2 I'?) oonmunv Let y and \b be (not neoessanly |rmduc|ble) characters
of G Thm [x. $l=[v, yJisn nonnegntwe integer. Also x is irreducible tﬂ‘-)

"g."‘wh':’[ L

Proof We have 1= 3 nyz and ¢ = ¥ mx, with all n, and m, non-
ncg,nuve integers. Then [y, §] = anm; = [, 2] and [x, ] = ¥ n’. The
result is now immediate, since y is meduclblc exactly when one n; = | and
all ather m=0 1 '

The following *second orthogonahty relation” is derived from thc first
and %0 imposes no new necessary condition for an array of complex numbers
to be 4 charucter table, Mevertheless, it is often extremcly useful in the con-
struction of character tables and in the extraction of information from them,

2.18) THROREM  (Second Orrh&gon&lity Relarion) Let g, he G. Then
o T e = 0

PR ' 1 Imm
ifg. 15 not conjugate to h m . 01.herw1se. the sum is equal to | C(g)].

.Proof Let 5,, g2, ..., g, be representatives of the conjugacy classes of
G, Let X be the &k x k matrix whose (i, /) entry is x{s,). (In other words, X is
the character iable, viewed as a matrix.) Let D be the diagaonal matrix.with
entries 5,/ ;| where &, is the conjugacy class Cl(g). The first orthogonality
relation asserts thai

1Gd;; = ):Xf(ﬂ) Z 12| 20 1 9 -




This system of k? equations may be replaced by the single matrix equation
|Gl = XDX", -

where [ is the identity matrix and the superacript denotes transpose.
Since a right inverse for a square matrix is necessarily also a left inverse,
this yields '
|G|I = DX"X.

We now write this as a system of equations and obtain

1G18, = ¥ || 1 Jadug,)

Since |G[/|X7| = 1€, this yields
Y He)x@)

celr(G)
which is the desired result, |}

= |Clg)| 8,y oot

In the character table for I, that wag given earlier, the size of each con.
jugacy class was given. We see now that this information is derivable from the
body of the table. 1t was given only for case of computation of innet producl&

As a check 6n our results so far, observe what happens if we take h = 1 in
the second orthagonality relation. The reader should recogmz.e what rcsults
as a combination of Lemmas 2,10 and 211, o

Let £ < C be the field of algebraic numbers, By Lemmna 2,15, all of the
character values y(g) € E for y € Irr(G) and g e G. How is (), which is a set
of functions G — E related (o the set of irreducible E-characters of G, whn:h
we denote by Irrg¢)? In fact these sets are equal.

Suppose X is an irreducible E-representation of G which affords x € IrrgG),
Now ¥ may be viewed as s C-representation and thus x is a character (that {5,
a C-character) of G. Since the entire development of character theory up to
this point would have been the same over E as over C and sitice y & TrrgG), it
follows that [y, ] = 1. However x is & C-character of G and |t follows from
Corollary 2,17 that y e Irr{G), Thus lrrglG) < Irr(G). .

We also have that both lergG) and 1er(G) have, the same cardmnhty,
namely that of the set of conjugacy classes of G. Therefore Ireg(G) = Irr(G).

The point of this digression is to sugmt that there is something “gb-
solute” about a character table. It is not entirely ap amfact of out chume of
the particular field C.

Another consequence of this urgumcnt which is sometimu ugelul is t)lat
if x € Ire{G), then  is afforded by an E-mpmwntation of G, This type of con-
sideration will be discussed much more fully in Chapter 9. Until then, we
resuttie our convention that “character” means * C-character,”

. Chaptar, 2
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A great deal of information about & group can be recovered from its
character table, In particular, all of the normal subgroups of G can be found.
A normal subgroup is a union of conjugacy classes and the word “found™
in the preceding sentence mesns that those sets of conjugacy classcs whose
. unions form subgroups can be listed. In particular, the orders of all normal

. subgroups and the inclusion relations among them can be determined,

(2.19) LEMMa Let X be a Corepresentation of G which affords the char-
acter ¥, Then g eker X iff y(g) = x(1).

Praof 1fgeker X, then X(g) = 1 = E(1)and gy = z(). Conversely, by
Lemma 2,15, x(g) = ¢, + «+» + g, where ¢ 15 & root of unity and f = (1),
Since |g)| = 1, the equation ylg) = f lorces ¢, = 1 for all {, Now X(g)is similar
o diagle,, ..., /) = 1 and therelore X(g) = / and the proof is compleie, [

(2.20) perinimoN  Let x be a character of G. Then ker ¥ = {geG|xlg) =
A}

(2.21) LeMMa  Let y be a character of G with x = ¥ ax, for x; e Tri(G).
hen ker x = {){ker z,|n, = 0}. Also {({ker 3|1 £ i k) = L.

Proof Since |xdg)| < x(1) by Lemma 2,15, x(g) = x(1) forees x(y) =
- %1) whenever n, # 0. The reverse inclusion [s trivial and the lirst ussertion
-follows,

To prove the second stalement, consider the regular character p. By
Lemma 2,10, ker p = | and Lhe result follows, |l

The normal subgroups N, = ker x, can be found by inspection from the
charactgr able of & group G, We claim that every normal subgroup is the
intersectlon of some of the N/'s and Lthus can be found from the character
. table. To sce this, let N <5 G und let R be the regular representation of the
. group G/N so that ker R = N/N, Now view R as a representation of G with
"kernel N and let x be the corresponding character of G, Then N = ker R =
ket x w (V{N)|[x. %] # O},

©.Given a normal subgroup N of G {where * given ” means listing the classes
- whieh jt contains), we muy caloulate | N | frony the gharacter table using
Ni=Y {|o]|a, & N}. (Recall that |Clig)| = |G: Clg)] and [Cig)] =
coivein | 2()1% 80 that | %] is determined from the character table.)
It follows from this discussion that & is simple iff ker ¥ = 1 for all non-
pringipal x € Ire(G) and therefore simplicity of a group can be easily deter-
‘mined from its character table,




o
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The group G is solvable Tl has a chain of normal subgroups, | = M, €
M, €& M, =G such that 1M, : M,_,])5 & prime power for all i, | £
i % n Sincc the M| can be located aned their orders determined from the
charactier table of G, it follows Lhal the table determines solvability or none
solvability of G,

This may be & good place o remark that the character table of G docs not
determine G up to isomorphism. in fact if p is any prime, therc are two nons
{somorphic nonabelian groups of order p?, These two groups have identical
character tables.

Let N <2 G, [t scems natural to ask whether the character tibles of N and
of G/N can be calculaled from that of G, The answer is*no™ for N but “yes”
for G/N.

We huve niready observed that there is a one-to-one ¢orrespondence
between representations of G/N and represcntations of G with kernel con-
laining N. Furthcrmore, wnder (his correspondence, irrgducible represent
atiops correspond to icreducible representations. This situation may be
interpreted in lerms of characters as follows,

(2.22) LEMMA Let N =a(,

{a) Ifyisacharncter of G and N < ker x, then x is constant on coscls of
N in G and the funclion 4 on G/N defined by 2{Ng) = x(g} is a churacter of
GIN,

By Ifgiss chaructcr of G/N, then the function y defined by yig) = f{Ng)
is a characier of &,

(g} In both{a)and (b}, x & lrr{G) Y § € Ler(G/N),

Usually, we shall identily 3 and £ Under this identification, we have
ir(G/N) = {7 glrr(G)|N & ker z}. To demonsteate what is happening here,
let us consider the example G = I, and N the normal subgroup of order 4,
The elusses of ¢ which are contained in N are the identity and CI(1 213 4)).
Referring to the character table on p, 17, we see that the irreducible characters
riof Gwith N = ker g 8re ¥y, 13, and ¥, and so under above identification, we
have Irt{G/NY = {210 22 X3}

In order to write the character table for G/N we need to know its con-
jugacy classes. If # ig a class of G, then &, its image in G/N, is a class of G/N.
However, distinet classes of G may have equal images in G/N. This poses no
problem sinceif g, h e G, then 7 and fare conjugate in & = G/N i x(7) == x(R)
for all y elrr(G/N). (The second orthogonality relation, applied to G/N
proves this)

The part of the charagter table of ¢ = I, corresponding to the characters
of G/N is

Group representalions and characters

P PR T

o | 1 1 1 1
3. | -1 1 —1 |
£ 2 0 2 0 -1

for G/N. (In this case G/N = L,.)
The preceding discussion provides a second method for computing [N
from the characier tablc of G. Numely, by using the fagl thal

1G:N| = ¥ {#(1¥12 € lelG/NY}
=Z{X(1)2l2‘€lrr(6) and N 5 ker z}.

"By Corallary 2.7, a group is abelian iff all of its irreducible characters are
linear. 1t follows thal given N <2 G, the character 1able of G delerniines
‘whether or not G/N is abelian. There is no known way to dct:rmme from the
‘table whether or not N i3 abelian, ,

(2 23) GOROLLARY . Let G be a group with commutator subgroup G'. Then

n(a) G e ﬂ{ker &lAe ler(G), A1) = 1}:
(b) |G G'| = the number of lingar characters of G,

« Proof 1§ 4 is a linear character of G, then 4 is a homomorphism
~ into the abelian multiplicative. group of C. It follows that G' < ker 4.
Since G/G' is abelian, all x elrr(G/G) are lincar and (hus Ire{G/G') =
{Aelr{G)| A1) = 1}, (This ‘equality, of course, depends on the identifica-
tion of characters of G/G' with characters of G.) Finally, for any N = G,
we have N = (\{ker ¢|x ¢ Irr(G) and N = ker g} and hence (a) follows.

, The number of linear characters of G is equal (o the tota) numbe. of
irredugible characters of the abelian group G/G* and henee equals |G/G'|.
The proof s now complete, 1§

. ¥he information in Corollary 2,23(b} is useful for finding the set of
.character degrees of a group G, For instance, if G is a nonabelian group-of
"order 27, then |G &' = 9 and G has exactly 11 conjugacy ¢lasses, By the
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preceding, G has exactly nine linear characters and two nonlingar irreducible
characters y and ¢. We have

27 = |Gl = 9 + x(1)* + ()%

Since the only way that 27 — 9 = 18 can be writien as a sum of two squaresis
32 4+ 3%, it follows that x(1) = 3 = (1),

Before leaving the discussion of character tables and factor groups, we
mention an amusing result. The following eould be proved without char-
acters but it is somewhat tricky to do so.

(2.24) ocomoLLary Let geGand N -a G, Then [Cg Ng)| 5 | Calg)l.

Proof From the second orthogonality relation, we have

[ComiNd = ¥ [xiN) = L {Ixg)l*] xElrr(G).NEkﬂ'x} i

xalrr{z/N) ,

< T @l =Gl Mo e s e

xailrpits)
[

We now discuss the connections betweet characters and the center of a
mup' . ! " 1N
(2.25) LEMMAa Let X be an irreducible C-representation of ¢ of degree n.
Suppose A is ann x n matrix over C which commutes with X{(g) for all g £G.
Then A = al for some xeC.

Proof Let M be the n-dimensional row space over C o0 that M ix an
irreducible CLG]-module via m-a = mXE{g) fDr meM and aEC[G] Lﬂt
% M — M be defined by m3 = mA. Then .

FeEggiM) = C
and 3 = @ | for some ¢ € C. The result follows. |

(2.26) DEFINMON  Let x be a character of G, Then Z{x) = {ge Gll x(g)t -
D}
If H & G and ¥ i3 a representation of G, then ita reatriction to H, denoted

X, 13 a representation of . Similarly, the rcsmf:tmn Yir of a charactcr ¥ ol' G
to H 13 a character of H and we can write
Xy = Z nw'fl"
¥ubreli

foi suitable integers n,, Note that if yy € Ire(H), then xE Irr(G) Of course, the
converse of this statement s false, Lo

T

N — - e ——_
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(2.27) LemMa  Let y be acharacter of Gand 161 £ = Z(y) and f = #(1). Let
X be a representation of G which affords y, Then

(1) Z = {geGl¥g) = cf forsome e C};
(by Zisasubgroup of G;

(€) xp= fi for some linear character A of Z;
(d) Z/ker y is cyclic:

(&) Z/ker y = Z{G/ker ).

Furthermore, if x € Irr((7), then
(1)  Z/ker x = Z{G/ker 7).

Proof By Lemma 2,15, X(g) is similar to diag(e,, ..., &), with |g] = 1,
1 =i= fSinceylg) =Y g,itlollows that |x(g)| = f iffall ¢ are equal. Since

* the only matrix similar to &l is &f itself, conclusion (a) follows.

Define the function i1 Z —+ C by X(g) = Ag) for ge Z, 1t follows for

- g, he Z that X{gh) = Ag)A{h)] and hence Z is a subgroup and 4 is s homomor-

phism (linear character) of Z, We have that x(g) = fi{g)for g € Z and (b) and

" (&) have been proved,

Clearly, ker y = ker 4 and thus Z/ker y is isomarphic to the image of A,
4 finite multiplicative subproup of the ficld C. This subgroup is necessarily
cyclic and (d) follows, Also, ker y = ker X and X(Z) € Z(X(G)) and (e) is an
immediate consequence.

Finally, if g{ket x) ¢ Z(G/ker y), then ¥{y) e Z(Z(G)). If x € 1rr(G), then by
Lemma 2.25, we conclude that X(g) = &f for some £ € C. Now (Nfollows (rom

‘(a) and the proof is complete, §

{2.28) corROLLARY Lal G be a group. Then
Z(G) = (V{Z(x)|x e Ire(G)}.

Proof Since (Z(G) ker xlker y = Z{G/ker ), it follows from Lemma
2.27(f) that Z{() = Z{y). Conversely, suppose g & Z{y) for every y & Irr(G).
1t follows that gker(z)) e Z(G/ker ¥) and thus for any x € G, the commutator

[y, x]1 =g~ 'x "gxeker 1.

Thus [g, x] & ( \{ker xlx € Irr{G)} = ) and g commutes with x. Since x € G
was arbitrary, we have g & Z(G). ||

It is apparent from Corollary 2.28 that Z(G) can be located from the
character table of G. It follows that it can be determined from 1he table
whether or not G is nilpotent. This is donc by finding Z{G), then finding the
character tuble of G/Z(G), and iterating this process, The sequence of sub-
groups of G which results is the upper ceniral seéries and & is nilpotent iff this
sequence reaches G,
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Some information aboul character degrees can be ¢btained using
Lemma 2.27(c), We need a lemma first,

(2.29) LEMMA Let [l = (¢ and let g be a character of G, Then

L ad = |G HI [z 2]
with equality ilf (g} = O forall ge G — H,
Pranf We have

LE | Ctato ] = h);lzﬂﬂl’ = Zalxlﬁ.lil = |GIx x]

since [y{g)® =0 for geG — H, Equality thus holds ilf x(g) = ¢ for all
466 — H The result follows, ||

(2.30) coroLLARY Let y e Irr{G). Then x(1)2 = [G: Z(x)}. Equality occurs
ifl ¥ vanishes on G — Zix).

FProof By Lemma 2.27(c), we have y, ., = x{1)4 and thus [z, 2z, :n
¥(1)2[4, 4] = %(1)*. Thercfore

2 =G ZeM Dt 1] = |G Z{y)|
with equality iff y vanishes on G — Z{x). |

We already knew, of course, that x(i)? = |G| for x e Irr(G). We now have
the slight improvement that (12 = |G : Z(G)|. Equality can occur here, and
when it does, Z{x) = Z{G) and y vanishes on & — Z{G). 1t has been con-
jectured that only in 4 solvable group is it possible to have ¢(1)? = |G: Z{G)|
with y € Ire{G). As of this writing, the question is still open. Observe that the
nonabelian groups of order 27 which were discussed earlier give examples
where equality occurs,

(2.31) THEOREM Suppose that y € Irt(G) and that G/Z(y) is abelian. Then
|G : Z{x)| = x(1)*. ‘

Progf Tt sufhices Lo prove that x vanishes on G ~ Z(y). Letge G — Z{x).
Then by Lemma 2.27(1), we bave that thercexists h £ Gwithg ™ Th™ "gh é ker .
However, since G/Z{y) is abelian, we have g~ th™!gh = z & Z(y). Now, if X is
a representation of G which affords y, then X(z) = sf andz o 1sincez ¢ ker &,
W have X(yz) = Xig)X(z) = eX(g) and thus y(g2) = ex(g). However, g2 =
h~tyh and 8o %(g2) = x(g). Since gx(p) = yig)and r ¢ 1, we have ¥(g) = 0 ax
desired. |1

A character ¢ of G is said to be faithful if ker x = ], Every group has a
faithful charagter, namety its rcgular characier sr; but not every group has a
Faithful irreducible character.
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(2.32) Tueorem (a) I ¢ hasa faithful irreducible charactcr, then Z{G} is
eyelic. ‘ ' '

{b) If G is a p-group and Z(G) is cyclic, then G has a [aithful irreducible
characler,

Proof (a) Let x€Trm(G) be faithful, By Lemma 2.27([), Z{G) = Ziy)
and by part (d) of Lhat lemma, Z{y} is cyclic.

(b) Since G is a p-grobp, il follows that il 1 # N <0 G, then N A 2(6)
# 1. Now let Z be the unique subgroup of order p in the cyclic group Z(G),
g0 that Z = N for every nontrivial normal subgroup N of €. Sinoe
(V{ker x[xelrr(G)} = 1, it follows that Z & ker x for some xe Irr(G). We
conclude that ker y = 1 and t.l;c proof is compleie. |

Problem 2.19 provides an cxample to show that the full cofiverse of
Theorem 2.32(8) is not true,

Pm;ﬂems

\ (21) (a) Let ¥ be an irreducible F-representation of G over an arbitrary
\ field. Show (hat ¥, .5 %(g) = 0 unless ¥ is the principal representation,

() Let H & G and g e G be such that all elements of the coset Hg are
conjugate in G. Let x be a C-character of G such that (44, 1541 = 0. Show
that y(g) = 0. '

Hint (b) Cﬁ:ﬁbute the trace of Y., X(hg), where X affords .
1
I the following, all.characters are over C.

T (32) (a) Letz be & charactér of G. Show that ¥ is afforded by a represen-

tation & such that all entries of X(g) for all g € G lie in some field F & C with
|[F1Q| < o, .

(b) Lete = 2", where n= |G|and let x be a character of G, (Note that
xig) e Q[c] for al'g € G by Lemma 2,15) Let ¢ be an automorphism of the
field @[] and define x*: G — C by x"(g) = y(g)y". Show that y* isa character
and that x” e Irr(G) iff ¥ € 1er(G).

(2..3) Lel x be u character of G. Define del z G =+ 2 s follows. Chaosc £
affording y und set

{det x)(g) = det X(g)
Show that det x is 2 uniquely defined linear character of G.

(24) {a) Let G bea nonabelian group of order 8, Show that G has a unique
“nonlinear irreducible character y. Show that x(1) = 2, ¥z) = —2, and
x(x) = 0, where ze G = {1} and xe G — .
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() I ¢ & Dy, show that det 3 # 1.

() WG = Q4. show that det y = 1.

Hint Show that ker(det ) contains all elements of order 4 Use Lemma
2. 15

Note Although Dy and Q; have identical chamctur mblm the map
det; Irr(G) — Irr{G) is not the same for both groups, Lo e
(2.5} (a) Find a real representation of By which aﬂ'ords thetnharacter X Df
Problem 2.4(a). g

(b) Show that this cannot be done forithe group Q, o :
(26) Let 3, ¥ be characters of G. Define y¥:'G — Chy (¥ () = x(g)v,h(g).

(a) If (1) = 1, show that is a character, *“ ORI RS
(b) W il) = 1, show that y € Ir{G) Iff x & IriG).
{¢) Ify = 7 (that is, ¥(g} = X(@)) and x{1) > L, show that x¥ ¢ krr(G).

Lt ,"l B

Nate ln Chapter 4 we will show that xy is always a character.

(27) Let G be abelian and writeidl = ilre(G). L '

{a) Show that & is an abelian -group undﬂr, lhu muluphcatmn “of

Problem 2.6. _ o
‘(b) IfH <G, let H = {AeG|H = ker A}. Show that L is a bijection

from the set of subgroups of G onto the sct.of subgroupa of G.
{€) Show that G = G.
Hints There is a natural ispmorphism of G onto & Use this for (b).
For (¢), us¢ the fundamental theorem of abelian groups, b
(2.8) Let y be a faithful charaeter of G. Show that H = G is abelian iff chry
irreducible constituent of yysis inear.

(29) {a) Let x beacharacterof an abelian group A, Show
S ) = Al g ;

xad W

(b) Let A = G with A.uabelian and IG Al = n. Show that A1) < nfor
atl x & ler(G). .
(2.10) “Suppose G = | Jiu, M, where the 4, are abelian subgroups of ¢ and
A Ay w Uil # ).

(a) Let x € lrr(G). Show'that if x(1) = 1, then (1) = |Gl fn — 1)

(t) If G is nonabelian/tien | 4, < n — Lforeachiandn — t 2 (G2

T B L S

]

Himis For (a), bound"Y, ¢ |x(@)1* using Problem 2.9a). For (b), use '

Problem 2.9(h).

Problems A

(2.11) Let ge G, Show that g is conjugate to g~" in G #f x(g) is real for all

characters y of G,

Py -

' i

Note An element of a group which is conjugate to its inverse is called a
real element, 1f G has any real elements other than 1, then G must necessarily
ave even order.

(212) Let |G| = nand let g & G. Show that x{g) is rational for every char-
acter y of G ill g is conjugate to g™ for every integer m with (m, n) = L.

Hints Let £ be a primitive nth root of 1in € and let E = Q[¢]. Let % be

-the Galois group of E over €. Given (m, n) = 1, show that there exists g € ¥

with x(g™) = y(g)" for all g € G and all characters y. Conversely, for every
o € ¥, there is an m such that this formula holds. [

(213} Let|G'| = p, s prime. Assume that G’ © Z(G). Show that
U =16 Z(G)|
-for every nonlinear y € Ire(G).

(2.14) Let H = G' n Z(G) be cyclic of order 2 and let m be the maximum of
“the orders of the elements of G/H. Assume that » is a prime power and show
that |G| = n*m.

Hints Choose yelrr(G) with H~ker y = 1. Let A =det 7 (as in
\ Problem 2.3). We have yy = y(1)u with u € Irr(H), Using A and y, show that
' 1) = n. Finish the proof using Problem 2.9(b).

Nate  The assumption on n can be removed using Corollary 5.4,

(2.15)  Let x € Irr(G) be faithful and suppose I = & and gy € Irr(H). Show
that no.x 936G (n) [0 a5L = Corga D6-73e t g ¢ 2067,
i

t+ v
CelH) = Z(G).

(2 16) Let H 5 G and let y be a (possibly reducible) character of G which
vanishes on ¢ — H. Assume cither that i = 1 or that & is abelian, Show
that |G; H| divides y(1).

Hirt  Let A be an irreducible constituent of x,. Under gither hypothesis,
find 4 € lrt(G) with py = A Compute (¥, 4] and conclude (G : H 1} [xy, A).

Note A natural common generalization of the situations # = 1 and &
is abelian is H 5 Z(G). 1s the result true under the hypothesis H o Z(G)7

,,:,3 (217} Let A < G be abelinn and assume there exists y € [rr{G) with x(1) =
¢ |G: A]. Show that G has a nontrivial normal abelian subgroup.

Hint  Show that y vanishes on G — A.
[T C,-‘."fn,.*r_ s - }(L & T e (f;- ]
?"U o —y (_’C,(r’,,)_-c’('g.);?_??

) G & taledinmn &

X oo Lo

fﬁd!f.r&r ( !:;' )

e = o
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(2.18) Let 4 -0 G and suppose A = Cgla) for every a # 1, a5 4. Assume

further that G/A is abelian. Show that ¢ has cxactly (| A] — 1)/|G: 4|

nonlinear irreducible characters and that these all have degrec equal to
|G: Al and vanishon G — 4.

Hints  Let k = Trr{G). By counting classcs, show that
kL1 + (4] = )G Al + (Gl — (AlViAl.
Using characters, show that
kz |G Al +(GI=1G:A/1G: AP,
Use Prablem 2.9(h).

Note The group G of Problem 2,18 is a special case of a Frobenius
group, The character theory of such groups will be discussed more {ully later.
Observe that although the hypotheses of 2.18 are very speciul, this sttuation
does arise frequently. Some examples arc A, and nonabelian groups of order
pa where p and g are primes with p|{g = 1),

(2191 Let E = {x,.xy, x1, X, be an elcmentary abelian group of order 16.
Lel P = > be eyelic of order 3. Let P act on E by

x|’=x=. xz"'=x,x2. x;y'-—-x‘, x.;’zx;,x.;.

Let G be the semidireet product E x P, Show that Z{G) = | but that G does
not have a faithful irreducible character.

Hint The smallest possible degres for a failhful character of £ is 4,

(2.20) Let ¥ and ) be irreducible C-representations of G and define the
funetions a,{g) and b;{y) by X(g) = (a,/(9)) and Dig) = (b,{g)). Write

Sllqﬂ = Z dﬂq(g)hﬁl(g_ l)‘
e
Show that §,.., = 0if X and ) are not similar, If ¥ = ¥, show that §,,,, = 0
unless p = sand ¢ = r in which case §,.,, = |G|/deg ¥.

Hint Let P, =¥, X(@)E, D(g™") where £, is the (deg ¥) % (deg D)
matrix with all entrics zero except the (g, #) entry whieh equals one, Note that
%P, = P, 9. Usc Schur’s lemmy, For the last statement usc Lemma 2.25
and compute ().

Note ‘The results of this problem are called the Schur relations, They
can be used 1o give ancther proof of the orthogonality relations.

R

' 3 Characters and integrality

. One of the most celebrated applications of character theory to pure group
" theory is Burnside's theorem which asserts that a group with order divisible
. by ut most two primes jg solvable, The proof of this theorem (and much of the
rest of character theory) depends on properties of algebraic integers, We begin
by establishing some of the most basic of these propertics, K

(3.)) pemMITION An algebraic integer is n complex number which is a root
of & polynomial of the form

X g " -+ g,
whereageZfor05ign -1,

(3.2) remma The rational algebraic integers are precisely the elements
of Z,

. Proof 1fagZ, then qis a raot of the polynomial x — a and Lhus is an
i . algebraic integer, Conversely, let r/s be an algebraic integer withr, s 6 Z, We
_may assume that (r, ) = |, We have

(/5 + Onurfr/sY~' 4+ g = 0,
". Now multiply by «" and rearrange terms to obtain
E T (Rl 3 WY i AR XY !

. We conclude that s|r". However, since (r,5) = 1, this yiclds s = 41 and
-'rfs € Z a5 desired, |}
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Frequently, the word “integer™ is used to mean an algebraic integer, efnd
the elements of Z are referred to as “rational integers,” One of the most im-
portant propertics of the set of algebraic integers is that it is a ring. In qt!xcr
words, sums and products of integers are integers. This fact secma surprising
from Lhe definition, but it is not hard to prove indirectly. This we proceed
to do.

(3.3) Lemma Lot X = [, ..., %)} be a finite set of algebraic integers.
Then there exists a ring § satisfying ne 7

P ,".' it

(B) Z o S o c_- v e e e e ke mn
b X=8 ‘

{¢c) there exists a finite subset, ¥ of § such that every element of 5 is
Z-linear combination of elements of ¥, ' :

A A

. g .
(WL SO P -

T

[

Proof The integer  satisfics an equation of the form

ot = Sl !

where f; is a polynomial of degree n, — | with coefficients in Z. Let ¥ =
{0 S r S ny— 1} and It § be Iihc set of al Z_-linc{ir Q?lein-
ations of elements of Y. S L

Using the equation «} = f{a,), any power of 2, may be wntten as a Z-
linear combination'of 1, &,, &7, .. ., o Tt follows from this that the product
of any two elements of Y fies in § and henice $'is & ring. All of the properties
claimed for § arc now clear. " || L

Condition {c) of the above lemma may be paraphrased by saying that #x‘
finitely generated as a Z-module. We now prove a strong converse to Lemma

T
(3.4) THEOREM Let SbearingwithZ € § & C. Supposc that‘_S iia finitely
generated as a Z-module. Then every element of § is an algebraic integer.
' : I it [
Proof LetseSandlet Y = {y,, ..., ¥} & § have the property that
every element of § is a Z-linear combination of elements of Y. We then have

v
. Y

= Tag 0

for all i, with a;€Z. Let A be the matrix (a,) and let ¢ 'be the column,
col(yy, - ..,y Then

. ‘l'c..‘llh

Av = s

and thus s is a root of the polynomial . _
Sf(x) = det(xf — A). e W

It follows that » is an algebraic integer and the proof is complete. 1

a
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(3.5) coroLLARY Sums and products of algebraic integers are algebraic
integers.

Proof Let o and B be algebraic mlegers. By Lemma 3.3, there exists a
ting § with Z © § = € such that o, # e 3 and 5 is finiicly generated as a
Z-modulc. Since « + # and zf € §, it follows from Theorem 3.4 that they are
algebraic integers, |

T ‘(3;6') COROLLARY Let y be a character of a group G, Then x(g) is an al-
. gebraic integer for all g € G.

-Proof By Lemma 2.15, we know that x(g) = & + .- + &y, where the
&, are roots of a polynomial of the form x" — 1, and therefore are algebraic
integers. The result now follows, | -

: . We can now see the reason [or the assertion made in Chapter 2 that ali of

the entries in the character table of the symmetric group T, licin 2. If g e E,
.and m is refatively prime to o(g), then g™ and g have identical cycle structyres
and thereforc these clements are conjugate in E,,. It follows from Problem 2.12
.that x(g) is rational for all y e Irn(%). Since x(y} 15 an algebraic integer,
Lemma 3.2 yields that y{g) € Z as claimed.

L

Let &7 be a group and y & Irr((7), We wish to define a function o depending
: »on ¥, from the center of the group algebra C[G] into C. Let X be any re-
presentation which affords y. If ; ¢ Z{C{GT), then we may conclude from
Lemma 2.25 that X(z) = &/ for some reC, Observe that since the only
matrix similar to &f is &/ itself, the complex number & does not depend on the
choice of the particular representation affording y. We now define w by
setting exz) = &. [n other words

e X(2) = oz

for all ze Z{C[G]). We shall often write & = w, in order to emphasize the
dependence of w on 1.

Since X is an algebra homomarphism, it 1S casy to see that w is also a
homomorphism, In particular, @ is C-linear and hence to determine o on
Z{C[GY), it suffices to caloulate its values on a basis. Such a basis s given by
the class sums for the conjugacy classes of G. Let 2 be a class with sum
K e C[G] and let g € ¥, Calculation of traces in the equation X(K) = aeXK)f
yields
: X(AK) = Ky = 3 x(x) = | |x(g)

X X
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and thus
_ gl
Al
Note that it follows from this formtula that the functions e, are detcrmined by
the character tuble of G,

(3.7) rTHeomEM Let yoIer{G) and let K be a class sum in C[G]. Then
y(K) is un algebrajc integer,

wiK)

Proof Lel o, ..., A be the glasses of G, with corresponding class
sums K,,...,K,. By Theorem 2.4, we have K,K,= ¥, 0,,K, where
a,, € Z.5inee @ = e, is an algebra homomorphism from ZIC[G]) wo €, we
have

("J(Kl)ﬂ)(Kj} = z auu'w{xv)"

Let § be (he set of all Z-lincar combinations of the eXK)). It follows that § is
closed under multiplication. Since e{1) = 1, it follows that Z < 8§ = € and
Theorem 3.4 applies. All of the clements of § arc therefore aigebraic integers
and the proof is complete. §  §

Tt should be emphasized that the fact that x(g)]Cl(g)[/x(1) is an algebrai¢

integer does not follow from the fact that x(g) is integral since division of

an integer by an integer does not usnally result in an integer.
We proceed now toward Burnside’s solvability theorem. The essence of
the arpument is contajned in the next tesult,

(3.8) THEOREM (Burnside) Let x ¢ Irr(G) and et X be a conjugacy class
of G with g e X", Bupposc that (1), |1} = 1. Then either g € Z{y) or else
xig) = 0,

Proof We know that y(g)|.#|/x(1} is an algebraic integer. Since (x(1),

{ [} = 1, wemay choosc rational integers u and v zo that uy(1) + ¢| | = |,

Thus

xg)(1 = wdl)) - Aa)| X
%) b

is an algebraic integer, Since uy(g) is also integral, it follows that e = yg)/x(1)
15 an algebraic integer. Supposc that g¢ Z(x), so that 1x(9)] < x(1) and
forf < 1. : .
Now let # = oly) and et E be the splitting field for the polynomial x* = 1
over 0 in € so that a € E. Let @ be the Galois group of E over Q. Since y(g)isa
sum of 3(1) roats of unity, so is y(g)° foreach o € 4.1t follows that | z(g)"] = (1)

Charactera and integraliry x

and |&"| < | for ¢ € % We have then

[T
oce®

For each 7 & 4, a” satisfigs the sume rational polynomials that o satisfies
and hence is integral, Thetefore ff = [ a” is an algebraic integer. However, f
i§ ¢learly fixed by all ¢ €% and therefore f € @ by clementary Galois theory,
Itfollows from Lemma 3.2 that # & 2. Singe || < 1, we have § = 0and hence
a" = 0 for some . Therefore 0 = a = x{g)/xf1) and xigh = 0. The proof is
compleie, |l

=1,

(3.9) THEOREM Let €7 be a nonabelian simple group. Then {1} is the only
conjugacy class of G which has prime power size,

Proof Suppose geG, |Clighl =~ p* and g # L. Let € Ien(G), x# lg.
Then ker ¢ = 1 sinec G is simple and Z{y) = Z{G) = | since G is nonabelian.
Thus il pfy(1), then xig) = 0 by Theorem 3.8, Now

O=plg)= T ximlpd=!+ %

xelrria) rabre(tiy; plrily

X1 )xig)
We have —1 = pa, \;vhe.re_
S |
e z?m

the sum being taken over i € Irr{G) where pl3(1). Tt follows that & = ] /pis
an algebraic integer and this violates Lemma 3.2, ||

(3.10) THEOREM ‘Let |G| = p*g®, where p and g are primes. Then G is
golvable, ‘

]

Proof Use induction on |G}, We may assume |G| > 1 and choose &

‘maximal proper normal subgroup N, If N > [, then by the inductive hy-

pothesis, N and G/N are solvable end thus G is solvable and the result follows.
;  Suppose then N« 1,30 that G is simple, Let P 5 1 be a Sylow subgroup
of G. We may: choose ge Z(P),.¢ % 1, Then |Clig)| = |G: C(g)] divides
{G: P|, which is a prime power. It now follows from Theorem 3.9 that the
simple group G is abelian and the proofl is complete, |

We now obtainsome strong results about the degrees of the irreducible
chatacters of 2 group G. The fact is that 5(1)|}G: Z(y)| for % & Ter(G), We shall

~ first prove the weaker statement that the irreducible character degrees divide

the group order. This proof s 'much less complicated and serves to motivate
the ﬂl’Dﬂgﬂr PrQDr. R v
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(3.11) THEomem Let x € Irn{G). Then dD}IGL: .00 = . . o, .
Proof From the first orthogonality relation we have
l . =h-\ ,l; ,
1GY = 3 rahig™")
mneG

We wish to rewrite this cquation in terms of @, Let 27, X', .. ., ¥ bethe
classes of G, with class sums K, and representative elements g, We have then
' gt o .- . . -

k . A . [P R |
161 = T 1011xo0ne"") = oK " 10
. =1 e ' xR R TR R Y A
where @ = w,, This yields R
; A S A T
1GI/x(1) = E%ﬁ;;?%(g:i ‘{)'r-“l RN A TR ,ll‘t‘!n‘;@f k

which is an algebraic intcger. Since jG|/x(1) is rational, it lir.:s in Z and the

result follows. | ' o ”‘ i _
CRRHIE Pt T o

(312) THeOReM Let yelen(G). Then f(D|IGLZOOL (oo v o0 i

Progf Since x may be viewed as a character of Gfker y, it is o loss to
assumne that Ker 7 = L. Under this assumption, Z{G) = Z(y).. .

For x, ye G, define x = y if there exists ze Z = "Z(G) such that x 1s
conjugate to yz. It is easy 1o check that m is an equivalence relation and thus
partitions G into equivalence classes. We claim that | x(x)| is constant as x runs:
aver one of these classes. To see this, observe that xz = x(1)4, where 1 is a
faithful linear character of Z, and that y{yz) = A2)x{y) for z € Z and ye G.‘ I
x = y,then x* = yz for some z and y(x) = i(z)x(y). Since H(z)[ = 1, the c!allm
follows,

Let 6, %2, -
have then

., €. be those (= )-classes on which ¥ does not vanish. We

1G] = T xa)® = L 1€l =00

I =1 U .

where the g, are representatives for the . We claim rl'iﬂ‘! - |Cligl | Z1,
Clearly, every x € €, is of the form yz where y € Clig)) and,z-‘e Z. It suffices to
show that all of these elements yz are distinct. Suppose’ that y,z, = y; z,
vy, ¥ €Clg), and z,, z; & Z. Then EAREEICNI AR ST o

yMz,) = xb'z)l(;:.) i

and x(y,) = zv2) = xg) # 0. Thus Yz,) = iz;) arEd hence z, = z, since A
i faithful on Z. Thus y, = y; and the claim is established.
We have now

1G) = T 1€, dg)i? = 2 1CUgd g dxg NZ|
=¥ ek KJxlg:™ ' NZY,.

[N K
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where K, = ¥ . cyppX 2nd @ = w,. It follows that

[G:Z(/xl) = 3 (K™ '\
im1
an algebraic integer which is a rational number. The result now follows. ||

- As a combined application of Theorems 3.8 and 3.12, we prove the
following.

. (3.13) tueomem Let G have a faithful irreducible character of degree p*,
* where p is & prime and suppose that a Sylow p-subgroup of & is abelian, Then
; %18 the exact power of p dividing |G Z{G)].

“!  Proaf Let y be the given faithful character of G. By Theorem 3.12,
P = y(1)divides |G : Z(G)|.

Let P e Syl (@) and let x € P. Thus P = C(x) and hence (x(1), [Clix)[) = 1,
By Theotem 1.8, y(x) = 0 if x ¢ Z(x) = Z{G). Let Z = P ~ Z{G) 50 that x
vanishes on P — Z. Now by Problem 2.16, we conclude that {P: Z||p"
Since P/Z = PZ(GYZ{G), which is a Sylow subgroup of G/Z(G), the result
¥ follows. |

.+ The above result is typical of a number of theorems about “complex
litear groups,” that is, groups of nonsingular matrices over C. In these
* theorems, one is given the degree n of a finite linear group € and the objcet is
. to controt the structure of G in terms of #, often under certain additional

assumptions such as the irreducibility of G. fn Theorem 3,13 we are given a
" group having a faithful representation of known degree, and this is obviously
equivalent to being given a lincar group of that degree,

If 7 i3 a4 complex lincar group, let § be the subgroup consisting of the

: elements of G which are scalar satrices (that is, of the form ¢/). Observe that if
. Gis irreducible, then § = Z(G). The group GIS is called the collineation group
_ associated with G. Frequently, the object of a theorem about lincar groups of
given degree is to obtain information about the associated collineation group.

Theorem 3.13 is of this nature,
' The reason for this situation may be seen from the following. Let G bea

linear group of degree n and let € be a group of 1 x n scalar matrices. Let
" (™ = GCand let $* be the sealar subgroup of G*, The linear group G* may be
. much larger than & but G/§ = G*/8*

We have already seen several situations in which a character value is
forced 1o be zero, We shall now prove that every nonlinear irreducible
" character vanishes somewhere. We begin with a preliminary result,
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(3.i4) LeEmmA  Let G be a ¢yciic group and let 3 be a (possibly reducible)
character of G. Let § = {ge GG = (g} and assume that y(s) % 0 for all
5€ 8, Then

Tlxls)? = 181,
se¥

Proof Let n = |G| and let £ be the splitting field for the polynomial
x" — 1 over 3 in C. Let & be the Galois group of Eover 0. Ifr e @ and cisan
uth root of 1, than ¢* = 5™ for some me Z, (m n) = 1. Now x(s) = g +
+ £y where 27 = | and hence x(s)” = &7 + - + 2™ = f(s™).

The group % is abelian and the restriction ol'complex conjugation to £ is
an element of &, It follows that & = () for all ac E and e ®, and thus
| )? = afa® = a®&" = {[a|". Thr..rcfuru(lx(.s)l’)" = lx(s”‘)i’.whcrt:{m. n) =l
and m depends only on s,

Observe that if s € ¥ and (m, n} = [, then s™ € 8. Also, the map x - x™ s
one-tomonc on G and therefore effects a permulation of §, Tt foliaws that

[Tses | 2(:)|? is invariant under % and hence is rational. Since it is an algebraic

integer, it must lic in Z, and since y does not vanish on §, we have

[T = 1.

s

MNow we use the fagt that for any positive real numbers vy, ry, ..., 1y, wWe
have

%Zn = ([T r)

and we conclude (hat
1
5l Zslx(e-')l’ 2z
and the prool is complete. |l

(3.15) THEOREM (Burnside) Let g€ Irt(G) with x{1) > 1. Then x(g) = 0
for some g ¢ G.

Proof Partition G into equivalence classes by calling two elements of G
equivalent if they generate the same eyclic subgroup of G, Assume x(y) # 0
for all g g . Then by Lemma .14, we have

T = 18]

ac¥

for cvery equivalence clasa 5, Sum this inequality over all equivalence clasm
of nonidentity elemcnts to obtain

Y lxda)? = |G| -1
Iy
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and thuy
|G = EIX(Q)I"‘ 2|6 — 1+ 1)

FEY

This forces x(1} = | which contradicts the hypothesis, |

The next topie we shall discuss docs not, strictly speaking, depend on
algcbraic integers. Nevertheless it ecoms appropriate 1o include it here,

Lct G and H be finite groupe and suppose C[G] & C[H), where this is a
C-algebra isomorphism. What can we infer about the relationship between G
and A7 Clearly, |G| = | H| and there exists a degree-preserving one-to-one
correspondence between Irr(G) and Irr{H). We cannot conclude, however,
that,G and H are lwmorphn: or even thal they have identical character tablez.
Indeed, if G is abelian, it follows from the results of Chapter | that €[] is the
direct sum of | G| copics of €. Thus if G and H are abelian and |G| = | H/, then
C[G] & CLH].

The situation becomes more interesting if we make the weaker assump-
tion that Z[G] = Z[H], where Z[C) represents the group ring of § over Z
and may be identified with the ring of Z-linear combinations of elemenis
of G in' C[G]. Tt is conjectured that if Z[G] = Z[H] for fnite ¢ and H,
then G = H. The best result in this dirsction that has been proved as of
this writing is due to A, Whitcomb, [t asserts thal if G is metabclian and
Z[G] = Z[H),then G & H.

i Z[G] = Z[H], then it ig clear that we may vicw H as a muluplu.atwc
subgroup of Z[G] = €[] and that H spans C[G] over €. In particular,
|H| z |G| and hence by symmetry | 4| = || and H is a basis for C[G].

(3.16) peanmon Let H S C[G] besuchthat Hisa multiplica!ive group
which is a basis for C[G). Suppose that cvery element of H is a Z-linear
combination of elememn of G. Thcn H is an Integral group basis in €[G),

«f H iz an integral group bmns in C[G], we identify C{G] with C[H] inthe
nntural manner. An important result used in studying the mmorphmm
problem is due to G. Glauberman, Maost of the rest of this chapter is devoted
to its proof and some consequences, We use the notation ZX¥" (o denote the
sum of the ¢lements of the mmugacy class ¥, computed in the group
l]ﬂebra; RINPRIIE PR [ <7 SRR f

(3 17) THEOREM - (G!mibé;w'ih) Lat H be ap integral group basis in

C[G] ‘Then there exists a one-to-one correspondence between the sete ~f
conjugacy classes of H-and G such that if £ corresponds to 7, then | ] =
[ and Z# = ot - S
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We need a lemma.

(3.18) LemMa  Let o, e Z(C[G]) and view the characters of G as being
defined on all of C[G]. Define

@k = T rawd.

ZoWHG)

b

Then

(a) <eyoy + oy, B = e ay, 5 + coeg, 2
b {B.ay={a B

{c) (K,,Kp:ﬁi“#j;

@ <K K= |Gllat:

where the ¥, are the clagses of G and K, = Z47, Lo

Proof Statements (a) and (b) are immediate since charhétm_"l are linear
functions, To prove (c) and (d), let x € ¥, and y € 2, Then I(K ] ,_l o hx(x)
and x(K ) = | ,|x(y). The result is now immediate from the second orth
ogonality relation.  § i e

PR TR BT

Proof of Theorem 3.17 ldemify C(H] \I}it.h .*C[G] ‘m.'_ti’mt: k -_"

dim(Z{C[G]) is the common number of classes of H and G. Let &), &5,
.evy &, be the classes of H and &7, A",, ..., .2, the classes of G, Write K
= ¥, and L, = L%, Since the K, are a basis for Z{C[C]), we may write

L= ECUKJ' ’
7 .

Since L, is a Z-linear combination of clements of G, we conclude that all
cyel

The form ¢, ) defined in Lemma 3.18 depends only on the algebra
C{G] = C[H] and not on the particular groups G and H. Thiz is because the
irreducible characters, defined on C[G], are simply the traces of the irrc-
ducible representatipns of the algebra, We therefore have :

u) 1124 = <L L = T €761

Sum (1) over i to oblain

@ P =161 5. (5 @)1

v i 1

it follows that for each j, there exists i with ¢;; % 0. Thus
|H| = |G|, Equation (2) yiclds . .

|G} = ?(;(Cu):)lle = );|le - |G

Since the L, span Z{C[G]) but no proper subset of (K t}}sf\u}\: thizla sg:m;.
ol 2 1. Since,
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. and thus we have cquality and Y, (c,)* = 1 for all j, Therefore, for cach j
there is a unique i with ¢;; # 0. This defines a map{"} — {.%#,}. Since for
. each i there exists j with ¢;; # 0, this map is onto and hence is one-lo-ong,
Because all nonzero ¢, = =+ 1, we have L, = 1 K, when ¢, and | Corre-
spotid. Finally, Equation (1) yields | H |} 5] = |Gl )| and thus | 5| = |7
and the proof is complete, |

(3.19) coroLLarY Let H be an integral group basis in C[G]. Then there
exists an integral group basis H* in C[G] such that H = 5* and the class
sums of H* equal the class sums of G.

Proof Let § be the linear extension of the principal character of G to
C[G]. (This is usually called the augmentation map.) Note that (5 a,g) =
¥ a,2nd § is an algebra homomorphism C[G] — C.

Ifhe H, then &(h) € Z and since Hid(h~!) = 8(1) = 1, wehave d(h) = +1.

Lat h* = 3iDhe C[G]) for he H and note that §(h*) = &k = 1, Pt
H* m {h*|he H} and note that H* j5 a group and the map h— A* is an
isomorphism. Clearty, H* is an integral group basis in C[G].

Let 2 'be a clasg of H* 30 that Z# = +E.¥ for some class # of G by
Theorem 3.17. Since 3(h*) = 1 for h* € H*, we have §(E#) = |.#|. Since
(LX) = |af"|, the ambiguous sign above must be positive and the proof is
complete. J

(3.20) coroLLaRY Let H be an integral group basis in C[G]. Then G and
H have identical character tables.

Proof By Corollary 1,19, we may assume that there exists a one-to-one
correspondence between the classes of H and the classes of G such that if %
and A" correspond, then Z.% = I and | .%#| = |.¥|. Let ¥ be the tracc of
an irreducible representation of C[H] = C[G]. Let & and ¥ correspond
and let h€ 2 and ge ", It suffices to show that y(h) = x(g). However

o W] = HTE) = Y(ZA) = xig)A'|

and since | #°| = | A"|, the resuit follows. |
' We have seen that if Z[G] s Z{H], then C[G] has an integral group
_ basis isomorphic to 4, The converse is trug but is fess obvious.
(3.21) THEOREM Let H be an ingegral group basis in C[G]. Then Z[G] =
[H]in C[G].

i Proof Here, Z[H)denotes the ring of Z-linear combinations of elements
of H. (It is isomorphic to the abstract integral group ring.) Since H < 2[G),
We have Z{H] < Z[G]. We show that G < Z[H].

Write G = {g,|1 = {5 n}and H = {h|] 5 i < n},wheren = |G| = |H|.
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We have h, = ¥ a9, for a; e Z. We shall show that the matrix 4 = (a;))
hag an inverse with entries in £ and this will complete the proal. Write ™! =
S byg " amd B o= (b)), an integer mateix,

Lct p be the charagter of the regular representation of C[G] = C[M] o
that plh,f," 1) = nd,;. Now express i ;™' as alinear combination of elements
of G and observe that 1he cocflicient of 1 is ¥, a,b,). [t follows that

Pl(ﬁij = ﬂ(h]hj_ I} =n 2 ﬂ‘,b,_'u

and thus AB = /, \hc identity matrix. The result now follows, |}

Prihlems

(3.1) Let o be an alpebraic integer and suppose that f(x) = O, where

fixbe QFx] 15 irredugible and monije, Show thal f(x) e Z[x].

(3.2) Let@beagroupgc Goand kel x beacharacter of G. Suppose |1(g)] = 1.
Show that y(g) is a root of unity.

Hint Let £ = C be the splitting ficld for x" = { over Q. For integral
ac E, with |a| = 1, let f, € Z[x]] be the polynomial of Problem 3.1, Show that
only finitely many polynomials can arise this way. Do this by bounding the
degree and the coefficients of f,.

{3.3) Show that no simple group can have an irreduciblie character of
dupres 2.

Hint  Problem 2.3 is relevant,

{34) Let G be 4 simple group and suppose x € ler(G) with (1) = p, 1 prime,
Show that a Sylow p-subgroup of G har order p,

Hint  If the Sylow p-subgroup P is nonabelian, then Z{P) & Z{x).

(3.5) Suppose A £ @ is abelian and |G:A| Is a prime power. Show that
G =G,

(36) Let G bea p-group and suppose x € Irr(G). Show that (! )’||G: Zinl.
{3.7) Let yeler(G) be faithful and suppose 1) = p* for some prime p.
Let £ & Syl (G) and supposc that C(P) & F. Show that ¢’ < G. .

Hint Let Q0 € C,(P) bea psubgroup, @ # 1, Show that 0 ~ Z(x) w1
angd consider det g, - ,

(3.8) Let x be a (possibly reducible) character of G which is constant on
G ~ {1}. Show that y = alg + bps, where g, b6 2 and p is the regular
charactet of G, Show that if G # ker g, then x(1) = |G| — 1.
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Hint  First show that y = alg « bp,; lor some a, e C,

(39 Let # . ..., ¥, be the conjugacy classes of a group G and let
Ky, ...\ K, be the corresponding class sums. Choose representulives g, € 27
and let a,, be the integers defined by

K{ KJ L z ﬂ”‘Kw

Show that . o
| Ty = AT 5 Hodrie)ia)
» Gl e

Hint  Use the w, and the second orthogonality relation.

Notes  This formula shows that Lhe a,;, can be calculated from the char-
acter lable. Therelore, the characier table of G can be used Lo answer questions
suchas: Is an element g € ", the product of an element of ¥, with one 6[‘1’]?

The fact that the a;,, ar¢ nonnegative rational integers imposes another
necessary condition on an array of complex numbers thal the array be a
character table for some group.

Since the K, are a baasis for Z(C[G]), it follows that the character table of
G'determines Z(C[G7) up to algebra isomorphism,

(3.10) Wewrite [x, ¥] for the commutator x~ 'y~ "xy of x and yin a group G.
(a} Let g & and fix x € . Show thal g is conjugate to [x; v] for some

yeGiff . L
, 2x)*xig)
' zelrr(d) I“)
{b} Show that g = [x, ¥] for some x, ys G iff

xly)

xaleeily x“)

Note Wealready knew that the character 1able of a group determines the

commutator subgroup. Problem 3,10 says more than thig, since the com-
mutator subgroup usdally does not consist entirely of commutators,

# 0.

(3.11) Lat g€ G be a commutator, Suppose me Z, (m, o{g)) = 1. Show that
g ira commutator.

Hint  See the hint to Problem 2.12,

(3.12) Let xeIre(G) and g, he G, Show

a)elh) = % T dght)

s 7
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Hint Let ¥ afford y and let K, and K be the class sums in C[G] which

contain g and h. Use the fact that X(KJE(K)) = X(K, K.

(3.13) (Brauer) Let K,, ..., K, be the class sums in C[G). Suppose thnrﬁ r

exists ¢ e Csuch that ¥ K, = ¢[| K,. Show G = G'. L

Himt Let 1z # yeIre(G). Show that w (K,) = 0 for some i,

(3.14) (Brayer) In the notation of the previous problem, show that if
G = ¢, then there exists ¢ € b such that y K, = e[1K:.

Hint To show that two elements o, b & Z{CLGY) are equal, it suffices to
prove that w {a) = ew,(b) for all x eTrr(G), : :

R !

(3.15) (Thompson) Let E be a Galois extension of Q with Galois group #. .

Leét a & E be an algebraic integer with the property that a” j'l m'ql hngij:ooaitiv::
for all o € @. A theorem of Sicgel (4nn. of Math. 46 (lNg)p%OB,JT;Iimrem nn
asserts that ifa # 1, then . T R

1 : A
m,&uﬂai. ' . St [

Use this to show that if ¥ € Irr(G) then y(x) is cither 210018 root of unity for,
more than a third of the elements x € G.

Hints Mimic the proof of Theorem 3.15, Use Problem 3.2.

(3.16) (Burnside) Let |G| be odd and suppose x €1rr(¢) is not principal.
Show that x # 7.

Hint Usingorthogonality, show that if y # Igand x = I, then ) = 2a
for some algebraic integer a.

’ '
'

(3.17) (Burnside) Let |G| be odd and suppose that G has exactly k con-
jugacy classes. Show that

|G| = k mod 16,

" Himt 1fnisan odd integer, then n? = L mod 8, . v ay

Jaeonoe et

4 Products of characters

Let y and ¥ be characters of . The fact that x + ¢ is a character is a
triviality, We may define a pew class function yi on G by sctting (3 (g) =
rig(g). 1t is truc but somewhat less trivial chat g is a character, [If either
or ¥ is linear, this is Problem 2.6{a).]

Let V and W be C[G]-modules, We shall construct a new C{Gl-module
V & W called the rensor product of ¥V and W. Choose bases {vy, ..., v,} for

.V oand {w,,...,w,} for W, Let V¥ @ W be the C-space spanned by the mn
* symbols v, @ w;. [More precisely, V @ W is the set of formal sums of the

form ¥ a,{v; @ w)). with a;€C] If ve V and we W, suppose v = ) o,
and w = ) bw, Wedefine
r@w= 3 ablo,@wleV @W.

Mote that not every element of ¥ @ W has the form v @ w for ve V¥ and
w e W (except in the special case that norm = 1),
We define an action of G on ¥V @ W by setting

(n, @wilg =g B wyg

and extending this by linearity to all of ¥ @ W, The reader shonld check that
ifve V,we W,and ge G, then (v ® wig = vg & wy. It follows that (xg,)y; =

CxlggforxeV @ Wand g, e G.

Next we give ¥ @ W the structure of a C[G]-module by extending the
action of G by linearity in CIG]. In other words, for x€ ¥V & W we define

XY a,9) = ¥ afxg).
It is routine to check that this really makes ¥ @ W into a C[G]-module.

47
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A Tew words of caution are in arder here. Il e & CTG, it is not necessarily
truc that (v, @ w)x = a0 @ wye, Tuis for this reason that we lirst defined the
action of G on ¥ ¢ W and then extended it Lo C[G]. T 4 is an arbitrary
algebra with modules V and W, it is not generally possible Lo define the
structure of an d-module on ¥V @ W,

We have not yet shown that the C[GJ-modulc ¥ & W ig determined (up
o isomorphism) by ¥ and W, independently of the choice of bases. This is,
in (act, not hard to prove for group algebras over any field, We shall leave the
gencral situation to the problems.

(4.1) minorim  Let C[G]-modules ¥ and W afford characters x and o,
respectively. Choose bases in V and W and construct V & W.Then V @ W
affords the character yi and is independent of the choice of bases.

Proof Let foib1 = = n} and {w,[1 = r < m} be bases for ¥ and W,
respectively, and let g ¢ G, Writc

H
wg= Yauy, and  wg= Zb,., »
=5

with Hu. b" & Cn
Then x(g) = 7=, ayandydg) = Y7, b,,. Let 3 be the character afforded
by ¥V & W. Sincc
(L @wig = E aijbr.\{uj @ “J:)v
)
.9(;}] = izﬂnbn = ;an E by = X{EIN’(Q)

We now know that the character afforded by ¥ @ W is independent of
the choice of bases and the result foliows by Corollary 2.9, ||

we have

(4.2) coroLLAaRY Products of characters are charocters,

Corollary 4.2 provides another necessary condition for un array of com-
plex numbers 1o be a churacter table, It asserts thal.the inner product of any
row with the product of any two rows is & nonnegative integer. In this
connection, the following formula is relevant:

¥ 12) = = T x(@iezae) = [x), ¥

IGI

Tn general, products of irreducible characters are not irreducible, For
instance, if ¥ € Irr(G), then 7 & Irr(G); nevertheless, 1,; is a constituent of x7
since '

Dxd Lol = [roxla) = L

 may write

Products of characters 419

(4.3) mmorem  (Aurnside— Brauer) Let ¥ be a faithful character of G and
supposc ¥(g) takes on exactly m different values for g € G, Then every ¢ € [rr(G)
is b constilucnt of one of the characters () for 0 < j < m.

Note In Lhe gpecial case y == p, the regular character of G, we have
m = 2, The theorem is already known 10 be true in this casc.

Proof Letw,, a3,,..,a, be thc distinct values taken on by y. Let
G {ge Glg) = )

Assum_iil = x(1) so that G, = ket x = {I}. Fix € Irr(G) and let f, =
Eu(;. g(y). Now for j = 0, we have

91 = o S8,

If  is not a constituent of ¥/ for any j, 0 < j < m, we have
;(a()lﬂ,=0. Of.j{m.

The determinant of this system of m equations in the m “unknowns” B, is the
so-caiied " Vandermonde determinant” and is equal to + [ |« o — &) # 0.
It follows that all fi; = 0.

On the other hand, f, = ¢(1) # 0 and this contradiction proves the
theorem. | . ) '

. LetyeG and let n.> 0 be an mteger We ask how many nth roots ¢ has
in G Lat e
C b= (eI = g1
Observe that if (|G|, n) = 1, we may choose an integer m such that am = 1
mod| G|, Thus if h* = k", then b = A*™ = k™ = k and we have 5,(g) < 1 for
all g & G. Since the map k= k" is one-to-one on G, it must be onto and it
follows that §,(g).= 1 forallgs G.

The situation bemmes considerably more jnteresting if we drop the
assumption that n i pﬂmu o |GI Since 9, is clearly a class function on G, we

cr

.ll:'l| i - S, i Z v

el G)

where vi{x)isa umquely determined complex number.

@4 oA’ ) = (1/1G) L.o xg").
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Proof By the orthogonality relations we have

Vi) = [0 2] = o T SaW@.

IGI'QG .

Since 3,)0@) = Tasciim=y 237 we have |
1 _—

vu(X) = 'I'a'l' zx(h')n

halz

It now follows that W and W, are C[G-submodules of W and we have
=ty + Xa

where ¥ and x, are the characters afforded by W; and W,. We compute z,
uging the basis

wyp=u @y~ @, i<
for W,.

Finally, replace k by &~ ! to obtain the desired result. | Suppose v,g = §. w,v,. We have

wWod = z (aira‘h - ajral.l)“r B, = Z(alrah - ajﬁ“l‘.l)wu'

Lzt ¢ be any class function of G and letn be a positive integer, We define , =
. Therefore

a new lunction @™ by ¢™(g) = p(g"). Note that o™ is & class function,
Lemma 4.4 asserts that v(y) = [¥™, 1] for x € Irn(G). It is not, in general,
true that ¥ is a character for y € Ir(G). however, it is always a difference of
two characters (see problems) and thus v(x} e Z.

(4.5) THEOREM (Frobenius—Schur) Let y e Ir(G). Then

{a) ' is a.difference of characiers;
() v =1,~)orQ
(c) vilx) # 0iff 2 is real valued.

Proof Let V be a C[G]-module which Lﬁ'ordn ¥ und'i;ll.":g., u,,....';:.
be a basis for V. Let W = V & V and define the linear map »; W — W by

(vj @ ﬂJ)- - UJ@ [ Lat H . it
Wy = [we W|w* = w| and W, m (we Wiw* = —w). .

1a(g) = Zauﬂu = Adiy
=
This yields ”
ag) = Yaudy = Tayay = (Z a“)(): au) -G
iwf i) 1 b 4

Let X be the representation corresponding to the basis (v} of V, so that
¥g) = {a;) = M, We have

224(0) = (r M) — (M) = ¥ly) — Mg™

; tince M? = g,

7" This yiclds *)(g) = xig)? — 2x.(9)and thus ' = y? ~ 2y, a diflerence
- 'of chagacters, as claimed,

~ Now vy = [x”z’. 15) = [x% 1a] — 2[x4. 15]. If x is not real valued,
tl:r.-n 0= [¥ 7] =[x 15] and thus [x,, 5] = 0since x, is a constituent of
% Ttfollows that v,(x) = 0 In this case. If y is real valued, then 1 = [, 1]
thus [¥,, 1g] = D or 1 and v;() = 1 or ~ 1, The proof is now complete, [

: (4,6) coroLLany Let G have exactly r involutions, Then
b= ¥ w0,

releriG)

'

Thesc subspaces are called the symmetric and antisymmetric parts of W, -
respectively, , '
If we W, we have w + w* € Wy and:w = w* & W, Since

w <+ w' W o w- B R “:‘
2 2oy o

it follows that W = Wz 4 W, ' C :
We claim that if we W and g € G, then (wg)® = w*g, It suffices to check
this as w runs over the basis v; @ v), and thus we need to show that

W o

S e [ ;
where () = Oif x # Fand vy(r) = ttify = §
Progf ‘This is immediate singe $,(1) = | + . |

- If N ~a G, we have identified Irr(G/N) with 4 subset of Trr((), The follow-
ing lemma shows that v{y) is well defined under this identification.

(47) ueMMA Let N = G and let y & Irr(G) with N g ker ¥, Let v (¥) be as
,n.tzxo)ve s,;a:x )let 0() be the corresponding number computed in G/N, Then
¥ at s

(g B v,9)* = 0,9 ® vg.
In fact, it iz true that
(x@y*=ydx

for all x, y€ V. This is seen by expanding x and y in terms of the v;.
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Proof We have

~ 1
Tdx) = —N 2‘:’: K{(Ng = WW Y xiNg"
c - qmiy
}_—. g") = valx). I

(4.8) LEMMa Le(xcIre(G)and let Ahe alinear character of Gwith 4" = 1.

Then "n(:{) = Vn{'lx)'
Froof Recall that dy e brr(() by Problem 2.6(b). Now

viddy) = m E(lx)(JJ -G- .. gy = IGI Y xg" = v
since A(g" = Ay = A =1 1

As an application of (he Frobenius-Schur thgorem, we prove the

following.

(4.9 TumorsM  (Alperin- Felt-Thempson)  Let G be a 2-group containing
exactly t involutions, If r = 1 mod 4, then cither G is cyelicor |G: G| = 4

Proof 1f G is abelian, then it clearly must be cyclic. We suppose (7 is not
abeliat and show that |G &' = 4.

If Z{G) is not cyclic, choose K = Z((G) elementary abelian of order 4. The
set {x € G[x* = 1} is a union of coscts of K and henee 4{(t + 1), a contradic-
tion. Therefore, Z{() is cyclic and @ containg the unique minimal subgroup
Z of order 2.

Since ¢" = I, we have £ © ¢’ Also G/Z is not eyclic since @ ig not
abelian. If G/Z satislies the hypothesss of the theorem, then |G.(| =
{G/Z):(G/ZY] = 4 by induction and we are done. We may thercfore assume
that the number of involutions in G/Z is not = 1 moed 4,

We have

Y vilxll)=t+1=2mod4

xalen)
and

)3 na(x(1) # 2 mod 4,

relrr{Ge); 2= her x
where the second statement follows via Lemma 4.7. We conclude that
(v) T val0xl) # 0 mod 4,

relriz); Z® ker

Now lel € be the group of linear characters A of G which satisfy A2 = 1,4,
For 3 £ Ir(G), we have Ay e Irr(G) and since Z & ker A, we conclude that

Froducts of characters -~

Z & ker y it Z & ker{dz), Therefore C permutes {y & Irr(G)| Z & ker y} and
partitions thia set into orbits &,. By Lemma 4.8, vy(z) is constant on each orhit
asis x(1).

Singe | &,| is a power of 2, we conclude from Equation (+) that there exiuts
x € Trr{Fysuch that ‘

() Zgkery
() w@weo, o P
i) el <2, ’

where @ is the orbit containing z.

Since Z & ker y, we have ker x = 1. Since G is not abelian, x{1) > ] and
hence y(1} = 2 and || = |, Therefore, 4y = % for all LeC,

Now let F = @), the Frattini subgroup, 1f g € G — F, then there exisls
A e C for which Mg} # 1 and it follows that y(g) = 0. By Lemma 2.29, we now
have

4-=x(l)’2[xp,xp] = |G:F],

Smne G is not cyclic, |G: F] = 4 and we have equality above. This foroes
Xr ™ 24, where g is a faithful linear character of F.

Since v,(y) % 0, we know that y is real valued. Therefore, u is also, and so
|Fl = 2. Thus |G| = § and hencc G ;35 Ds of Q. In cither case, |GG | = 4
a8 dcmrod 1 o ‘ \

A lhcorem of 0. _Taumky [’I‘heorcm 11 11.%a) in Huppert] asgerts that
the only nonabelian 2-groups G for which |G : G| = 4 are the dihedral, semi-
dihedral, and’ meralmad quaternion groups. In sach of these groups, the
number of involotiims i8 in fact @1 mod 4.

As another application of Corollary 4.6, we prove some results of Braver
and Fowler that were' ongimlly obmmd ln a different way.

il o et e “"’

(4 10) Lemva’ Lum,. a,. ,a, belrbntmry real numbers. Then
‘-!mu ' o

L Lap .z-():aat.

Proof The well-known Schwnrz Imqu.nhty asserts that

1»."‘!",":‘- S Gapr e (3 oY 8N

for real a; and b, The lemma follows by setting all b, = 1,
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(4.11) THEOREM Assume |G| =g is even and thnt G contains exactly't

involutions, Lete = (g — 1}/t. Then . 1. &0 o . W

i whga

(1) Thereexists x € G, x # 1, with |G C(x)l < o
{b) There exists real y e Irr(G), ¥ # 1g, with x(1) s .

Proof By Corollary 4.6,
O<fg—a=rt= Y xlh

xed

where
= {yelr(G)|y =% and x# 1(.}
In particular, s = | # 0. Now -

[TT F ST T e

‘g (E x(l)) <s Ex(l)’ < s(g —1) \ “
o RN LN
by Lemma 4.10, It follows that !f U
1’.,[. . . |
g—1 S st .
and thus o ‘ _"I e
Sﬂ: = E:-'x(l):l LN .

Therefore, x(1} = a for some y e &, prcwmg {b)
Since 5 € k — 1, where k = |Irr(G)] i8 the total numbcr ol' conjugac}'
classes of G, we have Y

(k=latzg=-1"
and henee some nonidentity class of G has size o2 This proves (a). | %

) Lo
PUITIEL A . JEE]

Recall that an element x € G is said to be real if x is conjugatein G to x4

It is a fact (which will be proved later) that the number of ¢lasses of real
elements of G is equal to the number of real irreducible chmcters.
Assumning this, it is immediate from the inequality: so?:z g — 1 in the
above proof that statement (a) can be strengthcncd to guamntu that a real
x € G exists with x % 1 and |G C(x)} 2 o, wlmt o Al &

(4.i2) COROLLARY Let n be a positive integer. There exist at most finitely
many simple groups containing an involution with centralizer of order n,

Proof Let G be such a proup with |G| = ¢ Then G contains at least g/n
involutions and hence a = » in the notation of Theorem 4.11.
By (a) of that theorem, there exists x € G with L < |G C(x)} < n?. There-

fore, G is isomorphic 10 a subgroup of the alternating group A ;. The result

follows.

[ | N
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(413} CcOROLLARY Let G have even order, g = 2, Then ¢ contains a prop-
- er subgroup of order = (g)'*.

Proaj' We use inductiot on |G|, First assume Z(G) = £ = 1 If |G Z]

‘is even, then there exists H/Z < G/Z with
|G:H| = (G/Z):(H/Z)| < |G/Z£[3* < g2

and the result follows. If | G: 2} {s odd, then G has a central Sylow 2-subgroup
and thus has 1 normal 2-complement by a transfer theorem of Burnside,
(Or see Theorem 5.6.) It follows that G has a subgroup of index 2 and the
result follows,

Now assume Z(G) = | and let « be as in Theprem 4.11, Then

1< |G:Cx)| =< o?

r some x & G-and we are done if o < g%, Assume, then, that a = gV
’let g be an involution in G. Then -

1<|G:C) < (g — 1y < gla < g™

-"sind the result follows. f)

* and

We now wish to discuss the guestion of which real ye Irr{() satisfy
vy(x} = + 1, The answer is interesting but does not seem to be very important
in the applications of the Frobenius-Schur theorem, The solution to this
. problem involves some matrix theory.

Let U and ¥ be C[G]-modules with bases {u,,..., u,} and {v,, ..
respectively. An element we U & V is unigquely of the form

W= ’Ejau{u,@l v

.

= (ﬂu). For g€ o, we
mpute M(wg).

*  Let X and ) be representations of G corresponding to U and V respective-
"Iy, with respect to the given bases. Write

'*(g) = (brs)l ‘D(QJ =

(€ )

W @e)g =g @uvg =73 b,cifu, ® )
3.4

wg = 3 buayclu, @)

hdag
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and, therefore,
M(wg) = X(g)" M(w)D(y).

(4.1.4) THEOREM  Let y € Irr(G) be real valued and let be a representation
which affords y. Then therc exists a nonzero matrix M such that

g MXg) =M
for all g & G. Furthermore, for any such matrix, M™ = va{p)M,

Progf Let V be a C[G)-module corresponding to ¥ and write W
VRV, Let M: W — M,(C) be as previously stated so that

M(wg) = E(g)" M(w)¥(y)

forwe Wandgsg,

Now W affords thc character y? and [y?, 1] = [y, x] = 1 and hence
there is A one-dimensional space of G-fixed points, W, & W. The matrices
M satisfying ¥(3)" ME(g) = M are precisely the M(x) for x & W,.

In the prool of Theorem 4.5, we had a map ! W = W and we de-
composed W = Wy L W,, where W = {we W[w* = w) and W, =
{w ts‘W|w"r = —w}. Also, the prool of Theorem 4.5 showed 1hat va(x)
= lifl (x4, 15] = 0, where x, is the character afforded by W,

We must have one of the following twe situations:

('? wo = wA' [Im ]G] - L“:(X) = —I;
() Wo g Wy, [alal = 0uvy(z) = 1.

Thus if x € W}, we have x* = va(x.

) Now, for we W we clearly have M(w*) = M(w)", Thus for x & W, we
AVE

M(x)T = vy(}M(x)
and the result follows, J

'

(4.15) <OROLLARY Suppose y e Irr(G) is afforded by.a real represent;tion.
Then vy(x) = +1, :

Proof Let X be an Rerepresentation which affords y and let
M= 3% Z(h2(h).
AeG
Itisclear that MT = M and %(3)" MZ(g) = M forallg & G. AH that remains is
to shaw that M 3 (. Forany # % n real matrix X, is it clear that the diagonal

entries of XX arc =0, and at lcast one of them is >0 unless X = 0, The
result now follows. |
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By Problem 2.5(b), we know that il is possibic that a realvalued irre
dueible character y is not afforded by any real representation. Such char-
acters are exactly those for which vy{y) = —1. The proof of this scems to
require some nontrivial matrix theory.

If M is a square, complex matrix, we write M* = M7, and say M is
unitary if MM* = I and M 18 normal if MM* = M*M. A standard thearem of
linear algcbra asserts that if M is normal, then there exists a unitary matrix,
U, such that U~ MU is diagonal,

(4.18) rLumMa Let D be a diagonal matrix. Then D = E? for some dj-
agonal matrix E such that every matrix which commutes with D also com-
muteswith E. "

.. -Proof Suppose a;,..., 4, are distinct complex numbers and §,,...,
B. € C are arbitrary, Then there exists a polynomial f such that f(a) = f).
We may thersfore choose f such that f(x)' = « for every diagonal entry
aof D. Then E = f(D) has the desired properties. §

(417 TmORIM Let X be & C-representation of n group, G. Then % is

 gimilar toa represeitation §) such ‘that iz} is unitary for all g e G.

Pt . A R TR T

o Proof Lt MesY,.c ¥(g)*X(g). Then M* = M and M is normal. We
may choose a unitary matrix U such that U~ 'MU is diagonal, Since U™ ! =
U™, we have S

W) - UT 'I(g)"l? and

U MU = ¥ X,(@*% ()
gas

whéte i = l.,",'."ﬂ.l.'l't1 is therefore no loss 10 assume that M is diagonal,

'The diagonal entries of Z()*¥(p) are all real and nonnegative and since
X(1) = {, it follows that the diagonal entries of M ure positive, We may there-
fore write M w: P2 where P is A nonsingular real diagonal matrix. . . |

‘Since X(g)*M¥(g) = M fog,all ¢€G, we have

s BT RGRE PGP = 1, .
Since (PE(g)P~')* = P X(g}*P, it foliows that P = PEP™" is the desiced
rebi'&ntntion. 1 !r-Ju.-»'r.-‘?.L“"J' IELITI ' .
(4.18) 'LEMMA "1 Let ' P*P w ] uiid ‘PT = P for a square matrix P, Then
Pu-} g folqumqyat_[i._xiﬂﬂ.\. CUNCT T '

. 1 WProof "-Since Pis ‘wilitary, %t lsnormal and we may write U/~ !PU =

D ="E*, where Uik initifry, D'and E:are'dingonal, and every matrix which
commutes with D also .commutas with E, Now DT = D, PT = P, and
UT w 071, This yields : e

D' =W PYY =0 'P0 = U-'UDU™'D,
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Therefore, U~ T commutes with D and hence also with E. Tt follows that
E= U 'WEU- ' and . )

el

UEU=' = DED=L 00w oo .
From P*P = I, we obtain / = D*D = DD and it follows that the diagonal
entries of D and hence of E have absolute value 1 and E = E7', Now let
Q= (EU-'. Then ' .
00 ' = (DED'WWEU™') = (UEU™'f = UDU™ = P
and the proof is complete. |l

(4.19) THEOREM Lot y e Irr{G)and suppose va(x) = 1. Then z is afforded by
some real rcprescntation of G.

Proof By Theorem 4,17,  is afforded by a representation ¥, such that
X(g) is unitary for all g ¢ G. Since x = # ¥ and X arc similar and we may
choose P such that P7'EP = X, Now ) :

X(g)' PX(g) = X¥@) " 'EgP = P.1
Since vy(y) =1, it follows that PT = P by Theorem 4.14. .

From the cqualion ¥@)f = PX(g), we obtain P*X([g)* = ¥(g)*P* and
since X¥(g)* = X(g)~", this yiclds P*X(g)"" = E(g)™'P* Thus XP* = P
and B T L T RN L b

XP*P = PP = P'PX. o '

By Schur's lemma, it follows that P*P = of for some «. Clearly, o it rcal and
positive and we may thercforc replace P by P/a'/? and assume PP =
Now Lemma 4,18 applies to yicld P = QQ" for some () and we have

0o 'x = ¥00

or 0~ 'XQ = Q- 'XQ. In other words, P = @~ 'XQ is a real reprosentation
which affords y and the proof is complete. I

We may summarize the situation as follows for 3 & Ler(G3):

I catel

{a)  vyly) = 0 iff y iz not real; : ‘
(b) vy(x) = 1iff y is afforded by a real representation;
() vi(e) = —1iff g is real but is not afforded by any real rgpmscnlation.

One further remark should be made, If ¥ & Irr(G) and Wi} = =1, then
x(1) must be even, This may be seen as follows, The nonzero matrix M in
Theorem 4.14 is nonsingular by Schur’s lemma. If v;(x) = —1 then M™ =
— M and ;

17t

det(M) = det(M ') = det{ —~ M) = (-1 det M.~ - D
It follows that (— 1Y = 1 and x(l) is even. - T R

Problems 39

We close this chapter with a discussion of the characiers of direct products.

(4.20) periniTION  Let G = JJ x K and let ¢ and 3 be class functions on
H and K, respectively. Define x = @ x 3 by yUhk) = @h)9(k) for he II and
ke K.

Observe that ¢ x Jis a class function of G. Il ¢ is a character of I1, then
under the isomorphism H = G/K, there is a corresponding character ¢ of G
with K < ker ¢ and ¢(hk) = (h). Similarly, if is a character of £, there is a
corresponding character 9 of G. with J(hk) = Sk} It follows that ¢ x 9
= @¥ is a character of G.

(4.21) rteporeM Let G = H x K.Then thecharacters ¢ x Jfor @ €lree(f])
and 9 € Irr(K) are exactly the irreducible characters of G,

Proof Let @, @ elee(H) and &, 9, elmr(K) Let y = ¢ x J and y, =
¢ x 8. Then

1 —
1717 R SRSy 7o

Cuoaad=
! IGIgt:G IHHK kol ke K

t, 1 —_— —_
. = (m é:ﬂfﬁ(h)%(h))(ﬁgi “ZKS(k)Hx(k)) = [, .19, 9,1

Tt follows that the ¢ x  are all distinct and irreducible,

MNow

T e x Y= Lol = (E fpuf)(z -9(1)“)

pelrriH); S el K) @

= |H[|K]| =|GI,

o and thus the ¢ x 3 are all of Irr(G). |}

" Problems

(4.1) Let yand ¢ be characters of G, Express det{y\} in terms of det ¥ and

i - det ¢,

Hint I suffices to assume that G is cyelic,

(42) (Garrison) Let & be a ¢lass of @ which is not contained in any

* proper normal subgroup. Let K be the corresponding ¢lass sum in C[G] and

let m be the number of distinet values of w,(K) for y & Jrr(G). Show that every
glcmcnt of & can be written as a product of fewer than m clements of o,
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Hint
relation.

®(4.3) Let G = H = K. Let ¢ cIrr{H) and 3 e Irr{K) be faithful. Show that
¢ x & is fithful iff (| Z(H)|, | Z(K)|) = L

(4.4) Supposc @ = HK with H = C(K).

() Let yelrr{G). Show that y, = {1y and xy = (1)@ for soms
@ Tre(H) and 3 g Irr(K). . )

() Letgelrr{H)and 9 e Irr(K) and supposc that @y« and 34y have
a common cangtituent, Show that therc exists a unique y € Ire{G) with
an = Hpand ze = (1),

Hint (i3 2 homomorphic image of H » K.

4.5) Let G = H x A where A is abelian and let n > 0 with ({H[. n) = 1,
Show that " e Irr{G) [or every y € Irr{G).

Mimic the proof of Theorem 4.3 using the second orthogonality

{4.6) Letn > 0and assume that ¥ e Trr{G) for every € Irr(G). Show that
G = H x A, whete 4 s abelian and (|H|, n) = L.

Hints (a) Let 4 = (|G], n). Show that it is no loss to assume that
(1Gj/d.n}y = 1.

(b) Let 4= [ pieno ker x™. Show that A = {geG|g" = I} and
|4l =d. .

() Let M = {"{ker x|y Irr(G), " = 15). Show [G: H| = d.

(¢.7) Let ¥ be 3 C[G]-module with basis {¢,,..., v,} and lct p be a prime.
Let W=V @®. . @ Viptimes)and definecon Weothat(x; & - @ x, f' =
X3 @xy @ @ x, ®x, forall x,€ V, Let 4 be a primitive pth root of 1 in C.
Lol W, = {weW|w" = gw}, Show that W, is a C[G]-submodule of W
which alfords the character x, = (" — ¥'™)/p, wherc y is the character
afforded by V., Conclude that ¥™ is a difference of characters for all m = 1.

Hints Let % = (v, @ - @y, [not all i, are equal}; For we %, let

W we o twt it L g P byt

Now {x) permutcs % into orbits of size p, Let %7, be a set of representatives
of these grbits, Then {Wjw € %7} is a basis for W,

(4.8) Let G be a p-group with Frattini factor group of order =p**~!, Show
that the number of elements of order p in G ls = — 1 mod p~.

Hint Mimic the proofl of Theorem 4.9, Use the fact that v (x) is an
integer (Probiem 4.7).
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(49) I x e Ier(G), then |v,{x}| < 1. Show that no absolute bound on vz)
exists for any n > 2,

" Himt There cxist groups of prime exponent p »¢ 2 and of exponent 4
with irreducible characters of arbitrarily targe degree.

(4.10) Let ¥, W, V,, and W, be F[G]-modules for an arbitrary ficld F. Fix
u particular F-basis in each of thest modules and construct V @ W and
¥, ® W, as was done for C[G]. Now suppose &z V — ¥, and f: W — W, are
‘module homomorphisms: Show that' theré exists a module homemorphism
FV@W =V, @ W sich thatWs @ w) = afv) ® fiw) forve Vand we W,
Conclude that V @ W is determined up to module isomorphism independ-
ently of the choice of bases.

(4.11) Let G be simple and let §'& Sy1,{G) be elementary abelian of order g.
Suppose § = Cglx) for all x, 1 # x ¢ §. Show that vy(x} = | for all x € Irr((7)
and that x(x) = x(1) = gfor y # tyand x€§

Hint First show that G conains exactly | G{/q involutions and that the
temaining elements of G bave 0dd order. This is done without characters
usinig the fact that if x, y are nonconjugate involutions, then | Z({x, y>}] is
aven, g . R L
Note This problem is continued as Problem 5.20 where it is proved that

E 4_ e

Gl= gD+ ,
 @12) Lety, ¢, Selr(G) Show that [xy, 9] = 1)

Ao e g gl 5
s (XM, bt (yigisi5)) — VE aghl

Jo [Z’H—c:n')“; () 21601 @D,
. '

v d, ,leMuL . Sebs g pr i vellew &,

L
< (flwt';n‘;"(Z’t-\rr;;)ilf.‘?l;jﬂt)i



5 Induced characters

Let H & G be s subgroup. Given a character, x of. G, we-obtained the

dual process, where characters of G are induced flr_om‘,.c,h'arac:tlgrs ol H.

(5.1) permimion Let H s Gandletpbea class funcuo'n“or H. Then ¢“,
the induced class function on G, is given by
1 -
%) = 7 L #°(xgx" "k
. #%0) = 1 L7

wher¢:¢“ is defined by (k) = @(h) il he H and °(y) = 0 if y ¢ H.

Obscrve that ¢ is really aclass function on G and that q:‘*"(l) = |G M (1)
Another useful formula for ¢¥(g) is obtained by choosing & transversal T .

1t is then casy (o see that o
ol = Toter™.
T

(52) uMMa (Frobenius Reciprocity) Let H'g G and lupiposé.e that ¢ is &
clags function on H and that § is a class function on G Then

(@, 95) = (%, 8).

Progf We have
1 — 1 1 o N
& R WP L — X% )mg)
[»©. 9] 6 5e @) = lHl,ga ‘);.GfP( 9

il S P T T —r - —— -

character ¥ of H by restriction. In this chapter we study an approximately

for the right cosets of H in G (that is, a set ofrgprmntntivgs rf‘q.r tl:ugsa cosetg)., )

'

Induced characters 8

Sectting y = xgx~' and observing that 3(g) = (y), we obtain
I [RVDVIRE —_
[95,9] = GIIA] T 2000 = — ¥ (niy) = [. 501 1

yel xaf) |H'1“-‘-H

(5.3) COROLLARY Let M/ = G and suppose ¢ is a character of H, Then
o7 is a character of G,

" Proof Let yelrn(G). Then xy is a character of H and thus [¢®, ¥] =
[, zx] 15 @ nonnegative integer. This proves the result since % # 0. |

(54) coroLLary Let M = @ and suppuse ¢ cTee(H). Then thers exists
1 & Ire(G) such that ¢ is a constituent of ;.

' Progf Take g Lo be an irreducible constituent of 99, Then
vy ! : 0 # [‘PGv Z'] = [tP' x".‘
and the result follows. |

{5.5) COROLLARY Let G be abelian and suppose JJ = G, Then every
A e TIrr{H) is the restriction of some e Irr(G).

Induction of characters is closely related 1o the transfer map from a
group into an abelian factor group of a subgroup. Many of the results prove
able by transfer can also be proved using induced characters. We give one
example of this now,

56) THeorgm  Let G have an abelian Sylow p-subgroup, Then
16" m Z{(G)|

—

IB not divisible by p. N
» -~ Progf Assume the conteary and choose U & G’ A Z(G) of order p,
with U = P e §yl,(G), Let AeTer(U), 4 # 1y, and choose i & Ire(P) with

py i & Now write

e W= 3 aux

FLAN (]
obserye that 4°(1} m u{1)|G: P| = |G: P|is prime to p. Therefore, there
exists 3 € Ire(G) such that a, # 0 and pty(1), We have
g 0 # [uf 2] = [u 5]
and thus 4 is a constituent of x,. Since U € Z(G), we have g, = x(1)4 and
i (det x)y = ¥, (See Problem 2.3) Since U S @', we have (det x), = 1y and
Rhthus AMY = 1y, Sinee pf(l), & # 1y, and |U| = p, this is a contradiction

i e e . i 2t = i 3 4 e

il U St Bl st S A SNyl =t A5~ e

hmry
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Explicit computation of induced characters is e:tremely useful for the
sonstruction of character tables, despite the fact that % is usually reducible
cven il ¢ i3 irreducible, [_‘Notc that if ¢p is reducible, then oY is necessarily
reducible since (@, + o = ¢,7 + 1,%]

Given H = G, 4 a character of A ond g€ G, an cfﬁment way 10 compute

#9%(7) explicitly is to choose represcntatives, x,, ..., x,, for the classes of H
contained in Cl{g) in G and 1o use the formuly

o0 = 1€ £ 20 -

whete it is understood that ¢%g) = 0 if H ~ Cl{yg) = . This formula iz
immediate from the definition of ¢% since as x runs pver G, xgx~" = x; for
cxactly | Cpulm)} values of x.

We shall now construct Lhe character table of G = A,. There are five
canjugacy ¢lasses; one each of elements of order 1, 2, and 3 and two of ele-
ments of order 5. It is convenient 10 label these classes 1, 2, 3, 5, and 5, in
the table. Let 3, = 15. We have:™

Class > | 2 3 5 3;

Now let K be a cyclic uubgmup of G of order 5and let s TrriK), u # I.
The clase 5, of G contains a pair of inverse elements of K, say x and x~
Choase 4 50 that u(‘x) - %, Since x* and x~* llc in the class 5, we have

5‘.. .l lz soﬂohqs"" +ﬂ,

' ,;;\Computatloﬁ }leldu [p“ 1) = 1 and thus
Ji‘: # el L1 B KU S N R o &+ &

A e e e et

i a churactcr
" Further computation yields thag (4 ~ 2, x.] = | and henee
"'”: xgﬂﬂ"‘xi-z‘ 3 -1 0 +E +1 Gz+5 +1

ig a character and [xs» 23] = 1 80 that g4 is irreducible.
Finally, replacing p above, by v Irr(K) with v(x} = £? yrelds
Y 3 =1 0 248+ e+t

is irteducible and we have found all five irreducible characters of G.

g 1o " . [T R :
M HL A L R AL L

We now consider the module theoretic interpretation of induced char-
acters. C

(5. 7) IEFTNTTION L.et Vibea F[G]-moclule. Suppose V = W + -+ W
where the W, are subspaces of ¥ which are transitively permulcd by the
action of G. Then ¥ = Wy de +++ + W, is an imprimitiviry decomposition of ¥,
If V is irreducible and has no proper imprimitivity decomposition (that is,
wlth k> 1), lhen Vi i§a pr:mmue FLG]-module,

Wr. emphasize thm iV - W, 4+« 4 W, iz an imprimitivity decom-
position of V with k > 1, then the W, are definitely not F[G] submodules of
V.In thlB luuat:on let H = {ge G|Wh = W)}, then W, is a F[H]-module,

(S 8) THEOREM Let V= W, 4 -+ + W, be an imprimitivity decomposi-
tion of the F[G)-module V. Assume F < C. Let M be the stabilizer of W,
. Suppose V affords the character y of G and W, affords the character 8 of H,

Thm x = 9 . ol
”“Praof I.et T be"’nl nght I‘.ransversal for H in G and write W = W,. Then
H’r funs over the W, as t runs over T and <
Car I AR STRTRCR 0 IS . 73

Co Ce, T .
" Choose 8 bagis, wy, i wa for Wgo that {w;2|1 £ { <mteT}isa basis for
Vi'Let g € G. We comipinte x(g) using this basis,

|Cix)| forxex” 60 4 3 5 5
[ 1 15 20 12 12

e o111 1

Now lel H = A, = G and compute (1,)%. We have
(1% 51 200

using the above formula. [For instance, il o(g) = 3, thete are two classes in H
of elements conjugate in G 1o g. Il x, and x; are representatives of these
classes, we have 1,{x,) = Land |Cylg)| = 3 = |Chix)| and thus (1,)%g) = 2
as listed.]

Now [(1,)% lg] =[ly, lg] = 1 by Frobenius reciprocity and thus
{1,)% = 15 is a character, We call this character y, . Thus

.1=“")ﬁ-|al 4 0 1 =1 —1.

Dircct computation now yields [x,, xo] = ) and we have found an irre-
ducible charagler,

Next, lel A be a nonprincipal lineat character of H = A, 50 that A{x) =
ifo(x) @ lor2and i(x) = @ = ¢2™? for one class of elements of order 3 in H
and A(x) = w? lor the other ¢lass, We get :

Xy = Al": 51 =1 00
singe @ + w? = — 1. We compute [x;, x+] = 1 and so y, € Irr(G).
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.

. For t& T, the contribution of the basis vectors. w;tito’xg) will be zero
unless Wig = Wi, that is, g1~ ' e H. Assuming (gt7 m.h 6 H, write w hm
Zﬂu\l‘J so that zr—l Ay = 9{59'5_‘)- ‘NDW;"".‘(WIIM - 'w'th:'FIE'.ﬂ”WJL and
hence the contribution of w,t to y(g) is ay, Therefore, the total contribution of
the w,t, 1 5 i = m, is Hrge™ ). It follows that y(g) = 3 ar 9°(tge™") = 9%
as desired. Coy T

(5.9) THEOREM L&t HE G and let W be an F[H}-module. Thenzthere _
W

exists an F[G]-module I having an imprimitivity decomposition V' =
where H is the stabilizer of W, and W, = W .as FlH]-modules, ... .

Proof Lot ¥ be the external direct sum of |G B | copies of W as an’

F-veciorspace, Let T be a right transversal for H in G and assume 1 T Let..

W @1, for 1€ T, denote subspaces of ¥, each isomorphic'to W, such that

V=Y W &) Fix isomorphisms a;: W= W@:"md"lét“w@:'

denote g fw)sothat W @t = {w@ t/we W} ‘

Now for we W and ge G, define w@ ge I as follows. Write g = hr,
withhieHand te T, and sel w @ g = wh @ ¢ Nole that for we W, x 6 H,
snd ge G, we have wx ® g = w ® xg. (The usual notation for what we have
constructed is V w W @ pun FIGT)

We now lel G act on ¥ by defining (w @ tly = w & 1g for g € G. Obsetve
that (w @ g )gz = w ® g9 fot all g,, g2 € G. Extending this definition by

linearity gives V Lhc structute of an F[G]-module and - ‘ i

V= E: War ‘ Loy | i h

taT \

is an imprimitivity decomposition, . ‘ I o
Clearly the stabilizer of W & | is H and the map e W= W ® 1is an
isorgorphism of F[H]-modules, The proof is complete. § - ‘

oo
Ifs€ Ht, then W & s = W @ tin the above construction and it is reason-
ably clear that the module V is independent of the choice of coset represcnt-
atives. We write VV = W9 Note, however, that we have not yet proved that
W is the unique (up to F[G]-isomorphism) F[G]-madule which satisfies the

conclusion of Theorem 5.9, b
In the special case that F = C, let W afford the character 3, Then by
Theorem 5.8, it follows that any €[G]-module which satisfies the conclusien
of 5.9 affords y = 9% This proves uniqueness in this case. The general case i3
left to the problems. ' S
Nate that Theorems 5.8 and 5.9 provide an alternate proof of the fact that
induced characters are charaeters. Another consequence of these results is
that if ¢ € Irr(G), then y is afforded by a primitive module iff x # 9% for any
character 9 of a proper subgroup of G. Such y are called primitive characters.
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(5.10) DEFINITION  Let e 4 character of G. Then y is monomial if y = A°,
where A is a linear character of some (not nccessarily proper) subgroup of G.
'The group G is an M-group if every x £ Irr{(;) is monomial,

.1 Notethat il ¥ is monomial, then by Theorems 5.8 and 5.9, yisafforded by a
module which has an imprimitivity decomposition into subspaces of di-
mengion 1, It follows that x is afforded by a representation X with the prop-
erty that each row and column of X(g) has exactly one nonzero entry for
each ge G.

(5.1 1) LEMMA Let 8 be a character of # & G. Then
ker(9%) = [ (ker 9)".

an G
Proof Lety= 9, Then g eker y iff
¥ Fxgx) = ¥ 9.

x€0 x€6
Since [8°(egx~*)| £ &(1), we conclude that geker g iff 8°(xyx™') = K1)
for all x € G. This happens ifTg € (ker ) for all x and the proof is complete, §

(5.12) THEOREM Let G be an M-group and let 1 = f, < f; <+ < f,
be the distinct degrecs of the irreducible characters of G, Let x & Trr{() with
x1) = f;. Then G'" = Kker . where G denoles the ith term of the derived
series of G,

‘ Progf Ifi = 1,then yislincarand G' € ker x, Assuinei > 1 and work by
* induction on i, If € 1e{G) and (1) < (1), then (1) = /) t‘or'j < { and
GU-1) & GU < ker 4.

Since G is an M-group, we may chpose H < G and lineat A € Irr{H) with
x = A% Now [(1,)% 1] = [Lg, 1,] = | and thus (1,,)° is not irreducible.
If  is any irreducible constituent of (1,,)%, then y(1) < (1,)5(1) = [G: }| =
A%(1) = y(1)and thus G“~ " & ker i, Tt follows that G~ 1 & ker((1 %) <
by Lemma 5.11,

Now G'" < I < ket A and since G ~a G, we have

G e M (ker A)* = ker g -

xalf

and the proof is complete. I o

(5.13) COROLLARY (Tuketa) LetG bean M-group, Then Gis solvable. .

It is not the case that all solvable groups are M-groups, [The smallest
counterexample ix SL{2, 3) of order 24.] Lo Chapter 6 we shall discuss some
sufficient conditions, There is no known charaeterization of M-groups other
‘than in terms of characters.
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Chapter B

We shall now discuss some of the connections between character theory
and the theory of permutation groups. Suppose the group G acts on the
finite get £, In other words, lor ¢ach ¢ €€} and g € G, an element of &0 is
defined such that o' = « and (a*)* = a™ forac R and g, ke G, For a § {1, we
shall use the notation G, = {y e Gja¥ = a} s0 that |G: G,| m | @], where @7 is
the orbat containing e, '

Let G act on Q. For g€ G, let ¥lg) = |{x € Q)a® = x}|, The nonnegative
integer valued lunction g is called the permutation character associated with
the action. To see that x really is a character, let V be a C-space with a basis
identified with £2. Let & act on V' by permuting the basis. This makes V into
a C[G)-module called a permutation modufe. 1t is clear that v affords y.

(5.14) LemMMA Let G act transitively on Q, let e Q and let H = G,. Then
(1,)" is the permutation character of the action,

Progf Let V be the permutation module with basis {1 Then ¥V =
Y - 2.0 CA is an imprimitivity decomposition for ¥ The result is now im-
mediate from Theorem 3.8, {1 ’

(5.13) coroLLARY Let G act on £ with permutation character x. Suppose
1 decomposes into exactly K orbits under the action of G. Then [, 1] = k.

Proof Wrtite 0 =  Ji., @ where the @, are orbits. Let x; be the per-
mutation character of G on ¢, 50 that y = ¥ .. For a e @, we have g, m
(1g,)® by Lemma 5.14. Thus [z, 15] = [(la,) il = flg,1g )™ L There-
fore, [, 1gd = £ [x, 1g] = k and the proof is complete, |

Corollary 5.15 ¢an also be proved as follows. Let &, be as above with
xe®, Then |0, = |G|/|G,|. Now let & = (o, g)|a el g G, 2" = a} and
compute | % | two ways. We have

|G|

;;Gx(a) = || = ,‘::n'G’I =‘Z YI1G1=1 —=3;|G; = k|G|

-
aefl | ru::l',l i

and the result follows,

(5.16) COROLLARY Lai G nct transitively on £ with permutation character
1 Suppose that « € 2 and that G, hag exactly r orbits on £, (One of these is
{«}.) Then [x, x] = r. !

Progf We have .

F= EIG.' IG.] = r.xi “-G,.)G] = [x) X]
by 515, 5.14 and Frobenius reciprocity. ||
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The integer r in Corollary 5,16 is called the rank of the transitive action,
Rocall that & is doubly transitive:(or 2-transitve) on Q4f |0} = 2 and G, I8
transitive on 1 —{a}, that is, if.r=.2.. :

(517) comoLLary Let G'act on 2 with permutation character f. Then the
action is 2-transitive iff y wm 1g + ¥ where y € Irr(G) and ¥ ¢ 5.

i Coroliary 5,17 is often “usefi) for finding irreducible characters. Fot
instance, it shows that the symmetric group E, has an irredugible characier of

" ‘degrbe n = 1 for n 22, and that.this character restricta irreducibly to 4,

forn = 4 e
We now consider the question of finding (not necessarily normal) sub-
groups of a group G from information about its characiers. .
Suppose we wish to prove that G has a subgroup H of fairly small index.
This coukd be done if the character (1,)° could be recognized as such. Because
(1,7 is & transitive permutation character {of the action on the set o!' right
cosets-of H), there are a number of necessary conditions it must satisfy,

(5.18) THEOREM Let H G G and ket = (15)°. Then

sfay x(DIG: S :
b} [ ¥] = (k) for ¢ € Irr(G).
© [uldd=L . :
(). x(g) is alnonnegative rational integer for all g G;
+ (e} x(g) = xlg™ for g € G and integers m;
£ - xlg) = 0l X IGH/X1);
Co(g) @) CUg)/x(1) i integral for all g € G.
. Proof Most of these assertions are immediate from the fact that y is & &
transitive permutation character, Statement (b) follows since ¥

‘ Dt ¥ s [010% 93 = [ ¥ud < 940D,

Statement () follows since JH] = |G|/x(1) and if o(g)k|H|, then no con-
jugate of g lies in A and so (1g)%(7) = 0. ' ‘

To prove (g}, let £ be the set of right cosets of H s that  is the character
of the action of G on [ Let & = Cl(g) and let &# = {(a, x)|a €L x€X,
and &* = a}. Since x is constant on A7, we have

L g =g e DA Gl
§ince Il G, are conjugate jin' G,'| ¥ G, | = m is independent of « and we
hisve | ¥ |(g) = m| 3] = my3). proving the result. 1
r‘1'1'": necc.lll'm‘ry condltlor;n given in Theorem 5,18 are definitely pot suf-
ficient to guarantee that x is a permutation character, For example, the
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simpic group M, of order 443,520, has an irreducible character of degree 55
The character obtained by adding the principal character Lo 1t satisfies the
conditions (a)-(g) and yet M, has no subgroup ofindex 56. ‘

group. ‘ e ,
(5.19) toeorem  (Brauer) Let x be a character of G with [y, 1] = 0. Let
A, B = Gandsuppose

(x4, L] + [xse 18] = [xacms Linpl- T

Then A and § generate a proper subgroup of G.

Proof Let U be a C[GJ-module which affords x.and let ¥, PE and Y be
the subspaces of fixed points of U under 4, Band A 0 B respectively. Then
V; Y,WE Y.and I R O L A o

dimV + dim W = [x‘,‘, l.‘] + [xﬁ, 15] :“' [x;nn, l_"ﬂn]." dim Y.

)
1t follows that ¥, » W 3 0 and thus {4, B) has nontrivial fixed points on U,
Since [, 1] =0, we conclude that {4, B} < G. |

An cxample showing how Theorem 5.19 can bc used 15 the following
proofthat 4, is the unique simple group of its order. [Since| AG_ | = |PlSL(2,‘ 9N,
it follows that 4, 2 PSL{2, 9).] As is often the case when trying to identily a
particular group up to isomorphism, thete is a great deal of tedious and de-
tailed work involved. Since the result hardly seems to be worth that_muc'h
effort, the proof which follows is somewhat more sketchy than most in this

book.
(520) TmEOREM Let G be simplc and suppose |G| = 360 = 2*.3% .5,
Then & = A,.

Proof Suppose G, = GWIth |G Gg| = k > 1. Then Gisisomorphicioa
subgroup of the aiternating group Ay. Therefore k = 6 and the resull follows
if we can find G, with & = 6.

The only divisors of 360 which are =1 mod 3 arc 1, 4, 10, and 40, Let

PeSylyG) and N = Ng(PF). We conclude that |G:N|= 10 or 40. By
Burnside's transfer theorem, N > P and heoce |G N| = 10.

Now suppase P S M < G, We claim MeN I not.'then 1=
M M~ N| = 10 and hence |M: M N} = 4 or 10 by Sylow's theorem.
Since the Sylow 3-subgroups of G generate all of G, we have 1Syla(M)] < 10
and thus |M: M n N| =4 and |G M| divides 10, Thus IG:Iyﬂ = 10 and
M A N = P. Now application of Burneide's theorem to M yiclds K1 M

with | K| = 4. Thus 8| Ng(K)} and P & NK)so that |G : N“_;(K)I = 5 'rl_aii .

contradiction shows M = N as claimed. ‘-

- o ep—— —

The following result can often be used tg find proper subgroups of a
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MNow let P # F,e8y1,(G) and set D= P~ P, Then £, € N(D) so
that N(D) £ N. However, P = N(D) and we conclude that N(D) = & 50
thatD = 1.

Mext we claim that G containg no element of order 6. If x is an even per-
mutation on 10 points and ofx) = 6, then x must contain a 2-cycle and »*
fixes at least two points. Since no element of G of order 3 lics in two distinet
Sylow 3-subgroups, the claim follows, In particular, N/ P acts faithfully on P.
Since the automorphism group of a eyelic group of order 3 has order 6, it
follows that P is elementary abelian. Furthermere, each involution in N
inverts all clements of P.

Now P = C(y) for cach | # y& P and it follows that N has ¢cxactly six
conjugacy classes and thus exactly two nonlinear irredugible characters each
of degree 4, If 1; # & Ire((), then xy must have one of these as a constituent
since N' & ker z. Therefore x(1) = 4.

Let x e Ler(G) with %)) odd. Since 4.x(1), it follows that gy has & lincar
constituent 4 and thus ¥ is 4 constituent of A%, Therefore, (1) = 2%(1} = 10
and if y # 1z we have ¢(1) = Sor 9.

We will show that & has an irreducible character of degree 5, From
¥ rereney ((1)7 = 360 = 0 mod 4, it follows that there exist at least three
nonprincipal irreducible characters of odd degree. It sullices to show that
there is at most one of degree 9. In fact we show that il y e Irr(GYand x(1) = 9,
then x is a constituent of {1,)°. Indeed,  is a constituent of A% {or some linear
character 4 of N, Thus 2% = y + u, where p(1) = [ and thus g = 1. Since
Luy, A] # 0, it follows that 4 = 1y as claimed.

MNow fix y € Irr(G) with x(1) = 5 Then g, has a linear constituent and so
[xe. 1p] # 0. Let v be anonprincipal linear constituent of yp. Since cvery
element of P is real, yp is real valued and [y, v] = [rp. ¥]. Lot & = ker v, s0
that | U] = 3. It follows that [xy, 1y] = 3 and hence by Theorem 5.19, any
two conjugates of U generate a proper subgroup of G, Notc that we can find
ten conjugates of U/ such that no two of them centralize each other.

i Let V be a conjugate of U which does not centralize U, and let # =

(U, ¥y <G If |G: H| = 6, we arc done, so assume that |H| < 60,

Now UeSyl,(H) or clse P = H and thus 4 € N. This would imply
¥ = P which iz not the case. Since U, V e Syl;(/]), it follows that 3 x 4 or
3 x 10 divides | H] and thus || = 12, 24, or 30

If |H| = 30, then there exists § =2 H with | §| = 5 Therefore, |G : N(§)| =
s 1 mod 5 and divides |G : H| = 12, Thus |G : N(§)| = 6. We may ussume that
this does not occur and hence |H| = 12 or 24. The only group of order 24
which is gencrated by clements of order 3 has a normal subgroup of orger §
Aand thys contains elements of order 6. We conclude |H{ = 12 and there
sxists K~ H, clementary of order 4,

Next, we claim [xg, 14] = 2. To see this, we use the fact that the unique
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nonliniear itredutible character 3 of H has degree 3 and is real, It follows that
[9y. 1¢] = 1 and thus xy = 8 + 4, + A; where (1)y = I, It follows that
A, = 1y and the claim is cstablished. Also [yy. 1] = 3.

Now choose W conjugate to U with W & H and W not eommuting with
U. Let L =<(U, W» We may assume | L] « 60 and thus |L] = 12 and
HnL=USinee [yy, 14] = 2 = [, 1], Theorem 5.19 applies again to
show R = {H, L> < G. Since R ¢ N, it follows that 9.4|R|. Reasoning as
before, |R| # 24, Since 12||R|, this forees |R| = 60 and the proof is com-
plete.

Itis often convenienl to be able (o write 2 character of a grc:up'l in terms of
charaeters induced from linear characters of subgroups of a speeified type.
For example, an important theorem of Braver (which we will prove in Chap-
ter 8) asserts that every character is a Z-linear combination of characters
induced from lincar characters of nilpotent subgroups. For now wa consider
only rational valved characters and cyclic subgroups. We prove the following,

(5.21) TinoreM  (Ariim)  Let x be arational valued character of &, Then

I L |
x‘zm(m:m'"

where H runs over the eyelie subgroups of G and ay & Z.

h"'»

The proof of Artin's theorem depends on a well-known result of alge-

braic number theory, namely that the cyelotomie polynomials are irreducible
aver Q. In othet words, for each positive integer n, all of the ptimitive nth
roots of unity are conjugate over Q. (This fact is also needed for Problem 3.11.)

(5.22) LBMMa Let y be a rational valued character of G and let x, ye G
with (x> = {y>. Then x(x} = (.

Progf Let n = a(x] = o{p) and let ¢ be a primitive ath root of unity, We
have y = x™ with (m, n) = 1 and thus ™ is & primilive nth root of unity and
g™ = " for some automorphism o of O[£].

Now x(x} = 3 {1 #;, where each r; is an ath root of unity and hence is a
power of & We have

) = xx™ =Y e =3 8 = yx)".
Since z(x) is rational, we have y(x)* = x(x) and the proof is complete. |
Proof of 52! Dcfine an cquivalenes relation = on G by x = y if {x}
and {y} are conjugatc in G, It follows from Lemma 5.22 that x is constant on

the equivalence classes under = and thus  is & Z-linear combination of the
characteristic functions of these ¢lasses,
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Let#,, %5, ..., €, be the distinct (2 )-classes of G and let @, be the char-
acteristic fungtion of %, so that ®{x) = 1 if x e¥; and O{x) = 0, otherwise,
Choose repre-sentatwes X, E%’, and let Hy= {x;» and ny = |H,|. We have
(1)";, G Wul pe IG N(Hr)]'P(ﬂi)

‘We prove by llnduct:on onn that

@i 2 IN(H NG, - E‘“J"J“H,)G

for sun.able € r 4 where g, w 0 unhm H is conjugate to a subgroup of H;,
The result will then rollow sitice lN(H,)l dmdcs |N(H ) whena, # 0.

If nj =1, then %, = {1} and IG!'b, = (1y)° and (2) hnlds in this case,
Suppose n, > 1. Write
and computc the ooefﬁments b ) B3 Iollowu using Frobenius rmprocnty and the
fact that {®), &, = 8,)4,(/|G}:

‘rzi';r ; { b E1G) = (), @] = [V, (@) ]

Now (P)y, = 0 unless H, is conjugate to a subgroup of /f,, In that case,
(@), takes on the value | on ¢(n ) elements of H, and vanishes clscwhere, Thus
[Im, (tb,) J = ap(n,},‘n' and we conclude that

i |G|¢-‘("J)/"i|¢1| = |N(H } /n .

using (1).
Therefore, .

n{1y)? —~ }J:wm,n«m.

where j runs over the set of subscripts for which H ; is conjupate to a sub-
group of H,. Solving for [IN(H){®, and applying the inductive hypothesis
yields (2) and proves the theorem. |1

(523 comroLLARY ' Lat’ X be any rational valued character of G. Then
|Gl = Yu ay 14" where H runs over the cyclic subgroups of G and ay e 2.

Problems

51). et =K<= Gand suppose that ¢ 15 4 class function of H, Show that
@)% = 9%

(5.2} siet H, K & (7 with HK = G and sypposc ¢ 15 a class function of H,
Show.that (qp“)x & (D)
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s function of H and . is a class
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(5.3) Let H = G and suppot i aclas:
function of G. Show that (pyy)? = ", *

Note Problems (5.1)-(5.3} will be used fr

[EVRR ALY 1] N T

er_:tly".

. : I i
(54) Let B(G) = max{gD)lx € Ire(G)}. I H ‘&G, show that biH) £ NGy <+

|G : H|BH). o
Note Since H is abelian iff B(H) = 1, the inequality &{G) s |G H|KH)
generalizes Problem 2.9(b), _ .

(5.5) Let F be an arbitrary ficld and et H & G, Let Whean F [H]-module,
Show that there is a unique (up to F[G]-isomorphism) F[G]-modqle 14
such that ¥ has an imprimitivity decomposition V' = YW where H is th_g‘

stabilizer of W, and W W, as F{H]-modules.

¢ ¥ = W€ In the following problem, if V' is an
F[Gq?r:;duﬁ:yazgcﬁ:‘gﬂc use the notation Vg 10 dm«:::tg_‘fpn;n_mdule V(
viewed as an F| [H]-module, P

(5.6) (Mackey) Let H K & G and let T be a set of double coset repre- :

sentatives so that . L R
G=|)mK LT o RS
iaT B TR T P AR
is a disjoint union. Let W be an F[H]}-module for an ft;bitrary field F. Show .
that .
(Wh)y = zr'(wﬂ'nx)l'
i

Nate Muckey's theorem generalizes Problem 5.2

(5.7) Let H € G and supposc W isa character of . Let K € G and assume
(%) € Ire(K). Show that HK = G. .

Note Problem 5.7 is an immediate consequence of Pro.blem 5.6. Tt can,
however, be donc without using modules, The key step 18 to show that
(s PR (W anp)] # ¢ and then conclude that [G: Hi= |K: K~ H|.

(5.8) Let x be a monomial character of G and suppose K &G with
xx € Lee(K). Show that y 183 monomial character of K.

s that F i let H = G. Suppose that Jisa
59) Suppose that F is a subfield of Cand _ :
E:haracu:r of H which is afforded by an F-representation. Show that 9% s
afforded by an F-representation.

Note Tt follows that cvery monomial character of G.is afforded by &
Q[e]-representation, where & is 4 primitive ath root of unity, # being the
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_ exponent of & (that is, the least common multiple of the orders of the ele-
ments of Gy, Clearly, an arbitracy character of G has values in Q[e]. In
Chapter 10 we shall prove the theorem of Brauer which asserts thal every
- character of G is afforded by a Q[e]-representation.

7(5.10) Let H & G and view C[#] S C[G). Let 1 be a right ideal of C[H)
and let J = IC[G). Supposc that [ affords 9 (viewing I as a C[H]-module).
Show that J affords 9%

(5.11) Let N = G and yeIrr(G). Suppose that [y, 1x] # 0. Show that
N & kery.

Hint Use Lemma 5.11.

(5.12) Let ¢ = € Ire(G) with ¢ e Ire(H). Show that Z(x) < H.

(5.13) (L. Solomon) Show that cach row sum in a character table is a
nonnegative rational integer.

Hint
acter.

Let G act on G by conjugation, Consider the permutation char-

Note The column sums are also integers. They can be negative,
- (5.14) Let & be nonabelian and letf = min{x(1)| ¥  Irr{G), ¥{1) > 1}. Show

(@) If|G'| < / then G' < Z(G),

(b) if|[G, G| £ f then G is abelian,

(c) fH<SGand|G: H| < f,then ¢' = I,
Hint For (a) Ifx e G, then [Cloo] < |G|

(515 LetH= G and suppose @ 15 a character of H with det @ = I,. Let
x = ¢“ and show (det y)* = 1.

{5.16) Let H be a maximal subgroup of G and let 3 = (1,)% Let ¢ be a
. nonprincipal irreducible constituent of 3. Show ker = ker x.

(5.17) Let H = G and let y = (1,)% Fix a positive integer n. For g € G, let
mig) = (tepsr Lep] and define 8(g) = n™®. Show that 3 is a character of G.

Hint  Let £ be the set of right cosets of I in G. Fix a set S with 5| = n
and let A be the sct of all functions £2 — 8. Then G acts on AL

. Note This result provides another necessary condition to add to the
ist in Theorem 5.18,

P e R
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{5.18) Let G ba a group. Writec a{n) = |{g & G|a(g) = n}|. Then the poly-
nomial

fx) = (1/1G]} ¥ alm)x!%Vm

takes on integer valucs whencver x e Z,

Hint  Use Problem 5,17, |

{5.19) Let G be doubly transitive on £ and let Ff = G with |G: If| < |0,

Show that I is transitive on €2,

{5.20) Assume the notation and hypotheges of Problem 4,(] and show that
|G| = glg ~ 1){g + 1). "
Fints Let N = N(§) and show |N| = glg = 1). Let 1glrN) with
Ag lyand § = ker 4 Let xe8, x # 1, Show A%x) = (1), Write A% =
reten Uy 2 8nd conclude
ALy = Y afull) —gp = |G:NIAL) =~ g X a,.

Finish the problem by showing that i a, # 0. then x(1) z ¢ + 1 50 that
Za, £ A(1). To show x(1) 2 ¢ + 1, compute [, 15] and use the fact that
since [yy, A} = O and y is real, then [xs, 15] = 2.

Note Using the result of this problem, it is not very hard to prove
that G = SL{2, ¢), a theorem originally duc to Brauer, Suzuki, and Wall,

(521) Let P(G) denote the set of all Z-lincur combinations of chatacters of
of G of the form % for H € G. Show that P(G) is a ring. —

(5.22) Let y be a rational valued character of G and let ng(y) be the least

positive integer such that ng(x)y e P(G). T.et N = ker y so that x may be /i

viewed as & character of G/N. Show that

ne(x) = ngwix):
Note The existence of ngy) is guaranteed by Corollary 523, 1 (. ..

Hint If ny = ;a,,(l,,)“, then ny = ¥ ax{lyy)® Show this by writing
¢!

(L)€ = (Lyw)® + &, where &¥ is a character of G with the property that N
is not contained in the kernel of any of its irreducible constituents.

(523} Let x be any character of G. Show that
1Glx = T a, 45,
where A runs over the set of linear characters of cyclic subgroups and a, € Z,
Hint  Use Problem 5.3,

Froblema 11

(5.24) Let G be a doubly transitive pecrmutation group on Q and let &, f € £2,
with 2 # f Let pelir(G,) and assume that g, e1rG,,). Show that
(0% »%) = 2.

Hint Use Problem 5.6,

(5.25) Assume that every Sylow subgroup of G has a faithful irrcducible
character. Show that G has one also,

Hint  Let § be the product of all of the minimal normal subgroups of G.
{This is called the socle of G.) Then § i3 a dircet preduct of simple groups,
Find 9 & Trr(5) such that ker § contains no nontrivial normal subgroup of G.

(5.26) (Passman) Let X € G = {1} be a subset and lct n = | X|. Assume
for all primes p =« n, that a Sylow p-subgroup of G is ¢yclie, Show that there
exisis ¥ € 1rr(G) such that X ~ ker(y) = .

Hints  Reduce 10 the case that @ is abelian by observing thal it suffices
to assume that G = (X and that if [x, y] ¢ ker(y). then both x and y ¢ ker
In the abelian case, let N € G be maximal such that N A X = 5. Show that
G/H is cychc, .

[ B

Nate Ifn = 2,the hypothem on Sylow subgroups is vacuously satisfied,
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v R < ale

Let x& lrr(G) and H € G. In general, very hittls can. be said about the
restriction yy. The situation is quite different if H is normal in G.

Let H = 6. If 3 is a class function of H and g € G, we dcfine 9. H — C~
by 9%(h) = Hyhg™"). We say that 5" is conjugate 10 3in G

SE e e -\mf.- baee T --\"W'

(6.1) 18mMa Let H -2 G and let @, 8 be class functions of Hand x, ye G
Then

(@)
(b)
(©)
(d)
{e)

Proof (a) If hand k are conjugate in H, then so are % and k* for all
geG Takeg = x 1.

(b} Compule. [Note that had we
fail.] ]

(¢} The two sums are identical since xhx™!

(d) Wehave (xu)* = gu- APPlY (&)

(e} Let X afford ¢ and definc ¥* by X¥(h) =
is a representation which atfords ¢*. -~

It follows from Lemma 6.1 that § permutes Irr(df) by g: 91— B Note
that H acts trivially and thus G//J permutes Ire(H).

" is a class funciion;

(@) = ¢

(. 8] = [e. 9%

{xu. 0] = [y, @] for class functions g of G
" is a character if @ is.

defined 9(h) to be 3(h*), then (b) woulcll’
runs over H a5 h does,

w ¥(xhx~!'). Check that X*

8

;. irreducible constituent of xy, and suppose 3 = 3, 9,,.
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(6.2) TuEoreM (Clifford) Let H =2 and let xeIrr(G). Let & be an

«., ¥, are the distinet
conjugates of 3 in G. Then

XH=¢’):'9t-

=]

where ¢ = [ru, %]

Proaf We compute (3%),. For he H, we have

& ! o -1
§h) = Y #(xhx"Y) =

I sedy

F(h

|H| A'?G ( )

ance xhx~' €4 for all x€G. Thus |H{(9%)y = ¥ .. & and hence if
@ € lrr(H) and @ ¢ {9}, we have 0 = [ 9%, ¢] and therefore [(4%)y. @] =
“Since x 15 a constituent of 99 by frobenius reciprocity, it follows thal
" [rm. ®1 = 0. Thus atl irreducible constituents of xg are among the ¥, and

Xu = 3wy [Xn. 908 However, [xg, 9] = [, 9] by Lemma 6.1(d) and the
proof is complete, |

Theorem 6.2 is so important that we digress (o consider anather proofin a
more general, module thepretic setling. If X is an F-representation of H = &
" for an arbitrary field F, we define the conjugate representation ¥* forg e G
by X¢(k) = X(ghg ‘). Note that X¢ is an F-representation which is irreducible
iff X is. Also, if ¥, and X, are F-representations of H, then X,¥ and X,7 are
+ similar iff ¥, and X, are.

(6.3) pERMITION  Let H =3 G and let W, and W, be F[H]-modules, Then
W, is conjugate to W, if there exist bases for the Wisuch that the corresponding
- F-representations of H are conjugate,

. (6.4) rLEMMa Let F'be an F[G]-module and let A =2 G, Suppose W = ¥
: is an F[H]-submodule.

]
»

(@} Ifg <G, then Wyis an F[H]-submodulc of ¥ and is conjugate 1o W,
(b) If M is an F[H]-module conjugate o W, then M = Wy for some
geG.

o (¢) UG Visan F[H’l -submodule isomorphic to W, then Ug = Wy
" as F[H1- modules;

Proof We have (Wgh = Wighg™ ') = Wy since ghg™' € I, Thus Wy
“m an F[H] -submodule. Let wy, wy. .. -w, be a basis for W, Then wy,

.o+, Wog 15 & basis for Wy, Let X and ) be the F-representalions of H corte
sponding to ded Wy respectively, with respect Lo these bases, We ¢laim that

9= x
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If X{ghg ™) = (a), we have
W;ghg“ = Za”Wj ™,
)

and thus
(wigh = ;a:,(wm)-

Therclore, Yih) = {u,;) = X¢(h), establishing the glaim. The proof of (a) is
now complete,

If M is conjugatc to W, then M corresponds to the representation ¥ for
some g € G, Since Wy corresponds to the same representalion, we have
Wg = M, proving (b). Finally, if U = W then with respeet to a suitable basis,
U gorresponds (0 &, Thus Ug und Wy both correspond 1o X% and (¢) follows, |

(6.5) THEOREM (Clifford) Let £ = G and let V be an irreducible A(G]-
module. Let W be any irreducible F{/7f)-submodule of V. Then

{0) V =Y W where the W, are irreducible FLH]-submodules of V.

{b) Euch W, is of the form Wy, [or some g, € G and thus is conjugate to W,

(c) Tn the notation of Lemma 113, ny(V) = ny (V) for every F[H])-
moduie M conjugate (o0 W,

Note  Another way of saying {g) is that each isomorphism class of F[H]-
modules conjugate to W is represented equally often among the B,

Proof of Theorem 6.5 Clearly, ¥, . Wy is G-invariant and hencg\

V= Z Wy
ged

by the irreducibility of V. The F[H]-modules Wyg are conjugate to Wand

hence are irreducible, By Lemma 1,11, it follows that V is the direct gum of
some of the Wg. This proves (a) and {b).

Now let M be an F[ H]-module conjugate 1o W, Since dim(M) = dim{W),
it follows from Lemma 1.13(b) that it suffices to show that dim{M(V)} =
dim(W(V)) in order to prove that ny(V) = ay (V).

Since M is conjugate to W, it follows by Lemma 6.4{b) that M & Wy
for some g e G, Now 6.4(c) yiclds W(V¥ S M(V) and M(V)g~' € W(¥),
Thus W(¥g = M(V}and the result follows, | Lo

(6.6) COROLLARY Let H =3 G and let ¥ be an irreducible FTG)-madule for
some fleld F. Then when viewed as an F[H)-module, V is completely
reducible,

Progf Use Theorems 1,10 and 6.5, ||
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Note that Corollary 6,6'is independent of Maschke's theoretn and is
valid even if char(F) divides |H|. ...
Also note that Theorem 6.2 is a consequence of Theorem 6.5.

We now return to the study of C-characters and obtain some con-
sequences of Theorem 6,2,

(6.7) COROLLARY Let H - Gand suppose that x € Irr(G)and [xy, 1] # 0.
Then H S ker .

Proof Wc have xy = ¢ ¥ 8, where 9, = 1, and the §, are comjugate,
Since (1, = 1, for all g€ G, we have x) = x{1}Iy and H S ker y. |

Corollary 6.7 can also be obtained as a consequence of Lemma 3.11 (see
Problem 5.11) since ¥ is a constituent of (1,)¢ and ker(1y)® = [YH* = H.

An interesting class of problems in character theory ariscs from consider-
ing how the structure of a group G and the set {x(1)|x € Ir{G)) are related. We
give one resuit of this type as ah application of Theorem 6.2, Many more
results like this will be found in Chapter 12.

(6.5) LEMMA Lct‘H < G and suppose xelrr(G) and Helr(H) with
Cxa» 9] # 0. Then 1)| (1) |

Proof Since 9%(1) = (1), we conclude that (1) = et¥H1) where xy =
¢ Yiay 9 us in Theorer 6.2 with =23,

(6,9} THEOREM Suﬁpme 7(1) is & power of the prime p for avery x € Irn{G).
Then G has a normal abelian p-complement,

‘Proof I N =2 G, then by Lemma 6.8, 31} ia a power of pforall 3 € Irr{N).
i ion on |G|, we see that it suffices to find A normal sub-
of index p, since the normal abelian p-complement for N will be one
C T b

< We have - T o -

' |Gl = |GG+ )) ¥(1).

. xelerGy /(1) =1

It Gis abeliaz, the result i trivial, Otherwise, some 1 & Trr(G) s nonlinear end
thus p||G|, Since the last sum is divisible by p, we scc that p||G:G'|. It
follows that G has a norma! subgroup of index p and the proof iscomplete. 1

‘The converse of Theorem 6.9 is true and will be proved later in this
chapter. o S c
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(6.10) pERIMION Lot H = G and let deliA). Then
@)= e gy

is the inertia group of 9 in G. l ' ‘.
Since I 4(9) is the stabilizer of 3 in the action of G on Trr(H), it follows that
it is a subgroup and that/A9) 2 H. Also1G: 15(9)] is the size of the orbit of §

and so in the formula ) v -
[ —
mel ' PN

j=1

of Theorem 6.2, we have t = |G: Ig(9)|. In particular, ¢ divides |G: H|. It
turns out that e divides |G ; H| also, but that is much more difficult to show,
We shali prove some special cases in this chapter and the general result will be
proved in Chapter 11, using projective rcPrmntation._s.. AP .

The following result is of lundamental importance m the character theory

of normal subgroups. L

(6.11) THEOREM Lot H =G, J¢€ Ire(H), and T = 14(8). Let
) v R
of = (Wel(T)|[¥u, 91 £ 0L 9 = {ye G}ty 5] # 0},

)

Then . o -

{a) 10y e, then pO is irreducible;

{t) The map ¥ =+ ¢ is a bijection of & onto #; '

{c) IfWE = y with y & &, then y is the unique irreducible constituent of
xy which lies in o] -

(d) 1T y% =z with ¢ €&/, then [¥y, 31 = Dtas 8].

Proof Let f € o and choose any irreducible constituent y of y%. Then
W is a constituent of y,and since 3 i5 a constituent of ¥4, we conclude x € a.

Let§ = 9,.9,, ..., 9 be the distinct G-mnjugates_ﬂf S.AThen 1= |G:T|
and xy = ¢ ¥j=; 9, for some inleger &, Since 9 is invar!ant in'T, we conclude
from Theorem 6.2 that yy; = f9 for some £ Since y is a constituent of ¥7,
we have f = 2. :

Thereforc

et 1) = 2(1) = PO = t@(1) = fi%(1) < erd1)

and hence cquality holds throughout. In particular, ¥(1) = ¢%(1) and we
conclude that y = ¥ so that (a) follows. Also

[xﬂt‘g] - g = f - [wﬂiﬂ]
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and (d) is proved. Stalement (c) follows from the last equality since if | & o/,
¥y vy, and ¢, is & constiluent of 3p, then

Lew. 31 2 [W + ¥ )y 91 = [y, 91 + [0 1)ue 81 = [, 91,
':é;coqtpadiction.

" The map in (b) is well defined by (a) and its image lies in & by (d). It is one-
to=one by (c). To prove that it maps onto @, let x € . Since & is & constituent
" 6f xg, there must be some irreducible constituent v of yr with (¢, 81 # 0.
“Thus y € & and y is a constituent of Y%, Therefore ¥ = ¥ and the proof is
compilete.

- .

(6.12) comontary Let yelrr((G) be primitive. Then for every N = G,
iy 18 2 multiple of an irreducible character of N.

Proof We have gy =e¥'o; &, where the 9, arc distinct and (=
{61 1:(8,)]. By Theorem 6.11, y = ¢ for some ¥ € Irr{ ;(3,)). Since y is
primitive, it follows that 1,(3,) = Gandr = 1. Thus xy = &3, and the proofis
- - complete.

" The converse of Corollary 6.12 is false, For instance the irreducible
‘character of A, of degree 5 is imprimitive and yet the conglusion of the coral-
lary is (trivially) valid for this character. Characiers which are multiples of an
irreducible are called homogeneous characiers. trreducible characters whose
restriction to every normal subgroup is homogeneous are often called
quasi-primitive charagters,

(6.13) COROLLARY  Suppose G has a faithful primitive character and let
A =3 G be abelian, Then 4 € Z{G).

Proof Let x € trr{G) be primitive and faithful. Then x, = 24 for some
linear characler 4, Thus A & Ziy) = Z(G). 1

(6.14) coroLLARY Every nilpotent group is an M-group.

Proof et G be nilpotent and let y e Irr(G). Choose I = @ minimul, such
that there exists @  Irr(J1), with y = 5. By transitivity of induction (Problem
5.1), W is a primitive character of H. It follows that ¥ is a faithful primitive
character of H/ker(y) = 1 and thus every normal abelian subgroup of 11 )'s
ntral. Since cvery nilpotent group contains a normal self-centralizing sub-
roup, we conclude that H is abelian, Then  is linear and the proof is com-

"+ Weshallsoon give a much more general sufficient condition for a group to
& an M-group. The preceding result is included here simply to illustrale the
usefuiness of Theorem 6,11,
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{6.15) THEOREM (f15) Let 4 - 7 be abelian. Then (1) dividies |G: 4|
for.all x € Tre(().

Proof Let Aelrr(A), with [x,. 4] # 0,and let T = [;(3). Then for some
W elrr(T), we have y = % and @, = ¢, Thus A & Z{)) and hence (1)
divides | T: A| by Theorem 3.12. Since x(1) = |Gt T|y(1), we conclude that
x(1) divides |G ¢ 4| and the proofl is complete. | R

Mote that the converse of Thegrem 6.9 13 immediate from Theorem 6.15.
Thercfore, the purely group thegretic condition that G has an abelian normal
p~complement is precisely equivalent to the condition that x(1) is a power of
p for all ¥ e Trr{G).

Suppose N = G and J€lrr(N). Write % = ¥ ¢y, for x, € Irr(G) and
e > 0. Then (x)y = ¢, 3=, 8, where § = §,, ..., 9, are the distinct con-
jugates of 8 in G. Let T = I4(%. By Theorem 6,11 it follows that 37 =
3 e with ¢ e Irr(T) and ¢.% = x,. It follows that for the purpose of inves-
tigating the nature of the integers e,, it suffices to assume T = G, that is, that
3 is invariant in G.

For the remainder of this discussion we assume that 3 is invariant. We
have

=3 ey and (xdn = ;9.

Therefore, x{1) = ¢,5(1) and
IG:NI5(1) = 3%1) = T exi(1) = T e 21),
so that
el =|G:N|.

It was remarked carlier (without proof) that ¢, divides |G: N|. (Note tha
il N is abelian then ¢, = x,(1) and in this case we know that ¢/]|G: N| by
Thearem 6.15.)

We see that in some respects, the integers e, behave like character degrees
for G/N. If they werc reaily character Jegrees, then one of them, say e¢,; would
cqual 1, That would mean that {x,)y = % In other words, that 3 is extendible
to G. {MNote that if  is extendible then it is automatically invariant.)

A consequence of the next result is that if some e; = 1, then the ¢, are
cxactly the degrees of the irreducible characters of G/N.

(6.16) THroREM Let N =G and let ¢, $eTrr(N) be invariant in G.
Assume 3 is irreducible and that 8 extends to yelrnG). Let ¥ =

(B £ Irr(C)] [®, 1 # 0 and 7 m (i & Trr(G) [(9)C, W] # O}. Then B Py

defines a bijection of & ento 7.
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Proof 'We have (@) is a multiple of ¢ and hence (p%)y = |G : Nlg by
comparing degrees. Thus [¢%, ¢%] = [, (0] = {G: Nlle, ¢] = |G: N|.
Similarly, [(@9)°, (@$)°] = |G : N|. Also, by Problem 5.3, (3)* = oy

Now write % = 3 4, » €58, We have [0%, ¢%] = |G: NI = {9y @5
and hence _

' z eﬂ‘z - E epe-;[ﬁx. 174
\ [B [ BT 4 .
Since [By, yx] = 0 and [By, fx] = 1 and all ¢, > 0, this fqrces Prvx]l =0
if f # yand (By, fx] = 1. Thus the By are distinet irreducible charactgrs for
distinet f. These are all of the irreducible constituents of %y = (@9F. The
proof is complete. ]

What is probably the most imporiant special casc of Theorem 6.16 is
when ¢ = ly.

(617) coroLLARY (Gallagher) LetN -2 Gandletye lrr(G}\:fe such l(hat
ax = 8eTrr(N). Then the characters By for feTrriG/N) are irreducible,
distint for distinct # and are all of the jrreducible constituents of 3¢,

Proof ‘This is exactly Theorem 6.16 in the case ¢ = 1y, [

Note that in Corollary 6.17 we have identified Irr{G/N) with a subset of
Trr(G). 1n this situation, we see that the e, are exactly the f(l} for fi e Trt(G/N).

.Thcrc ate other situations where we have control of the e/s. The following
* going down ™ theorem is useful in studying the characters of solvable groups.

(6.18) THEOREM Let K/L be an abelian chicf factor of G. (That is, K. LaG
and no M «=a G exists with L < M < K.) Suppose J & Trr(K) is invariant in G.
n onc of the following holds:

(@) 9. elrr(l)
{(b) 9, = ep for some ¢ & Trr(L)and e = |K: L|;
(€} 9. = ¥ im1 ¢ where the o € Irr(L) are distinet andr = |K:L|.

Proof Let @ be an irreducible constituent of 9, and let T = I4(p).
Since & is invariant in G, every G-conjugate of @ is a constituent of 3; and
hence is K-conjugate to . It follows that |G: T} = |K: K ~» 7| and hence
KT = G.Since K/Lisabelian, K n T «a KT = Gand thuseither K n T =
KorKnT=0L

HKAT=L,then 9, m e Y., ¢, where t = |K: L], ¢, = ¢, and the
w, are distinct. Thus (1} = | K: L|@(1). Since Jis a constituent of p¥, we
have (1) < |K: L1@(1) and therefore ¢ = 1. This is situation (¢).
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Now assume K n T = K 80 that ¢ is invariant in:K and 8, = eg for
gome e. Let A & Irr(K/L). Since 4 is linear, 19 ¢ Ir{K ). Also (AS)y; = 8, = e
Suppose that all of the characters A3 are distinct as l‘.runs over Irt{K_/L). Each
of these |K: L) characters is an irreducible constituent of @ with mulds
plicity e and we have :

e[ K:LI&1) 5 o™(1) = |K: Llg(l).

Therefore,

ep(l) = edl) 5 fﬁ{l}

and # = |, This is situation {a). ‘ ' . ‘
In the remaining case, A9 = u9 for some A, p € Ire{K/L) with 2 % p, Lat
U = ker(d). Then L& U < K and 3 vanishes on K — U. Since 3 in
invariant in G, it follows that § vanishes on K = U* for all g€ G. Sinck
(Vews U* = L. we conctude that 3 vanishes on K - L. By Lemma 2.29 we

have

[UNH
v

i L) = 1K LIS, 9] = (00, 9] = ¢?

[ TR P VA et

and the proof is complete. I
(6.19) coroLLaRY Let NG with |G:N| =p, & pnma Suppose
y & Irr(@). Then either

{m) v is irreducible or . o !
(b} in = YTa; 8, where the 9, are distinct and irreducible.
Progf TakeK = Gund L = Nand apply Theorem 6.18, Cuse (b) of that
theorem cannol OSour since p is not & square. |
(6.20) COROLLARY Leét N-a G and suppose [G:N|=p, a prime. Let
9 € Ire{N) be invasiant in G. Then § is extendible to G. .
Proof Let xbean irreducible constituent of 3% Then gy = 8 for some .
Comparison with Corollary 6.19 yields ¢ = 1. 1 o Sl
Actually, Corollary 6.20 would still be truc if the hypothbsjs that |G: N |'in‘
prime were weakencd 10 G/N cyclic, This:stronger result ‘wul b‘.pmyqd-]%
Chapter 11. TrTmb

- .

(6.21) ppanmoN Lot N = G and let y eIrr(G). Then ¥ is a relative M-
character with respect to N if there exiss H with N = Hg (.:ia,nd ¥ & IrrlH)
such that ¢ = yund gy € [rr(N). Ifevery y € lrr(g) i3 & relative M-character
with respect to N, then G is & relative M-group with respect to N,

Note that y e Irr{G) is a relative M-characier with reapect to lliﬂ'. it_ isa
monomial character, and G is a rclative M-group with respect to 1 ilf it isan
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©, M-group. Also, it is clear that if G is a relative M-group with respect to NV,

then G/N iz an M-group.

- 'The converse of the last statement is false, IT G = SL(2, 3)and N = Z(G),

"then G/N & Ay, which is an M-group. However, & is not a relative M.group
with respect to N since G has an irreducible character of degree 2 and has no
subgroup of index 2 as would be required by the definition,

(6.22) THEOREM Suppose N = G and G/N is solvable. Suppose, further-
mote, that every chief factor of every subgroup of G/N has nonsquare order.
Then G is 8 relative M-group with respeet 1o N,

Note The hypotheses on /N, above, are automatically satisfied if G/N
is nilpotent or supersolvable since then all chicf factors of subgroups have
prime otder,

Proof of Theorem 6.22 Lot g € Iee(G). We must show that ¥ is a relative
M-charaeter with respect to N, Iy, is irreducible, this is clearly Lhe case and
hence we assume xy reduces. Let K <1 G be minimal such that K 2 N and
¥x i irreducible, Then K > N und we may chouse L <0 G, L 2 N such that
.'K/L is a chief factor of G. In particular, K/L is abelian of nonsquare order.
' We apply Theorem 6.18 10 the chief faclor K/L and the G-invariant
character € [rr(K). Singe x, is reducible and |K:L| is nonsquare, we
conclude that y, = Yi., ¢, where the ;€ lrr(L) arc distingt and r =
|[K:L|> I

Let T s ig(p,) 2 L 2 N. By Theorem 6.11, we conglude that x = y¢
for some ¥ € Irr{T). Since T/N < G/N, we may apply induction on |G: N|
1o conclude that T is a relulive M=group with respect 10 N and (hat b = 97
forsome JeIrr(H)where N = H = Tand 9y e IriiN). Now 3 = ¢% = (§7)¢
= 9% by Problem 5,1 and the proof is complete.

Note that Corollary 6,14 follows immediately from this result as does the
. somewhat more goneral fact that all supersolvable groups are M-groups.
We prove & still more general sufficient condition.

6.23) " 'mwnﬂu Let N = G and suppose that all Sylow subgroups of N
abelian, Assutme that G is solvable und is a relative M-group with respect
N. Then G is an M-group.

Proof Let yelIrt(G). Since ¥ is a relative M-character with respect to N,
choose H = G with N € H, ¢ € Tre{H), i € Irr(N) and ¥ = x. Now choose
. U = H, minimal such that there exists 9 e Irr(U), with 8" = 4. By Problem

5.0, 9°% = (9% = % = y and it suffices to prove that § is lincar,

Let M = U n N, Since (3"¥ = and yyy is irreducilj'lle. it follows
that Yy = 9% and thus (9%¥)y = ¥y € Ir(N). By Problem 5.2, (8,)" =
(9¥Y)y e Irr(N) and hence 8, € ler(M),
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By the minimality of U and Problem 3.1, 3isa primilive character of I/,
Let K = ker 9, T = /K and M = MK/K. Then J is a fajthful primitive
character of 7 and M has all of its Sylow subgroups abelian, Now Jet Z =
ZMY=s 0.1 Z < M, let A/Z be a chiel lactor of U with A = M. Then A/Z
153 pegroup for some prime p. Let P e Syly(A). Then P isabelian and A = PZ,
50 that A is abelian, Since 4 = O, we concludc from Corollary 6.13 thal
A = Z{U). This contradicts 4 > Z.

We conglude that Z = M, and hence 8 is abclian. Since 8, is irreducible,
50 i8 9y Thus 94, € Irr{M} and hence 3(1) = 1. The proofl is complete, |

We introduce some notation. If y is a ¢character of G, let det ¥ = A be Lhe
uniguely defined lincar character of Problermn 2.3, Mow writc o(y) = 1), the
order of 4 as an clement of the group of linear characters of G. (We call o(z)
the determinantal order of y.) Since |G ker 1] = o(d), it follows that ofy)
divides | &|.

Now let N <a G and suppose 9  Irr(N} is {nvariant in G. We wish to find
sulficient conditions that 8 be extendible to G (|G : N[, 3(1)) = 1, then Jis
extendiblc iff det 3 is extendible. We shall prove this now under the additional
hypothesis that G/N is solvable and defer the general proofl Lo Chapter &, As
will be seen, there is a gain in replacing the problem of extending 3 by that of
extending the linear character, det 3.

(6.24) LEmMMA Lot N = G and xupposc 3 € [re{N) is extendible to G and
that{|G: N[, 9(1)) = L. Let i = dct 9 and let 4 be an extension of A to G. Then
there exists a unigue extension y of 8 1o G such that det y = y.

Proof Let n be an extension of 9 to @ and let v = det 7 so that vy = &
Let u# = a so that ay = 1y and hence a!®¥ = 1;, Write f = 3(1) so thil
det(u®y) = a"/ det = a®v for be Z, Since (f, |G: N|) = |, we can choose
be Z such that bf = | mod|G:N| and thus «" = & Let y = o Then
dety = a¥v = gv m . Sincc ay = 1y, we have gy = 7y = 3 as desired.

To prove uniquencss, suppose g, i5 an catension of § with det{zy) = y
By Corollary &.17, we have x4 = 2fl for some # € [tr{G/N). Since x(1) =
(1) = x(1), we have fi{1) = 1 and

ji = det(xy) = f det x = /'y
and p7 = lg. Sinec(f,|G: N|) = 1,this forces f# = 1;and g, = ¥, The proof
is now complete, I

(6.25) THEOREM Let N -3 G and suppose G/N ig solvable. Let 3¢ Trr(iN)
be invariant in G and suppose (1), |G: N|) = 1, Then 8 is extendible to G
iff det 3 is extendible to G,
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FProof 109 is extendible, then obviously so is det 8. We prove the con-
verse, Let u be an exlension of A = det § 1o 6. We work by industion on
|G N|.(We may assume G = N.) Let Gy be a maxitnal normal subgroup of
G with Gy = N, Since 4 extends to g, the indugtive hypothesis guarantees
that 9 is extendible 1o G,. By Lemma 6.2d, there is a unigue extension,
¥ € Irr(G,) with det(xo) = ug,.

We claim yx, is invariant in G. For g € G, we have ((xoF)y = 9* = 3 and
det({yy ) = det(y,F = (pg P =™ pg,, The uniqueness of x, now yields (o) =
o tnd esiablishes the elaim. |

Sincc G/N is solvable, |G: Gyl is prime and by Corollary 6.20, x, is
extendible to &, The prool is now complete. |

We now discuss some sufficient conditions lor cxtending linear char-
acters, A version ol the following theorem is true without the assumption
of linearity. The genernl result will be derived lrom this special case in
Chapter 11,

(6.26) vHROREM Let N =2 G and suppose 1 is a linear character of N
which is invariant in G. For each prime p|ofd), choose I, = G with
H /N & 8y1(G/N), and assume that A is extendible to i ,. Then 4 is extendible
to G.

Note ITpkx|G:N|, then H, = N and 2 is automatically extendible to
H,. It is only necessary, therefore, to cheek the hypothesis for primes dividing
|Gt N|. .

s Proaf Letm = ofd). For each p|m, we may choose 1, & power of 4, such

that 4 = []4,and o{d,) is:s.power of p. We shall show that 4, i3 extendible to.

pp & 1rr(7), Then o= [, in an extension of 4,
- vBince. Ay is a power.of A, which.is extendible to H,, it follows that 4, is

extendible to H,. Also 4, is invariant in G. We now see Lhat it is no-loss V0.

assume that m m a power, of p.

Let v be an extension of A to H,,. Since p ¥ |G+ H,land w1) = 1,it follo'“"
that p .t v9(1) and hence there exists an irreducible constituent x of ¥ with
P*I(l} Lat x(1) = f.

- We have [xg,. v] # 0 and henoe Czx» A1 # 0. Since A is invariant in G,
we conclude that #y = f 4 and thus (det )y = A/, Let § = det x. Since p & f
and m ig a power of p, we maychoose b & Z with /b = | mod m. Then (3)y =
A™ = 1 and the proof is complete. * I

(6,27) cOROLLARY Let N-a &G and suppose 4 is a linear character of N
which is invariant in G. Asrume (|G: N|, o(A) = 1. Then 4 has a unique
extension ;1 to G with the property that (|G : N|, o{u)) = 1, In fact, o(u) = ofd),

e b o e S
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Proof The existence of an extension is immediate from Theorem 6.26
since the hypotheses are trivially satisfied. Let v be an extension of 4 and «
choose beZ, with b|G:N| =1 mod (o(d)) Let g PIONL Then py =
AMON 4 |n particular, o{u) = o{d). On the.other hand, (v = 1yl
so that v e Irr{G/N) and " peeet el

'u-m = (‘,qm)tﬁml -1, o P
Therefore, oly) = o{A)

For uniqueness, sSuppose ¢ is an extension of A with (o{7), |G: Ny = L.
Then (o(u?), |G: N|) = 1 and (uf)y = 1y 50 that pf € Ire(G/N), It follows that'
4t = lgandu = susdesired. ' |
(6.28) coroLLarY LetN=G with G/N solvable and suppose 9 € Ler{N)
is invariant in G. Assume (1G: V|, o{9)%1)) = 1. Then 9 has a unigue ExX«
tension, ¢ € Ler(G) with (|G N1, o)} = 1. In fact o{y) = o(3). :

Proof By Corollary 6.27, let 4 be the unique extension of 4 = det 9 to;
G with (|G : N1, o) = L. By Theorem 6,25 and Lemma 6.24, let x be the
unigue extension of § to G with det x = u Then alx) = o). = o(d) = o(3);

. 1f o catends 9 and (|G N, olxo)) = 1, let wg = det{xg) Thux :

o
L
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and hence o = 4 by the uniqueness of u, Then x, = ¥ by the uniquensss.
of .z, This completes the prool, [ TR :

Ib
i

Note that since of9) and K|} divide | N|, the condition that "’
(1G i N1, o(3)8(1)) = 1
in Corollary 6.28 will be nutomatic if (|G: N, IN|) = 1. The hypothesis of
solvability in Corollary 6.28 will be removed in Chaptet 8, o !
We shall give vne further extendibility eriterion now. It can be used when
G/N isa p-groupforp # 2. Unlike the previous results, this c.o_ndilion isinde~
pendent of character degree. : ‘ -
(6.29) DEFINITION Let x be a characler of G and let p be a prime. Then y is
p-rational if there exists an integer r with p.tr, such that x@) € QLe*™/7] for

every 4 € G. o .
We use the notation @, = Q[2**] for 1 < keZ. As is well known,

Q, O =Q, whered = (k, ). By Lemma 2.15, it follows that yig) e Q5
for every character x of G und svery g € G, Write |G| = n = p"m, with p ¥ m.
It follaws that y is p-rational iff all of it values lic in Q.

Lat #,{G) denote the Galois group #(0,/0.). M ¥ is a character of G,

let ¥* be defined by x°(g) = x(@)’ foro € #(Q,/Q), Then y is prational iff x* =
2 for all @ &% (g) (Nots that by Problem 2.2, 2" is nocessarily a character, In-

particular, # (G) permutes Irr{G).]
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From Gulois theory we have #(0,/0,) = #(@,./Q), where as above
n = mp® and p.tm. This isomorphism is the restriction map. It follows if
p¥2and @ > 0, that #2%/* iy not invariant under %(Q,/Q,) and hence if
p # 2and A alinear characior of G with p|o{d), then A is not perational. Also
” whﬂ‘r‘l{ P :- 2, we have #,(0) = ¥(Q,./Q) is cyelic, ‘
.~ Wehave one more general reark. IfH < G, then Qy S @) and s0 7
is defined for characiers y of H with o e % (G), l £ ~ration:
B Tt e EW,(GJi AG). It follows that y is p-rational

{6.30) THEOREM LetN o GwithG/Nap

6. THEX group, p # 2. Suppose § e Ire(N)
' i8 invariant in G and p-rational, Then 9 has a unique perational | i
constituent z. Furthermore, xy = 3, fue preational rreduclbl

' Proof Use induction on |G N|. We suppose |[G:N|> L Lat K=
with N K and [K: N[ = p. By COmIlar;pﬁ.ZO,l 8 carll be extended l?)
ne ) Since p # 2, ¥(K) is cyclic and we choose & generator ¢ Now
*& Irr(K) and (n®)y = 9% = 9 singe 9 i¢ p-rational, By Corollary 6.17, we
have n® = nd for some (linear) 4 € Lr(K/N). '

i 2= I, then #” = v and x is p-rational. Suppose that this is not the
case, Thgn p = o{djand since p o 2 wo have A* # A and 50 A7 = A7 for some
meZ, with m @ | mod p. Choose be & with (1 — m)h = | mod p und et
=AMy,

Since Ay = 1, we hive oy = qy = 9. Also, mb + | = b mod p and Lhus

Yra @) a = Ay =y

.and ¥ is p-rational, Thus in any case, 8 has a perational extonsion, y e lrr(K)
o If p € Irr(K) i any p-rational extension of 3, then ¢ = yu for some uniquc.
6 Ie(K/N) by Corollary 6.17. We have @ = ¢° = (Yu)f = ¢y = " and
Ht‘;ma ;';' = 4, Since p # 2, it follows that p 4 o) and thus u = 1. Therefote
Ll L]
. .;NOT let g€ G. T? 9 ()" = (I = y# and 9 = § s0 that ¢* is & p-
' rational extension of 3 to K and by the ' :
* =  and ¥ is invariant in G. y the preceding paragraph, we have
e '?',mw |G: K| < |G N|, the inductive hypothesis guarantees that 4% has
& unique p-rational irreducible constituent y und that y, =  so that xy = 9
Let v be any p-‘rutional irreducible constituent of 3% We show g, = x:
“Let ¢ be an irreducible constituent of (xo)x. Since (xo)y is 8 multiple of 9, It
Hows that @y = 9a0d @ = W for some ve Les(K/N). Since K/N < Z(G/N)
iwe have v = viorg e Gand thus pf = ¥r#v® = v = pand ¢pisinvariantin Gt
It follows that (o) = e for some integer ¢ and thus ¢ is p-rarional singe
: k) = (1/edyolk) for k¢ K. Thercfore ¢ =  and x, is-u constituent of % 1t
“follows that ¥o = ¢ and the proof is complete, | .
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We can use some of our results on character extendibility to prove Tate's
theorem. This result, which was originally proved in an entirely diflerent way,
serves as a “booster” for transfer theory, as will be explained.

We define ©7(G) to be the unique minimal normal subgroup of G such
that G/O®(G) is a p-group (for the fixed prime p). Similarly, let A%C) be the
unique minimal normal subgroup of G such that G/AKG) is an abelian p-
group, [Note that A™G) = G'O%G)]

Let PeSyl,(G) and let N = P, Then N is said to control p-transfer i
N/AP(N) = G/ANG), or equivalently, N m A"(() = A®(N). Several of the
standard transfer theorems assert that under suilable hypotheses, certain
subgroups N control petransfer. [Usually, N = N(W) for some subgroup,
W« P.] Tate's theorem guarantees that whenever N/AF(N} = G/ARG),
then also N/OQF(N) 2 G/OXG). .

(6.31) THoomwm (Tate) Let PeBSyl(G) and N = P, Suppose that
N ~ AFG) = A"(N). Then N ~ ONG) = O/(N).

- A1)
o
.4’(#)

w"w)

Proof {Thompson) Since N = P, we have NOG) = G. Let U =
N = O(G) s0 that U=a N and N/U = G/OXG) is a p-group, Thus U =

QFN). Assumc U > OF(N) and choose V -<a N, ¥ 2 OF(N) such that U/V
is a chiel factor of N. Let 2 be a nonprincipal linear character of U/V, Since
U/V is n chieffactor of the p-group N/QF(N}, weconclude that U/V = Z{N/V)
and hence A is invariant in N.

Let § = A2"9 If y is an irreducible constituent of § and x e N, then since
A¥ = A, wehave

[ 91 = Dtyo A = [(¢w, A1 = (3o, &) = [x* 91,
Since P < N, il follows that we may write
I=Y a:A
A
as A runs over the sums of the orbits of Ire(OR(G)) under the action of P,

Now 1) = |OG): U] m |G : N|isprime to p, 1t allows that for some A,
we have p ¥ aaand p 4 A(1), Write A = ¥, .o x where @ is an orbit, Sinee y(1)
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is constant for ¥ € ¢, we con¢lude that p & {@). Since @ is an orbit under the
p-group P, we have (0] = 1 and A = x, where x & Itt(Q?(G)). ¥ is invariant
undgt P, p k x(1) and p ¥ [9, 13

Since PO®G) = G and y is invariant under P, it lollows that x is in-
variant in G. We claim that y is extendible to G. By Corollary 6,28, it suffices to
show that p ¥ x(1)n(x). Wow OF(G) has a normal subgroup, ker(det 1) = K,
such that |OP(G): K| = olx) and O™G)/K is abelian, Since OF(OF(G)) =
O%(G), it follows that (G} has no nontrivial p-factor group and thus p ¥ ofx).
Since p ¥ x(1), Corollary 6,28 does apply.

Let i be an extension of ¥ to G and writc

‘ph‘ - z bpw-

walre(M)

We have o
- Y. b, [0, 41 = [Wy, 4] = Lty, 41 = [x, 51,

which is prime to p. Wo may therefore choose ¢ ¢ Irr{N) with p ¥ [y, 4], In
particular, [y, 4] # 0 and since 4 € Irr(U) i3 invariant in N, we conclude
that @y = ¢4 and thus ¢(1} = ¢ = @y, 4] Is prime to p. Since V = Ker A
and @y = ed, we conclude that V' & ker ¢ and ¢ € [rriN/V), Since N/V is
p-group, ¢(1) is a power of p and hence ¢{1) = |,

Now N/ker ¢ is abelian and thus A%N) £ ker p. However, U =
N ~OP(G) € N 1 AP(G) = A?(N)and therefore U 5 ker @. Since o = eA
cGHowa that 4 = 1. This ocmtradwts the choice o' A and completes 1he proof

of thit theorem, | )

We discuss one Iurther topic in this chapter, Let N - G so that G per-
futes Irr(N) Ttis ‘'also true that G permutes the et of conjugacy ¢lasses of N
and'it is natural to consider the relationship between these two actions. It is
not the.cass that they are nmsanly permutatlon isomorphie although they
are clouely related.. |

(632) THEOREM (Brauer) Let A be a group which acts on Irr{G) and on

the set of conjugacy classes of G. Assume that y(g) = y%g*) for all x < Irr(G),
acd and g € G; where ¢ a ‘is an element of Clgl". Then for each 4 € A, the
number.of fixed lrrodumble characters of @ is equal to the number of fixed
classed,

Proaf Let y and ", be the irreducible characters and econjugacy classes
ofGI‘or 1 24 j <k Choose g;€ X, and write g = g, e = o, Let
= {¥dg ) thc character table ol' G, viewed as a malrix,
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= # = y,, M. which case
. For a& A, let Pla) = (pi), where py = 0 unless ¥ X, 30 WRIC
pyy= 1. Similarly, define 0la) = (g,)), where gz« 1 if 2 o= 1ty med Js.mrcr; -

otherwise R P N LY I 'R
The (u, ¢) entry of the matrix Pla}X is

[T LN

| IREEY! .
ZPHIII{GJ*’IM“WJ..,‘. L s i
: R N
. sinee only when x, = 3, 18 pu # O Simnilarly, the (4, ) entry of the matne
XQlu)is Lt oo
a by o, et
;ZJGJMJ.; = xﬂ‘gu )

i ng,=g% 'isg,# 0

Smc"f*l::ngyﬂfhcgé ofgt.hc thénrem now implics t.hat P()X - X Q](:z). '1311{5
Q) = X7 P(@)X since the orthogonality relanqns guarantee ht at b;f-
nonsingular, We conclude that tr Pla) = Qfa). Sinee tr Pa) 12dt c npmac
of & IrrG) which a fixes and tr Q(a) is the number of la-ﬁx conjugacy

classes, the proof is complete. |

(6.33) comLL;mv Under the hypotheses of Theorem 632 tl3c numbers of
orbits in the actions of A on the irreducible characters and conjugacy classes

of G are equal. ; |
Proof Apply Corollary 5.15 10 the result of Theorem 632, § ;-
ply Theorem 6.32 to obtain information about the characters

i 2oar - '

We may ap
of “Frobenius groups.”
(6.34) THEOREM Lot N = ¢ and assume that Cg{x) = N for every
1  xc N, Then .

i : N and % e Ird(G).
(1) For @€ lr{N), with ¢ # 1y, we have 1gly) =
(b)) For y e lIrr(G) with N & ker i, we have x = ° for some @ € Ire(N),
X % e Irr{G), it suffices by
Let @ € Irr(V), @ # 1y, To show that ¢ & lre{G), '
Th;:?n{ 611 1‘5 show that Ig(e) = N. In order 10 prove {a), therefur‘c,‘ u!
suifices to show that no clement ge G — N can normalize any nontrivial

inoacy class of N and then apply Theorem 6.32. o
mnjst:f;pgse then, ¢ € G — N normalizes &, a class of N. let x& X, Then

xte X and thus x? = x* for some ne N. Thercfore gn' & C(x). Since’

gn~'¢ N und x & N, the hypothesis yields % 'm 1 and thus 2" = {1}, This

I'Qves (1), i . )
y NO\{N‘ )1et yelht(G)with N & ker 3. Chooas an irreducible constitugnt ¢

of gy with @ # 1. Then y is a constituent of ¢’ which is irredueible and so-

q:g'-x.Theproofisnowcomplm. | VIR R

... Problena : -

It turns oy that the groups G satislying the hypotheses of Theorem 6,34
and for which ¥ < @ are exactly the “Frobenius groups™ which are dis-
- cugsed at some length in the next chapter.

| Problems

: " (60) Let N =G and $elre(N). Show that 9% € [re(G) iff 14(9) = N,

6.2) Let N =1 G and suppose G/N is abelian, Let C be the group of linear
" characters of G/N so that C ucts on [rr(G) by multiplication. (See Problem 2.6.)
Let 3 € Ire(N), Show that

f&a“f E‘:x“

tm1
where fis an integer and the x, € Irr(G) constitute an orbit under C.

Hint Let x € Ire(GY. Then {xy)° = py, where p is the regular character
ol G/N.

b followitrg arc equivalent:

(@) xs=ed withe* =|G:N|;
() x vanishes on G — N and ¥ is invariant in ¢}
(€) is the unigue irreducible constituent of 3% and J is invariant in G,

;, Note In the situation of this problem, we say that x and 9 are fully
ramified with respect 10 G/N.

I” (6.4) Define #G) = (I & G|o® e Irr(G) for some @ € Irr(H)}. Let H(G) =
("} #(G). Show that if G is an M-group, then H(G) Is abelian.

Note By Problem 5.12, Z{G) € H(G) for all groups, G. Of course, (@)
s characleristic in G,

:f\' (6.5) Lot H(G) be a5 in the preceding problem. Show that H(G) centralizes
N/N' for every N <2 G and conclude that il G is solvable, then H{G) is nil-
polent.

Note In fact we may conclude that if & is solvable, then H(GY <
H(G)), This is 30 because a group which is nilpotent of class = 2 nccessarily
has a characteristic abelian noneentral subgroup; namely, the next to the last
nootrivial term in jts lower central geries.

Hint 1f p € Ire{N) with N -2 G, then H(G) < I5(¢). Use th\m to show that
INVHG & N

AT ST

SR O Ty e

ek e
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(6.6} Let G be solvable and assume thal overy y € Irt{G) is quasi-printitive,
Show thal G is abelian,

(6.7} Lol N-= G and assume that /N ix solvable, Lel ¥ ¢ Ir{G) and
8 & Trr(N), with [y, #] # 0. Show that x{1)/9(1} divides |G ; M|,

Note  Theconclusion of this problem is valid even if G/N is not solvable.

{6.8) Suppose thal & has cxactly one nonlinear irreducible character. Show
that G’ is an elenienlary abelian p-group.

6.9y (Darhoff) Lt 6 be an M-group and suppose N =1 G with
(INI.1G:N|) = 1, Show that N is an M-group.

Hint Let Jelr{N). Find If = § and Aelrr(H), A1) =1 such that
[(A™)y, 8] # 0 and A% € Irr(G). Use Problem 6.7 to show that A¥(1) = %(1)
and then use Problem 5,8,

{6.10) Let N = G with (|G: N[, |N[) = \. Suppose that every subgroup of

G{N is an M-group. Show that G is a relative M-group with respecet to N,
¥eal, b m Anradts wf 1 Pﬂ'ﬁ":?.o&a!« i 10t , 14.-C‘f3’s :&.L.,',h.;_

(6.11) Let A« G with A abelian. Supposc ¥ e Irr{G) i & monomial char-

agter. Show that y is a rclative M-character with respect to A.

Hint Write y = A% with 4 a lincar character of H = G. Then ever
irreducible constituent of (4 4.,)" has multipligity 1, 2§t &= Cral

Note Since Problem'6.11 is false if 4 is not abelian, it does not follow Lot '«

J.)Z"r,{.‘:,. Mool o s Ly

Problems o

number of classes of Feelements of €7 is equal to the number of ¢ € frr(G) with
values in F.

Hint  Let 8 be a primitive | G |th roat of unity, Let ¥ be the Galoit group
of F((s] over F. Define actions of & on Irr(6) and on the set of classes of G.

Note Problem 6.14 is false without some assumption on G. Counter-
examples with GG a 2-group and G of odd order have been found by Thompson
and Dade respectively,

(6.15) Let F be an arbitrary field and let ¥ = G. View F[N] < F[G]. Show
that J(F[NT) = J(F[G)). (See Problem 1.4.)

(6.16) Let I be a p-group and @ a g-group, where p and g are dishingt odd
primes and P € Aut(Q). Show that | P| = }| Q| by carrying out the following

steps.

() Tusuffices to assume that @ is elementary abelian, that is, is an F(P}-
module with F = GF{q),

(o) It suffices to assume that @ is an irreducible F[P]-module.

{¢) Wemay assume that P is not cyclic, so that by theorems on p-groups,
it follows that there exists A =a P with A elementary abelian of order p*.

{(d) Q is imprimitive as an F{P}-module and we may choosc i & P,
|PiH| = p,withQ = 3 - ., W, cach W an F[H]}-module with al{ | W} equal.
(e) Let N, be the kernel of the action of £ on W. Then

i (and is not truc) that an M-group is nccessarily a relative M-group with < ¥¢ii : " (Pl=p [lIH: NI
respect to every normal subgeoup, Ry ke P , ,
W (I: (.:,}{r) Complete the proof by indugtion.

{6.12) TLet K/L be an abelian chief factor of G. Let g elrr(L)and T w I (). ™+ 6
Assume that KT = G. $how that one of the following occurs: R

@) @ eTrmK),

Hint Clifford's theorem (6.5) is used in (d). Show that F[A] cannot have
a faithful irreducible module,

|_mml e e we s wel mml

(b) @" = 9 for some 9 € lrr(K), where ¢ = | K L|.
(©) @ =5t 4, where the 9,&1rr(K) are distinct and = |K: L.

Hint Use Problem 6,2 and the ideas in the proof of Theorem 6.18,

{6.13) Show that the number of real ¢lasses of a group G is equal to the
number of real valued x € Irr(G).

Note It is easy Lo see that if | G| is odd, then 1 is the only real element. 1t:

follows that Problem 6,13 generalizes Problem 3,16,

—

(6.14) Let F be a field with @ = F & C. Say that ge G is an F-element if
x(g)e F for every y € Irr{G). Let G be a p-group with p 3 2 and show that the'

Notes The result of Problem 6.16 may be stated as a theorem in arith-
metic, If Q is elernentary abelian of order ¢°, then |Au(@)] = M=t -
and hence this number i not divisible by p* if p* > 44"

. The induction in the previous step () would not go through 1o prove the
weaker theorem that | P| < |Q/.

{6.17) Let N «<a G with G/N cyclic, Let J & [rr{N) be invariant in G and as~
sume that (1), |Jg' : N|) = 1, Show that 9 is extendible to G.

, Hint Show that G/ker(de'g 9} is abelian.

" "Note The result of Problem 6.17 is true without the assumption that

BOLIG N =1 |
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(6.18) Let N =a G and suppose G = NH with N " H o 1. Let Selrr(N)tte
invariant in G and assume (H(1), |G N|) = 1, I H is solvable, show that 9 u‘
extendible to G. ..

ig solvable. However, even if H is abelian, the co
cannot be removed,

(6.19) Let N =1 G with G/N a p-group and let 3 € Irr{N) be iin:ériant and p-
rational and assume p .t of9) and p ¥ H1). Let y be the extgnsmn ¢':|f oG
with p t o{x) (which exists by Corollary 6.28.) Show that x is p-rational.

(6.20) (Thompson) Let EX(G) denote the minimal normal subgroup of‘ G
such that G/E*(G) is an elementary abclian p-group. Suppose N 5 G with
p A 1G:N|and EF(N) = EP(G) n N. Show that Q"(N)__ﬂg OR(G) N N.

Hims Sharpen the proof of Theorem 6.31 as follows. Choose A so that
AP = 1y, Let @ = #(0)5/Q,) and let 4 € Syl (#). Now A permutes I‘rr(H) for
all HS G and 1 is invariant under A. Now proceed with the ‘proof of
Theorem 6.31 but arrange matters 5o that y,  and ¢ are mvlalrm_nt’under A

621) Let 1 = Hy<a Hy =1+ =a H, m G, Assume that H/H,., is non-
abelian, Show that therc exists y € 1rr{G) with x1) = 2" .

Hint  Use Corollary 6.17.

ndition (%1), 1G:N) = |

f L i

re

Note The resull of Problem 6.18 is true without the assumption that 5 -

7 T.1 sets and exceptional characters

Suppose we know that G has a subgroup H with certain specified prop-
erties and assume that we have some information about how A is embedded
in G. How can we draw conclusions about G? We might try inducing the
irreducible characters of H to 6. Usually this gives litlle information since
if | H| 1s much smaller than |G|, the characters 9% tend to have large numbers
irreducible constituents with large multiplicities, even if 9 ¢ Ire(H).

in situations, however, one can find a difference of two characters
3 — 8y of H where (9, ~ 9,)° = y, — x, and %1 and y; are under control.
In these situations, information about Trr(G) can be obtained.

The earlicst example of the use of this technigue is in the proof of
Frobenius® theorem. We shall give this before discussing any of the later
refinements of these jdeag.

In Theorem 6.34 we considered grou
such that Cy(x) = Nforall ] & x e N, It follows immediately using Sylow's
_theorem and the fact that nontrivial p-groups have nontrivial centers that
(NI, |G:N))= 1, By the Schur-Zassenhaus theorem we conclude that
thercexists H = Gwith NH = Gand N~ H = 1.

In this situation, let g € G — H, Write g=xnwithxecHand1 % neN.
IWyeH~H® then y e H* and y = " for some h {1, Since Y€ H, we have
[h,n} = h™!h" = k= 1y ¢ H, Since N =2 G, we have [hnleH N =1and
heCm)s N. Thush = | and yw= 1. Weconclude that H i~ H9 = |,

B:-1(7.1) DEFINITION Let H  G.with| < H < G, Assume that & HF = 1
v iwhenever g € G — H. Then H is a Frobenius complement in G. A group which
- -contains a Frobenius complement is calted a Frobenius group.

ps G having a normal subgroup N
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We have proved in the foregoing that groups satisfying the hypotheses
of Theorem 6.34 with } < N = G arc Frobenius groups. Frobenius® theorem
is the converse of this,

(7.2) ‘TMeOREM (Frobenius) Let G be a Frobenius group with comple-
ment H. Then there exists N o Gwith HN = Gand Hm N = |,

The fagt thal the group N of Thearem 7.2 salisfies the condition that
Cglx) = N forall 1 # x & N is not difficult to prove and is left to the reader.

Before beginning the proof of Thearem 7.2, we mention the curious fact
that it is trivial to find N, Whal is hard is to prove that N is a subgroup,

{7.3) Lemma  Lel A be a Frobenius complement in . Let
N = (Gg UH)u{l}.
xe@

Then |[N| = |G:H.IfM < GwithM s H = 1,then M £

Praof Since H = Ng{(#H), there are |G: HY distinet subgroups {0 3
form H*. These contain exactly |G : H|(|H| - 1) nonidentity elements, Th
remaining clements of G constitute the set N. We have

IN[= |G| =G H[(|H| - 1) =Gl = |G|+ |G:H|=|G:H]|.

HMaGand Mn H=1,then M n H* = 1 lar all x& G and thus
M £ N.The proof is complete. Il

We mention that cxeept for some special cases, no proof of Theorem 7.2 is
known which does not use characters.

{7.4) LEMMa Let H bec a Frobenius complement in G. Let # be a class
function of A which satisfics $(1) = 0. Then (9%),; = 4,

Proof Letl # hell Then
§9hy = (1/|H)) Y, (xhx™ "),
xcG

If 8%xhx~") # O, then | # xhx~'e A ~ H* ' and x & H. Then §°(xhx~"') =
Sih). We have
YRy = (/| H1) Y k) = S(h).

el
Since 3%(1) = |G H[3(1) = 0, the proof is eomplete, 1

The proof of Theorcm 7.2 may be motivated ;?folluws. Assuming the
theorem is rue, let ¥ ¢ Trr{G) with N < ker . Then x; € Irr(H). Now given
A = p € Ier(H) we try (o find y e lrr(G). We do this for each ¢ € Irr{H) and
check that (\ker y is the desired normal subgroup.

T. {, sats and excaptional charactars 10

~Proof of Theorem 7.2 Lot 1y # @€ lrr(H) and write 9§ = @ — o{l}1,
a0 that (1) w 0. Now [9%, 9%F . [9, (8%),,] = [9, 3] by Lemma 74, Thus
[9¢, 997 =1 + (1), Now [3% 1,] m [9, 14] = — (1), We may therefore
write 3% = @* — o(1)15, where #* is a class function of G, [¢*, 1] = 0. and
I (1) = [rp @*] + (1%, 80 (hat [¢*, p*] = 1. Since 9is a difference of
characters, s0 i3 9% and hence p* ia a dlﬂ‘crencc of characters also. Since
[@* »*] = 1, it follows that 4 @* & Irr(G). Furthermote, if h & H, then

@*(h} m 8%(h) + (1) = ) + p(1) = ih)

In particular, *(1) > 0 and thus ¢* < Tre(G),

For every nonprincipal ¢ & ler(H), we have now chosen an extension,
@* eIrr(G). Let M = (), ker p*. 1{x e M ~ H,then @lx) = p*(x) = @*(1) =
(1) for all ¢ €1rt(H) and thos x = 1, By Lemma 7.3, M S N,

Conversely, if g € G lies in no conjugate of H, then

‘ P*g) — @ll) = 8%) = 0

and g e ker ¢*, Tt follows that M = N and hence the normal subgroup M
satisfies |M| = |G:H|. We have |MH| = |M||H| = |G:H||H| = |&] and
the result follows. |

The normal subgroup whose existence i guaranteed by Theorem 7.2 is
called the Frobenius kernel of G. By Lemma 7.3, it is uniquely determined by
H. We mention without proof that in fact a Frobenius group has 4 unique
conjugacy class of complements and a unique kerncl.

An entirgly cqulvalc:m version of Frobenius® theorem may be stated as
follows.

(1.5) coroLLARY Let G be a transitive permutation group on £ with
character x, Assume xg) =1 for all ge G with g # 1. Then the set
{p= Glxlg) = 0} w {1} iz a transitive normal subgroup,

Proof Letacfland assume |£2| = 2. Ifthere existsany g€ G, g # 1 with
xg) # 0, then G, is a Frobeniug complement, By Thegrem 7.2. and Lemma
73, {geClry) = 0} u {1} = N is the Frobenjus kerpel, It iz transitive
since NG, = G, |

We shall now d:acuss some of the ways that the ideas in Frobenius® proof
have been extended and used in othcr contexts, We need to introduce some
terminolngy !

(7 6) DEFINTTION Lut JL’ & G he a subset. Then X 18 & Ti. ser (trivial
intersection set) if for every g € G, either X¥ = X or X7~ X = {1}.
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(7.7 LEMMA Let X beaT.I setin GG and let ¢ and 3 be clags fungtions on
N = Ng(X). Assume that ¢ and 9 vanishon N — X and that §(1) = 0. Then
9%(x) = Hx) for all xe X and [9% ¢“) = [3, ). . .11 Y

Proof Let x € X. Then 3%(x) = (1/IN]) %,,ue 8°(xy ™). If 8°(yay ™) ok
0,then yxy~' € X A X" and yxy~' » 'L Itfollowsthat y € N and -9°(yxjf';')
= 9(x). The first statement now follows. ~ = "' N

Wehave [3%, ¢7) = [(8%)y, ¢]. Since ¢ vanisheson N — X and B —8
vanishes on X, we conclude that [(3%)y — 9, ¢] = 0 and hence [§7, §9] =
[3, @] as claimed. I L Ll

Because of the requirement that 8(1) = 0, the preceding lemma cannol be
applied if 8 is a character. We usually take 3 10 be a difference of two ct}a:-
acters. Such a differénce it called a generalized character. Note. that 9 3.8
generalized character of G iff [9, ¥ eZ for ali y € Ier(G). Also, the set of
gencralized characters of G is a ring.

We are now ready to consider groups whosc Sylow 2-subgroup Pis
generalized quaternion. if |P| 2 16, we shall prove the theorem of Brauer and
Suzuki which asscrts (among other: things) that.such a group cannot:l?c
simple. This theorem is also true if | P| = 8 but it is more difficult to prove n
that case. .

We shall use the following facts about a generalized quaternion group P:

T Hnwwﬁ‘n TS

i
(a) P has a cyclic subgroup of index 2; . . .":/'
(b) IP:PJI = 4: i . l:":‘m'!‘\uu T .
{€) 1P} =2; ‘ ; g

H : . . ' 13
(d) noncyclic subgroups of P are themselves generalized quaternion;, , -

{¢) P contains a unique involution.
We shall need 10 usc the result of Problem 3.9 in t‘hc p_roof.

(7.8) THEOREM (Brauer-Suzuki) Lel P € 5yly(() be generalized quater-
nion with |P| 2 16, Then there exists N =2 G with |N| odd and such that
G/N has 4 normal subgroup of order 2,

Mote that possibly N = 1 in 7.8..We first prove the following weaker
version. The full result will then follow easily. : ‘

(7.9) THEOREM Let P € Syly(G) be generalized quaternion with |P| 2 16.

Then there exists M = G such that | M| is even and G/M is nonabelian,

Proof Let H 5 P be cyclic with |PiH| =2, We have I & H and
|P'| w |P|/4 = 4, so that P' > Z{P) and hence Co(f) = H. Let C = ColF)
and N = N {P). Now PeSyl;(N)and C <o Nsothat H = P C e Syly ().
Since a Sylow 2-subgroup of C is eyclic, it follows (for instance from Burn-
side’s transfer theorem) that C has a normal 2-complement K and K=N.
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Now N/C is isomorphic to a subgroup of Aut{#’). Since P is 4 cyclic 2-group,
it follows that N/C is a 2-group. We therefore conclude that N = KP. Since
C = KH we have [N C| = 2.

Let U= P with [P U| =2 Let X = C—=UK. We claim that X is a
T.J, set and N = N{X). Now C/K = H is cyclic and UK/K is its unique sub-
group of order equal wo | U|. It follows for y € C that ye X if o{yK) in C/K
exceeds [ U7}, We conclude that ye X iff (2[U])|e(v)

Now |F'| = 2|U| and P =a C. Since £’ contains all elements of C of
order 2| U[, it follows that P = (x> forall xe X. lf xe X n X¥ then P' =
{x> and (PF = {x). Since |P’| = |(P'P|, we have P' = (F'¥ and geN.
Since clearly N = N(X), it now follows, as claimed, that X is a T.1, set and
N = N(X). Since | P'| z 4, we also have 4|o{x) for everyx e X,

Now C/UK is cyclic of order 4. Let A be a linear character of C with
ker & = UK. Lot 9 = i¥ — (1)". Since ker A¥ e« UK < ker(1.)Y, we con-
clude that $ vanishes on UK and in particular 3(1) = 0. Clearly, 3 vanishes
on N — C and hence § vanishes on N — X, We may therefore apply Lemma
7.7 with @ = 3 to conclude that [3%, %] = [9, 9]

To compute [4, 9], observe that (1) = 1y + u where ker i = C. We
claim that A ¢ 1rr(V). Otherwise, ¥ is 2 sum of linear characters and P’ ©
N' € ker A¥ = UK, which is not the case. Thus 8 = 4% — 4 — 1, and
[3,8=3

Now [89, 997 = 3 and [99, 1;] = [8, 15] = = 1. It follows that

= dx trzlon

where x,, ¥2 € Ire(G) are not principal. Since 3%(1) = 3(1) = 0, we conclude
at the signs above are opposite and without loss we may writc

=gy — a2 — g
unless g is conjugate to an elernent of X, we conclude
) ‘(‘1) 0ig) — xalg) = if 44 olg)
Since P has a unique invelution, it follows that G has a uhique conjugacy
class of involutions. Let %, be this class, Define the class function ¢ on G by
; Plg} = Hx M)z y €y, xy = g}

*

If p{g) # O, then g = xyfor involuions x and yand hence g™ = yx = g~ .
" Tf ofg) is even, let & be the involution in {g). Then (x, o) is an abelian, non-
) cyclic group of order 4, Since P has no such subgroup, neither does &
by Sylow's theorern. We conclude that ¢(g) = O if o(g) is even. Thus
“tp_(g)(x,(g) = Za(g) — 1) = Ofor all g e G. Therefore

\. (2) f% Xy = Xz — la] =0 -
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In €[G]. et K, be the class sum corresponding to the conjugacy class X7,
Then in the notation of Problem 3.9,

KlKl = ZHIHK\H

and if g e ¥, then @ig) = a,,,.
By Problem 3.9 we have for g g #°, and xe ¥, that

wig) = ayy, = (1, G T dx?laha).

xelee(G)

Since x(x) and @lg) are teal, we may rewrile this equation as
(G111 = ) ot () /{100

X® lrr(

(1GI/1 1 [P}, 1] = =) /A(l)

and

for all y e Tre(G),

We conclude from Equation (2) that

2030 (1) — 20 2a(1) = 1.
From Equation (1) we have xo(x) = x,(x) — 1 since d F o(x) and also y,(1) m
x.(1) — I, Substitulion into the preceding equation yields
21X xy(1) = (al) = D¥, (L) = D= 1.
Simplifying this, we obtain
{xs(0) — xu{1))* =

and we conclude thal x e ker g,.

Since o(x} = 2, we have |ker y,[ is cven, Now, y,(1}= | + yall) 2 2
and thus G/ker », i3 nonabelian, The proof is now complete with M
ker y,. |

Proof of Theprem 7.8 Let U be the (normal) subgroup generated by allof - -

the involutions in G, If U has a cyclic Sylow 2-subgroup, then I/ has a normal
2-complement N and N = . In this case, U/N =3 G/N and U/N I8 a cyclic
2-group. The result follows,

Assumne then that the Sylow 2-subgroups of U/ are noncyclic. We derive s
contradiction. Sinee 8|[L/|, we may choose V, with U = V < U#* such that
|V:U| = 2and 16|| ¥]. Now Theorem 7.9 applics to V and we may choose
M = V with ¥/M nonabelian and | M| even.

Since a Sylow 2-subgroup of V ¢ontains a uhique inyolation, it follows
that all involutions of V are conjugate. Since M =3 ¥ contains an involution,
it follows that M contains all of the involutions of V¥ and hence I/ & M. Thus
[V:M|=|V:U} =<2 and this contradicts V/M being nonabelian and
completes the proof. §
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By the Brauer-Fowler theorem (Corollary 4.12), therc are at most
finitely many nonisomorphic simple groups which contain an involutio.,
whose centralizer ig isomorphic to some given group C, Mugh work has been
done in recent years to find all of the simple groups corresponding to various
specific C. A key step is 10 find all possible orders of these simple groups and
this often involves character theorctic techniques related to those in this
chapter. As an illustration of this we prove the following,

(7. 10) THEOREM Let G = G’ and suppose teG is an involution with
Cg(r) dibedral of order 8, Then |G| = 168 or 360.

“ "We need a lemma, -

(7.'I 1)" LEMMA (Thompson) Let §$&8yl;(G) and suppose M = § with
|§: M) =2 Let T § be an involution which is not conjugate in G to any
clement of M. Then 14 G

Proof et G acl by right multiplication on @ = (Mg|ge G}. Then
[Q] = 2|G:S|. Now il Mgt = Mg, then grg~ " € M, which is not the case,
Thus ¢ has no fixed poinis oh £ and since (G : 5| is odd, it follows that 1
induces an odd permutation on £ Therefore, there exists A4 2 G with
|G: A} = 2 and t ¢ A, The result follows, 1 ,

“Proof of Theorem 7.10 Let D m Chf) and D € Se8yl,(). Then
Z(5) = ZD) = {t> and hence § & C(r) = D. Thus DeSyl;(G). Let M g D
be cyclic of order 4 so that 1 is the unique involution in M. Since G = G,
Lemnma 7.11 guarantees that every involution in G is conjugute (0 7.

w Now M is a T.I; set in G since if M N M™ + 1, then ve M* and thus
v'w't* and x € D, Since M <1 D we have M =M™ This argument also shows
that D = No(M),

* Let A be a faithful linear charactar of M and let 9 = (1, = 1)”. Since 12 is
lrreduclble, it follows that [9, 8] = 3. Also, (1) = 0 and 3 vanishes on
D = M. Thus by Lemma 7.7 we have [9%, 8] = 3 and also (%) = 8.
Since 9%(1) = (1) = 0, it follows that wc may write 8% = 15+ x — ¥,
whete y, ¥ & Ir(G), Calculation in D yields 4 = 97} = $%r) and we have

) (1)" a o 0m gy =d), 4=l x(t) = ¥lr),

"Let A’ deno(c the (umquc) mnjugacy class of involutions in G and define
the clags fum:tlon (p by

L. - @l@) = | {(x, Y)|x, ye X, xy = g},
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If xp = g for involutions x and y, then g* = g~ " and conversely, if x € o,
x # ¢, and g° = g~ ", then p = xg is an involution. It follows that (g} =
[{xeX|x#g g°=g '}|-f 1 #geM and g = g~ then ¢* = ¢ and
x& D, We conclude that p{g) = dforl wge M. T :

Reasoning as in the proof of Theorem 7.9 and using Problem 3.9, we have

E4§ o,
0 =Ta Lo E - ,
Since || = |G|/8 this yields a
10 wmz]_

Wr{G)
_IGHT, K
[WM“FP+m)wm

@] = [(1y = &), s]. Since ¢ has the constant valuc 4 on
4. We conclude that

'

Also, [9“,
M — {1}, thisyields [9%, @] = (1 + D+ Q) + {1 = HED

wr_wr]
@ 2 =101+ 55 -5

Write a = x(1), and b = x{x) 50 that ¢{1) = a + | and §{) = b — 3 by
Equations (1).

By the second orthogonality relation we have _
8= |CO 2 |+ xe) + YR o L+ b + (b — 3P

Since b £ Z, we conclude that b = 1 or 2.
Assumec b = 1. Equation (2) yields 28 = |G|[1 + (1/a) — (4/(a + 1))] and

|G = 2%a(e + 1)fle - [

Now 2|a(a + 1) but 2* ¥ {G| and we conclude that 22|(a « 1) Therefore.

22 ¥ fa + 1) and since 2°|| G| wehave 24t (a = 1), No odd prime divisor of
¢ = | can divide 2%a(a + 1) and we conclude that @ — 1is a power of 2 and
thuga = 9, This yields |G| =22 X 9 x 10 = 360. Ay
Now assume b = 2. Equation (2) yields 2% = |G|[1 + (4/a) ='(1/la
and : " .

. Cor : TR
|G| = 2%a(u + Dfa + 2% T

Reasohing exactly as above, we conclude ‘that a + 2 =18 and |G| -
22 % & x 7 = 168, The proof is complete. ¥ b ‘

We mention that GL(3, 2) & PSL{2, 7) is the unique group G of ordes) -

168 with G = G’ and A, & PSL(2, 9) is the unique one of order 360.
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We go back 1o the problem of obtaining information about the irfe.,
ducible characters of a group from information about a subgroup. Lﬂ.

N,

+ 1))j

.-1.',.

b
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& 2 Irr(N). We introduce the notation #[ %] for the set of Z-linear combin-
ations of elements of & (Thus Z[Irr(N)] is the set of generalized characters
of N.) -

Suppose N € G and that we can find a map « Z[.%] — Z[Irr{G)] such
that » jg Z-linear and that [*, 9*] = [, 3] for all g, 3 € Z[5]. (Such & map
is called a linear Isomerry.} In that case we have [x*, y*] = | for y £ % and
thus +x*eIrr(G), Write o(y) = 1 z0 that z()x* € Irr(7). The characlers
e(y)y* are called the exceptional chargeters associated with & and +. They arc
in ong-to-one correspondence with 5,

How tught such a map « be constructed ? An casy example of a linear map
Z[#] = Z[Irr{G)] is the induction map & — 99, This map, however, is rarely
an isometry on Z[.%]). By Lemma 7.7, we see that there are situations when
induction ig an isometry on Z[5]° = {8 e Z[5])3(1) = O}, This occurs, for
instance, if N = N{X), where X is a T.[. set and & = {x & Itr(N}| ¢ vanishes
;. on N — X}. The problem then is to cxtend a lincar jsometry from Z[%#]°
f";,-to all of Z[#].

(7.12) perNiTION  Let N € G and & < Irr(N) with |5 = 2, Suppose
"c:Z[.SF’]“’ — Z[Irr{G)]" is a linear isometry. We say that (%, 1} is coherent if
"t can be cxtended 10 a linear isometry * defined on Z[5].

If 7 is the induction map and (5, 7) is coherent, we simply say & is
coherent. It should be emphasized that cven in this case, the map « usually is
not induction, The prototypical example of cohcrence is where N is a
» Frobenius complement in G, There, Irr{N) is eoherent; and the proof of that
act is the essence of the proof of Frobenius’ theorem.

14, 1) is coherent, the map » is not always uniquely defined. Mevertheless
the set\pf exceptional characters £(x)* is uniquely determined by (&, 1),

(7.13 Let (&, 1) be coherent and let # be a linear isometry which

extends rm%exists & = 11 such that ex* & Ir(G) for all x5 The

! function £ & — Irite) defined by f(y) = £x* is one-to-one. The image of S
is {¥ e Ire(G)| [, 4] # O for some J € Z[&]°}.

Proof For x5, [x* x*1 = |, and we may choose e(y) = £ 1 so that

gy)y* € Irr(G). We claim e(y) = &) for all Ees. We have 3 == (1) -

(L) € Z[51° und thus

A = §()x* = 3" & Z[Irr(G)]".

valuation at 1 yields O = ¥(1)E*(1) — {(1)x*{1) and hence £*(I} and y*(I)
ave the same sign, Thus &(y) = e({) as claimed,

The foregoing also shows that [3, f(x)] # 0 for some §eZ[&]"
Conversely, suppose ¢ €Irr(G) and [§%, ¢] # 0, where 3e Z[#]°. Then

P
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9=3, wa,xand ¥ =Y uy* Therelore O [¥* &1 = el f(x), ¥] for
some ¥ €.% and hence 'y} = .

To show that f'is one-to-one, it suffices to show that « has trivial kernel,
This follows since if 7* = 0, then 0 = [9*, 3% = [}, ¥ and hence § =0, §

Suppose N = G, & £ Iee(N), [ = 1 and o ZLST" — Z[Ire(GY]° iz a
lincar isometry, We scck conditions on & sufficient to guarantee that (&, 1)
is coherent, One such condijtion is that all y £ & have cqual degrees. Although
this is not hard to prove directly, we shall derive it as a corollary of the follow-
ing more general resull of Feir,'

The main point of Feil's theorem may be summarized as follows, List the
degrecs (1) for ¢ € & in increasing order. Assume that the smalle?
divides all of the others. Then & is coherent if the degrees do not increas
rapidly.

(7.14) ThHEOREM (Feity Let N = G, % = 1rr(N) and let v Z[&]) =

Z[Ire{GY]" be a linear isometry. Suppose & = &, U [y} where (%, 1) is
coherent. Assume that there exists W € &, such that y(13]x(1} and

1
1 — N2
) < 55 T )

Then (&, t) is cohercnt,

Proof et Z[5,] — Z[1rr(()] be a linear isometry which extends 1 on
Z[#5])". We shall define x* so that the map » can be extended to all of Z[#]
by lincarity.

Let (1) = dy(1) so that y — dir e Z[ 57" Defing A by
(m (x—dp)y = A — dy* + T bE"

5 ¥n
where [A, £*] = 0 [or all £e 57,. Of course, A is a (possibly Q) gencralized

. character of G and all b, & Z. We shall show that [A, A] = | and all b; = 0.

MNow

I+ d® =[x —dy). (x — d¥)] = [(x = &), (x — d¥)']

and thus
1+d=[AA]+ Y b3+ (b —d)
SE W
Therefore
(2} (A Al + Y bt =1+ 2db,, \

Furthermore, since © maps into Z[Irr(G)]°, we hf:l\’e (¢ — dy)(1) = Qand thus
{3 0 =73 B 4*1) — a*(1) + A1)
:
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For &e &y let = Y(1)f = &)y € Z[#,]°. Then
(2 (x — d¥)] = [E. (x = d¥)] = d&(1).
Therefore
di(1) = [E7, ) byn*] — d[=", y*] + [E5,A)
= Y()b, = &b, + dE(1) + O
since 2' = (1)E* — (1, We conclude that
¥(1)b, = S(1)h,.
Now define it = by/i(1). We have then

4) by = péil)
for all £ & &,
Also, since 21} = 0, wc have
Y1) = qO™(1)

ancj v.ac may write
() §*(1) = (1)

for all £ = 57, and fixed « o 0.
By hypothesis we have

(®) 2d§(1)* < );,f(l)z-

Suppose u # 0. Then by (4) we obtain
2dby? = pH2 (1)} < @ T EIP = 3 b2
and therefore
1+ 2db,? =Y b2
Now (2) yields '
[A Al + 24db,? < 2 db,.

Since b, is an integer #0 (since 1 # 0)and [A, A] = 0, weobtain A = O and
by = 1. Thus A{1) = 0 and (3}, (5), and (4) yield

dir(l} = 3 b &(1) = u Yy &1
Since by = 1, 4 = 1/(1) and thus
i dg(1)? = 3 §1)°.
This contradicts (6) and proves y = 0,
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It now follows that all by = 0 and (1) yields
(x — dw) = & — dy* ‘
. Ll
From (2) we have [A, 8] = | and we extend » to Z[#] lincarly by defining

R oo A . .
* We now show that « is a lineat isometry on £[5] and that it extends 7. If

B e Z[#]°, with [3, ¥] = a, we can write
9= aly = di) + &

where ¢ & Z{ ¥ 1" Then
9'=u{x-dl.b)"+q:‘=-a(x——dw)'+rp‘-9' |
is an i it suffices 1o show [¢*, v*]
. « extends 7. To show that » is an {sometry, 1t sutic ’
a_n ‘I‘:Lhri ;o?:a?v e M ved, we already know this, Since [(A¢*]=0 for.
E- € .9‘:., and [A, A] = |, the result now foltows. ‘

& < Irr(N) with || = 2. Suppose
L st ( )that all y.& & have equal

Lo

7.15) COROLLA j /
(-::Z[??’]“ — 2{1rr(G)] is & lincar isomeLry. Suppose
degrees. Then (¥, 1) is coherenl,

Proof Use indugtion on n = | ). Let 21, x € be distinet. Then

[y = a0 G = 2a¥d = [0 - yah gy = x)] = 2

and since (x, — x2{) = ), we may write (X1

g Ire{G) ar ‘ )
ﬁncarily to0 Z[¥). [n this casc Z[¥]

agrees with 7 on Z{#]".

IFn=3let ;€% — (X1 X2k Reasoning as above, (g1 — Xa) = # =Y

where g, veIrn(G) and ju # v. Also
(G — 225 G0 = wrl=1

d we conclude that either g
:n‘ :a. 42* = By and y3* = v. M v = f, define 7, =
1

Xy
with ton g, — ¥z and on Xy

Z[#)° = lalzy — x2) + blxy = yN\a, beZ),

— x;and that # is an isometry. Since

the result follows in thiz case.

N = g~ 1, By the
Suppose n > 3. Write & = #o {2} where 3 = |#o land observe that

inductive hypothesis, (5, ) 18 coherent. Choose W € ¥

— ;) =a—f where @

| n d by
gt = 2, define 7,\* = « and ©z* = # and exten
e distinct, I n 1) At e

:‘ this to be an addi

= = t not both. 1f g = &, define
=qotv=fibu o ot b rand

* = — . In cither case, extend » linearly to Z[ %] and check thut » agrees
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Yi1)1(1) since (1) = x(1). Now
. o

1 : 1
B )

and thus (5%, ) is eoherent by Theorem 7,14, §

The most common applications of coherence arc in the situation of a
“tamely imbedded " subgroup as defined in the paper of Feit and Thompson
on the solvability of groups af odd order. For the purposes of this book, we
give a considerably more restrictive definjtion which, nevertheless, is im-
portant in applications,

(7.16) peFINITIGN Let K § G, Assume

(a) KisaTLsetin G
(b) K < NgKX),
() Cgkls Kforalll # ke K.

" 'Then K Is a T.LF.N, subgroup of G,

The “F.N." in the foregoing definition stands (0} * Frobenius normalizer.”
Note that f N = N(K), where K is TLF.N. in G, then N is & Frobenius
group and K is the Frobenius kerne). By Theorem 6.34, the irreducible
characters of N are thus of two types, those with kernel containing K and
those induced from nonptincipal ¢ € Irr(K), If & = {xe lrriN)| K & ker g},
theu the object of what follows is 1o prove that & is coherent. Results of Feit
and Sibley do, in fagt, prove this in most eases, Note that if K = G satisfies
condition (a) of Definition 7,16, Lthen () is cquivalent to Culk) £ K for all

I % ke K, where N = Ng(K).

Amvjmportant theorem of Thompson (not involving characters) nsserts

that Frobenius kernels are necessurily nilpotent. The nilpotence of T.LF.N,

gubgroups w assumed in what follows. (The reader may simply consider
fenal hypothesis in Definition 7.16.)

A morc elementary fact about a2 TLF.N, subgroup K of ¢ i5 thut

IG: K|, |K]) = L, that is, K is a Hall subgroup. To sce this, lct p|| K|, let

P e 8yl{K) and suppose )’ & § €8yl (G). Then Z(5) & C(P) = K by part
< () of 7.16. Now Z{8) # 1 and s0 8§ = C(Z(S)) € K, again by 7.16{c), Thus

YG KL
We mention some sifuations where T.LFN, subgroups arise. If

;:, Fe Sylﬂ(G)» I -PI =p and P= CG(P} =4 NG(P]v then P iﬁ T\-I.F.N, This happens‘

or instance in permutation groups of degree p and in the groups PSL(2, ),
A doubly transitive permutation group is a Zassenhaus group if some

", nonidentily element fixes two points but nanc fixes three. Lét G be 2 Zagsen-
» haus group on a set ) and let &, f & € with @ # B, Then G, is a Frobenius
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group with complement G,5. (We are assuming |£2| > 2 to avoid triviality.)
Let K be the Frobenius kernel of (7,. The nonjdentity elements of K are
exactly those elements of (7 which fix o and no other point, 1t follows easily
that K is T.LFN. in G and G, = Ng(K).

(717 uemMa Let K be TLFN. in G and let N = NGK) and & =
{x eIte(N)| K & ker x}. Then induction defines 4 linsar isometry

20T = Z[Ter(GY"
Alsa, if 36 Z[ 17, then (95, = 3. .

Proof 1yxed”, then x = &¥ for some & £ Trr{K} by Theorem 634, Thus x
vanishes on N — K. 1f ¢, 3e Z[#7" il follows that ¢, ¥ vanish on
sn¢d Lemma 7.7 vields [@% 99] = [, 5] and the fitst asseriion is provig.

Also, (9%), = Yy by Lemma 7.7. Since 9 vanishes N — K, it suffices t
show that § vanishes an N = K in order to prove that (8%, = 3 However,
no ¢lement of N = K can be G-vonjugate to an element of K since if
xeN — K and o(x)|| K|, then K = {K, x} and {K, x> = K{x} so that
|[<K, x5 K| is not relatively prime to |K|. This contradicts the fact that
(G K[ 1K]) = 1. It nowdfollows from the definition of 9% and the fact thot
9 vanishes on N — K that $¢ also vanishes on N — K and the proof is
complate. 1

(7.18) corOLLARY (Brauer-Suzuk{) Let K bc an ahelian T.I.F.N, sub-
grovpolG. LetN = Ny(K)ande = [N K|.Let 5 = {xe IrriN}| K & ker x).
Then gither

{8) || =1,|K|=1 + ¢and K is an elementary ubelian p-group or
(M % is coherent and there cxists a onc-to-one function f1 & = Trr(G)
and ¢ = £ 1such that (x = % = /() = f(&Nforall z, de s,

Proof All of the orbits of nonprincipa) irreducible characters of K under
the action of N have size e, Thus y(1) = eforall y g 7 and | | = ([ K| = 1}/e.
If |%] = 2. then Corollary 715 vields that & is coherent, In this case, (b)
follows feom Lemma 7.13.

15| = I, then [K| = | = ¢ and the nonidentity clements of K are all
eonjugate in N, [t follows that they all have the same prime order and (a)
follows. |

The theorems of Feit and Sibley goneralize Corollary 7,18 by dropping the
assumpiion that K is abelian, If |[K| — 1 5 ¢, they prove leal either &7 i
coherent or K is a 2-group. Before procesding with the proofs, we discuss
some implications of coherence in the T.LF N, situation,

(719 Levma Lel K =G be T.LF.MN, and let N = NgK). Suppose
& = {xeler(NHK 2 ker x} and that &' iz coherent. Let » denpte an iso-
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metry Z[®] — Z{Ire(G)] such that » extends indoction on Z[4)°. Let
o - Z“g ¥{1)x. Then |

(@) MWyelrdG) and ¢ ¢ {£¥"|2e ), then ¢y = ax + 9, where a is
rational and (9, ] = Oforall y e &,

(B) ((x*Iy = x)/x(1) i3 independent of y € &,

(€) (x*)v — x = aw + 3 for y e ', wherc a is rational and [, {] = 0 for
all§ed,

Proof (a) Lety, éed. Then

[ A1 = EY = [, (1E — E000°)
o= [ 216 — E(1)x*] = 0.

Thus 1(1}[Wx, €1 = &(1}(¥y, x] and hence [y, x1/x(1) = a is independent
of xe &, Therclore, yy = aa + 9, where [9, x] = 0 for all xe &, Thus (a) is
proved, ,

(b) Letx.{e& Then A= y(1)E — &)z e Z[Z]" and 50 (A%)y = A by
Lemma 7.17. However, A% = A* = y(1)&* — &(1)¢* and thus

wdDE = $(Dx = x(DIE™N = EUHE*

and

"y = 2 = 21{E%)y — &)
Thus (b} follows,

© Leténed anéi write A = £(1 — 51}, Then

(O™ AT = [x%, A7) = [x* A*] = [x. A)

so that [{x*)y — 2, A] = 0, Tt now follows as in (2) that (y*)y ~ ¥ = aa + §,
whete o = [(f*)y — . E/8Dand [£, 8] = 0for éc ¥ |

(7.20) THEOREM Lct K =G be TLFN, and let N = Ng(K). Supposec
& & {y e ler(N)| K ¢ ker x} is coherent and Ict &£ = Iri(GG) be the corre.
sponding set of exceptional characters, Let « be an isometry Z[5] —~ Z[#£]
which extends induction on Z(#]° and let & = +1 50 that gy ¢ £ for x e &,
Then

(a) &= {{eTrr(G)|y is not congtant on K — {1}).

(b} Iy = ex* e &, then ¥ = £xx is constant on K — {1}, This consiant
has the form mx(1)/| N: K| for some m & Z which is independent of the choice
of ye &, ‘

(¢} If g € G is not conjugate to an element of K — {1}, then yig)/y{1)
is independent of the choice of € &,

(d) If x & &, then y*(1)/x(1) is independent of the choice of .
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Proof We apply Lemma 7.19 with ¥ = & Then o -\pN - PNk
where py and py are regular characters. In particular, a is constant on
K — {I}. Also. if 3 is a generalized character of N and [9, x] = 0, for all
1 € %, then K is in the kernel of every irreducible constituent of 3 and hence
3, ia constunt. o v

Now, if i ¢ &, then 7.190) yiclds Yy = aa + J dnd y is constanl on
K—{1}, I ye&, then 7.19(c) yiclds ey = ¥ + ax + § where gy = y*,
However, x € % cannot be congiant on X — {1}, otherwise, by Problem 3.8,
every nonprincipal irreducible characier of X is & constituent of y. This
would force |57} = 1 which is not the case, Thus ¥y s not constagt on
K ~ {1} and () is proved, : R

The first part of (b) is immediate from 7.19%¢). To evalnate the constant,
choose £e.% with (1) = |N:K/, that is, { = A¥ for some nonprincipal
linear A € Irr(K). Now {£*)x — & isa generalized character of K with constant
value m on K ~ {1}. It follows that me Z, If y € 5 is arbitrary, 7.19(b)
yields that m'/¢()) = m/&(1) where m’ is the constant value taken on by
(X" — xx on K — {1}. Since &(1) = [N: K], we have m' = my(1)/|N: K|
and (b} follows,

Let y, £ €& so that E(1)g* ~ p1)E* = (E(1)y — (1)¢)%, which vanishes
on clements g & G not conjugate to clements of K — {1}, Thus &1y*(g)
~ ALy} = 0 and (c) follows.

Finally, (d) is immediate from 7.19(b), The proof is complete. §

We now begin work toward the theorems of Feit and Sibley.

(7.21) Lemma Lev N be a Frobeniss group with ‘Frobenius kernel K.
Supposc |[N:K|is even. Then K is abelian. . . &

Aty

Progf Let i N be an involution, Then ¢ ¢ K since (|K|, N 1K) 1
and thus x* # x for x € K — (1}. Now map X — K by -« x~ 1x', This map
is one-to-onc since if X~ 'x' = y~ 'y, then yx ™' = (yx~!) and thus yx™! w |,
Therefore the map is onto and gvery x & K has the form v~ '’ Thus
X =) s )" e = x7), We now have (xyf = (xy)"' =y 'x"! =
yx' = (yx). Thus xp = yx for X, y& K and the result follows. {1

(7.22) Lemma  Let P e Syl (G) with p # 2 and suppose P is TLF.N.in G
and is nonabelian, Let N & Ng(P) and let 1 < Z 5 Z(P} with Z < N, Let
¥ = (yelet{N)WZ & ker x}. Then & is coherent. N

Note By Corollary 7,15, the lemaa is also true if £ is abelian excapt
in the degenerale case that | 3| = l.ln“l.hvntmsez w Pand [Pl = [N:P]'+ 1.

LS . LIkl

Proof of Lemma 7,22 lete w ]N. :P.l". By Lemma 7.21, e is.odd and thus

{N{ i odd, Since Z > 1, & » &5, Lat & & ' bave.minimum possible degres G
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andlet &, = : . ;
By é:;;z?lary{x'ii?]g”l) s mz’i}' Sinee | N1 s 0dd, £34 ¢ and thus |4, = 2
" ' © T g 18 coherenmt. Now define sots o e
F = oy U (g where the Aiarechosen from 4'— &, so that‘x ?J]; 5‘; ; (Elj{
{ AP g

Thus &, = ¥ =
) = 1S ;_ ‘ig' = H: " oy .
coherent. " We use induction on | to show that #; is

Now the degrees of 11
e ¥ € X ure all of the
ally e &. It follows by Theorem 7,14 that in ordef)lr

. m ep* and so 0y w( D) for
1t suffices 1o show for ; = 1thu

0 show that 4, is coherent,

200l < ¥ 12
++ We have

INl= % a3 = |N:2) 4 ¥ a1y

relrin) o

and 0 P12 divides ¥, (1), Thus
E1PZ| divides ¥ a1,

e

Ir ;

Thus ?(-'lt)r’le: o f‘:ﬁ)f some §& Irr(P)and 9(1)? < |P: Z| by Corollary 2.30

Also, 21| 1-2( V" divides ¢*|P: Z| and hence x(1)? divides ¥ Y %)

In partcula o, 5, 2 40 We conclude that 1117 divides 3" 2" 1

I partcular, since 2{(1) < P‘:’(l) < xr(l)’ we have Tad,_, X(” .

Zul) < 41 £ Y 4

o LE /BT
&nd the result follows, ] ‘
(129 wma Let ¥ g ¢ ana
& = ¥ °
a linear Bometry and leL &, & .Sfltrwj s l[.sﬁ’:! 7 e

N ] = 0 for all
' , YT andpew,
(b} P05¢ x5 € Land iy & ¥ with

| Coollkrg — nolllys)y = Xolny' — no(1)y”.
“ Then ¥ o ¥ 5 coherent,

Progf For p,ve s, write A(

a ' ¢ P»")‘—"#ﬂ)v-—-v[l) ZL5°7° Lot §
1 r € . o
et :f:']- i’-’o ﬂ%: :?;JMG) for ye & and y e %/.pTo E)ru{e (a)l bsfjp f 1
and 'y gl en oy uls w " for some 3 ¢ Ir(G), Pick ém‘ pose
S U} 80d weite = 67, and ¢ = an,, Then § % § o & o)
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Wi h:n'::
= [AQ 1) Al ny)] = [AG % Ay, 1P ]
= s — x(DF), (n(1)E ~ m(10)]
= oAy, (D (1) + (DL, D)

Since [, &] = 0, this is impossible, and (a) is proved,

Mow fix x, € 4 and no € ¥ and assume Axg, noff = xollia' = fg
Defineson X ¥ byy* = y"for y e Fund n* = ' fory e ¥ and extend w by
linearily 1o Q[ w %], It follows from (a) and the fael that ¢ and <
isometrics, that » is an isomectry and « Z[F %] -~ Z[Ir(G)]. It th
suffices 1o show hat » agrees with the lincar extension of o to Q[ w %]
However, » agrees with ¢ on ©[27]°, Q¥ and Alyy.ny). Adimension coun
shows that these span Q{4 w %]° over @ and the result follows, |

(7.24) TueomeM (S7hleyy Let P < Syl (G) be T.LF.N. in G with p 3 2
Let N = Ng(P) and & = {yeTre(N)P & kery)., Let ¢ = |[N:P|. Then
one of the following pecurs,

{(a) || = 1, Pis elementary abelian, and [P| = ¢ + 1.
(b) % is coberent.

Proof  1f P is abelian, this is included in Corollary 7.18. Assume that P is
nonabelian so that e 15 odd by Lemma 7.21, and thus |N| is odd. Let Z =
PrZPy=landlct® = [ne S|Z & kernt. Let & = {y € #IP S kery).
Then % is coherent by Lemma 7.22 and every y e 4 xatisfies x{1) = ¢
Sinee x # x for ¢ & &', we have & coherent by Corollary 7.15, Since Z € P,
we have & % =21, Most of the prool is devated to showing that & v &
iz coherent.

Let < 2[%] — Z[Ire(G)] be a linear isometry which extends induction
on Z[A]", Similarly, let 1 be an isometry on Z[#] which extends indvetion.
Since ' ¥ =, Lemma 7.23 yields [x* n 1 =0foryc ¥ and ne &,

Let a = (1/e) 3 4.4 n(1)n. Since e|n(l) for n € %, @ is a character of N.
For y e &, x* # 0 forany # € % and Lemma 7.19(a) yields

X" = 9, + a0,

where 3, is a gencralized character of N such that [3,, 1] = O lor ne®

and a, € Q.
Since all x(1) are cqual for x € & Lemma 7.19(b) yields that

w=x=8 —x+aa O
is independent of ye &, It follows that 3 - x=Aand g, = g are in-
dependent of y € & and
(1) (W =%+ A+ an
The next several paragraphs are devoted to proving that a € Z.
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Since Z is contained in the kernel of y e and of cvery irreducible
constituent of A, we have for z € Z that y{z) = x(1)and A(z) = A(1)and henee
Equation (1) yields

XD = xMz2) = afa(l) ~ alz)).

We also have py = py; + ex where gy and p, s are regular characters,
Forzez ~ (1} we thus have

[N = pudl) — pdz) = ela(l) — alz))
and henee
(2) 1) — x%(=) = alN|/e = a|P|.

We now compare ¢*(1)and x*{z) in a different way. Let ¥, ¥, ... be the
conjugacy classes of G, lumbered s0 that

L@ = {1y

"), .J!“,r'\ZﬂZhﬂ'isr

© A nPe@ifign o .

Note that since P is a T.1, set with'N = = N(P), we have 2", r P iz a conjugacy

classof Nfori s sand ¥ nP e Z-aNforisr.

Write K, € C[G] for the' class sum corresponding to X, and KK, =
Y dyuK,, where a;, ¢ Z. Now fix i, J <r. Let ¢ € Irr(G) and ler o(K,) =
W(x)l.#" I/v.lw(l)for x € X, asin Chapter 3. Let R< € be thé ring of algebraic
integers so that m{K,‘) € R Write Y(1) = mp' with p f'm, and lct g = [ P}/p".
We huve

WK JAK ) = % ool K.

For u > g, we claim that e(K,) €qR. From the T.[F.N. property and
the fact that A", A P =g, it follows that |P| divides 12#",| and thus
miw(K,)/q) € R. Smoe alsp q{w(K,)/q)E R nnd im, ¢) = 1, it follows that
u{K,)/q € R as claimed. Thus "~

(U‘(Ki)W(K )= E ﬂupﬂl'(xu) mod 4R,

Now let r«:nSs and xeX, AP, Let C=Cux) and let 1=
{(u, ue A, veN;, uvw= x} Then ay = |{t] and C acts on {1 by
{u, v = (F, v°). If.ceC = {1} and (4, u)‘ = (4, v), then u, ve Chle) = P
and 8o us ¥, NP < Z and similarly v € Z. However uv = x & X, and
X, Z\=5, This contradiction shows that all orbits of C on 0’ have
size | C| and thus | C| divides a,),.
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We have C¢lx} < P and so Colx) = € and | P:C) divides.| ¥ ,|. It-now
follows that mia,.a{K,)/g) e R and since gla,aXK,)/9) & R, we hg?',e
a,, oK )€ gR and AT & N T N

r ;,
alK)AK) = Y au(K,) mod gR.
ue=0
Now suppose ¥ ¢ Irr() is such that ¥ is constant on Z — {1}. Then fall
w{K,) arc ecqual (10 o, say) for | S u<r and eXKo) = 1. Also write
diy =Y hmy @y, 50 that ..

w?® = a,q + ayw mod gR. o

Since | N| is odd, the nonidentity elements of z are not conjugate _iq.-ly
{and hence not in G either) to their inverses. Thus a, 1 = 0. Assume X" ; is the
class of inverses of A" 80 that g, 3o w il X¥'y| = {G|/|P|. We thus have;

) a0 = o = |G|/IP} +ai50 mod GRI™ e it

In the special case that = 1;, we have i = IGI(I;:‘VI_an!i‘qx- IJ‘:l aotll'm
a,G)/|P| & |GI/IP| + ay3|Gl/|Plmod [P . . .,

anda,, ® 1 + g,y mod |Pl. Now (3 ylelds.. ., ., ... . e

(1 + )0 = |GI/IP| ¥ ayomod R+~ 7 D

and ‘ . . ; C

-

@) @ = G|/|P| mod gR.

We apply this to the character b = gx* € Irr{G) with £ = 4: 1 and y ¢ &

Note that ¥ is constant on Z — {1} by (2) q,n\c_:l thus (4) applics.
We have for z e Z = {1} that T

X*DIGPI/x*(1) = @ m |G:P{ mod gR.

Since | P| divides gy®(1), this yields v.r»;.u.J‘,J; e ORI :»'rh
. : l‘.'.""" o P iy
1‘(2)“}:}3] = x.(l)lG:PI IDDd:fE.]R-n ) '-‘.‘a . K .A!“H
. . e
Now (2) yields

|G:P|-|Pla = |GiP|(x%I) ~ x*(z)) € |P|R

and hence |G Pla e R. Since also |Pla = x'(lf —- z'(z\)EqR am:ll (IG':PI:II‘\P:I)

wm 1, wehave s ¢ R nQ = T a5 desired.

|

Now let x, x, & & and 5 ¢ &, Note that y(1) = ¢ divides p{1) and we W.rite

= pi)fe. Lat ¢ = cy — n € Z[T. We have -
(25 2*) = [o. (")) = (9. 21 + A+ aa). .
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Since [y, o] = 0 = [, ¥, + &), this yields
. [(PGD 11'] = f[x- X1 + A] - B[q, a]'

However, [11, a] = ¢ by definition of « and since a € Z, we have ¢/ [¢°, 0l
This calcl(.lation also shows that

(o 2" = e + [0% 2,*]
for x, # y. This yields
=l + by +eb ¥ T,
(el fuy

where be Zand [T, ¢*] = Oforall ¢ & &,
We also have

— (9% 0% = [ 0] = 1 + 2
and-thus there are two possibilities:

"\ ) b=Oand[F,I]m=1;0r
() b=-1,12| e 2and [I",T] = L.

. ** - Insituation (i), we can replace » by «= where y?* = ~x:*and y¥* = ~y,*
for & = {x1, x4} The result of this change is 10 put us into situation (i). We
thus assume that (cy — n)% @ cy* — T,

Now ket n, € % — {n) so that

11} = C@ (g = m, (0] = [, nn," — my(Liy7]
= [Ty = (i,

Thus again we have two possibilities:

) I'=pSar
(i) I =—p,*and n(1) = n,(1).

Af T s o', then 5" = —T for every n, e ¥ — {n} and thus |%|=2
W = {1 #:} with 5{1) = n,(1). In this situation, we can redefine t and
rlh 3 we may assume that (i) ocours. Thus

fex = =cy* ~

* and hente & O & is coherent by Lemma 7.23(b),

"' To complete the proof, we obscrve that ¥, n(i)? = |N| = |N:2Z|
and 50 is divisible by | P:Z| and hence by ¢2|P: Z|, Let YES — (T o,
* Then as in Lemma 7.22, we have = 8% with e Irr(P) and 3(1)? < [P,
~'Thus

Y1) = &9(1) 5 21P:Z| 5 ¥ E1R
o

e e N o b T
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Lel xe @ 5o that x(1) = e and (1) = py(1) = 2x(1) sincc ¢ ¢ ¥ and so
3(1) = p. Thus
W <P s T H
Lerow
Since &' u ¥ is coherent and #{1)[¢(1} for all ¢ € 57, repeated application
of Theoram 7.14 yields that % 15 cohcrent and the proof is complete. |

(7.25) THEOREM (Feir-Sibley) lel K € G he TLF.N. with h\J"E-\N,,(K]
¢ =|NiK| and & m {y € Ir(N)|K & ker ¥} Then onc of the folh\lng
OCCUTS.

(a} |5 =1|K|=wv+1and K is an elementary abelian p-group.

(b} K e8yl,(G)and | K: K'| = 4¢*.

{€) % s coherent.

Proof 1 K is abelian, gither (a) or (c) occurs by Corollary 7.18. Assumé
then, that K is nonabelian and so e is odd. If | K:K'| = ¢ + 1, then K/K’
is an elemeniary abelian p-group and thus K is a p-group. Since & + | is even

p =2 and (b) follows. Assume therefore, that [{y e #|K & ker y}| = 2.

This set is thus cohercnt by Corollary 7.15. Let L o N with L = K’ minimal
such that & = {ye%|L < ker y} is coherent and assume that & ig not
coherent go that L > L.

Let M = N be such that L/M is a chief factor of N. Since

{xeF|M < ker x}

is not coherent, repeated application of Theorem 7.14 vields W € Irr(N)
such that

Zey(l) = Zﬂ_:c(l}2 =|N:Li=IN:K|= | KiL[ - 1)
¥
and M < ker y, Let Z/M = Z(K/M). Then £

~
Also ¥ = 9 for some JcIrr(K) and (1) =
e’ |K:Z[. Thus

44| K Z) = 431 2 (K L) = 1)%
Nowwrilea = |K:L|and b = |Z:L| We have b|K: Z| = |K: L| = gand
ety = d4e’h K Z| = b(|K L) = 1)} = hla = 1)%,

I 4¢? < bla = 2). this would yield hafa — 2) = bu — 1)%, which is fiot the
case, Thus bla - 2} < 9¢?,

L>Mand henee L Z.
[K:Z| so that y()} <

IfZ = L, then Z(K/M} = L/M is a p-group for some prime and thus

K/M is a p-group. Since M < K', it [ollows that K js 2 p-group. By Theorem
7.24, we have p = 2, Also, a -~ 2 = 4¢% 50 that

|K:K'|=|K:Ll=magde” + 1.
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Since |[K:K'|isa power of 2and ¢ > 1 iz odd, we have |K: K'] < 427 and
(b) helds.

Ii.Z » L, then we muﬂt have eI(iZ LI-1 and bze+ L Also, K/M
is nonnbc]mn and thug Z' <: K and £|(|K Z| = 1), Thog'

‘ aa(e+1)bz(e+i)=ze’+2

Thus: 4¢? > b(a — 2} = (e + 1)e? = &¢? since ¢ = 3. This contradiction
proves the Llheorem. | -

We remark that situation (b) can aetually ocour with 5 pot cohcrent, The
incquality | K 1 K'| < d¢? can be sharpened. In fact, the groups in which (b)
oceuts have been elassified,

Pmbkﬁu

(71) J..f:t N = G, HSG with NH = G and N n H = 1, Show that the
followmg are equivalent!

(a) Cgm= Nforalll £ neN;

(b) Cyim=1foralll #neN;

() Cghye Hforalll £ heH;

(d) Every xeG — N is conjugate to an clement of H;

(e} 171 % he H, then h is conjugate to every element of Nh.
{f} H is a Frobenius complement in G,

1 -
Note Problem 7.1 dows pot involve characters, Tt is included to acquaint
the reader with some elementary propetties of Frobenius groups. Much
degper information 19 known,

(7.2) (Wielandt) Let H & G with M = H and suppose that H~ H*" = M
whenevet x¢ H Show that there exists N-=a G with NH = Gand N n H
= Ml . .

Hint Note thm. H =M is a T.L set. Mimic the proof of Frobenius’
theorem.

(1) LB = G and & Jre(H). Suppose (¢ ~ &(11,)° = 3 and [9, 8] =

| + &1)%, Show that there exists N <a G with N ~ H = ker { and every
x € = N conjugate to'some element of H,

(7.4) «Let H < G and suppose induction to G is an isometry on .ﬂ[lrr(H)]"
Show\thm H is a Frabenius complement in G,

(7.5 LetN & Gand & & Irr(N), Assume that induction to G is an isometry
on Z[5) and |&| = 2. Suppase & = {& € &|{ is extendible to G} # &
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. -far: that
Let d = ged{{&()]E € #o}) and assume d|¢(1) for-all { € &. Show bt
&y = .S”?.SF isf E:ohz;rcnt, a;d that cvery € € & has a unique eXiension to.Giis

T R -
(16) Let PeSylG) with [Pl = p, Co(P)= B, and [Ng(P): P| = e. show
that G has a1 most e + (p — 1)/e irreducible characters with Qegrm? not d}_w
Sibiﬂbyp. T S A Y |.P Ly
Hinis Note that Pis TLFEN. in Gife> LWe <p -1, Ie: & be the
corresponding set of exceptional characters of G, Show-_zx'.rl_x(x)l =p -6
where | # xe P Ifgx) = O, then pix(l). o .. ... o N
Note It is 1 consequence of some of Ry Brauer’s deep reaults' in block:
theory that in the situation of Problem 7.6, the upper. bound i always
attained,
ituati i has exactly
77 1In the situation of the preceding problem, assume that G has exactly
g +)(p — 1)/e irrcducible characiers of p'-degree. Let P = (x> If 151’11:‘(61)
is not exccptional (in particular if e = p — 1), shgw that ¥ = — 1L 0, or
and that (1} = x(x) mod p. Il e < p ~ 1 and & is the corresponding set of
exceptional characters, let o = Y yus X(x). Show that ¢ = %1 am.i Al =

#

—egomod pfor e . -
Note The results of Problem 7.7 together with the equation
Y alxx) =0

xuireiG)
and the facts that x(1)||G] and ¥ x(1)* = |G| provide a powerful tc?ol
for computing the degrees of the irreducible characters of a group whl.c:fl
satisfies the hypotheses of Problem 7.6. '
(78) In the situation of Lemma 7.13, assume that |l.5f‘| = 2. Prove that », e,
and / arc uniquely determined by (&4, 7). - . e jf;;;

LEN. Let y be a (possibly reducible) character o

gtzlzh :ﬁoﬁstin?;;: KT - {1} Assu)ine thafli = {_ub € ler(NG(K))| K & ker ¢/}
is coherent, Show that the multiplicity with which each exceptional char-
acter appears in y is proportional Lo it5 degree. L
{7.10) Let K be TILE.M. in G and assume that

& = {f e N K & ker 9} L

is cohcrent. Let # be the corresponding st of exceptional characters
of G. Let M = ),y ker x. Show that M n K = 1.

(7.11) In the situation of Problem 7.10, show that either M = ker for a.l'l‘

[ 1

yeF orelse MK = G.
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Hint Suppose ye & and U = ker y > M. Then U/M is a mproup
where x is the set of pritme divisors of | K| and so I/ = MK, Use the Frattini
argutnent. '

(71.12) 1t Kbe T.LF.M.in 7 and lel ¢ = |N(K)}: K|. Suppose that G has a
faithful irreducible characier of degrec < 2e. Show that K is abelian.

(7.13) In the situation of Problem 7.12, assume that K -4 G, Show that K is
an elementary abelian p-group.

Hint  Let A be a lincar character of K with |K tker 4] = p. Show that
there exists faithful ¥ ¢ Irr(G) with ¥(1) < 2¢ and {xx, 4] # 0. Use Problem
1.k,

(714} Let G be a simple Zassenhaus group in which the stabilizer of two
points has even order e. Let the degree of G {the number of points permuted)
be k + 1. Show that & is a prime power.

Hint  Count involutions to prove that G has a nonprincipal irreducible
character of degree < 2e,

Note Problem 7.14 is true without the assumption that eis even, This tsa
theorem of Feit and the case where e is odd is proved in his book,

(7.15) Let N = G and & < Irn(™V). Suppose that © Z[¥)° = ZLIr(G)]° is
a linear isomcetry. Assume that | %] = 3 and that for cvery ¥, Jr € %, we have

Ce(In — Wi1)x) = a8 — by for some ¢, § € Irr(() with a, be 7. Show thal
(&, 1} is coherent.

Himt Suppose x, ¢, n e & are distinet, Write
(DY — (1)) = ad — b, ({1 = (1) = cp = dv
with a, b, ¢, d = 0. Then exactly one of 9 = p or @ = v holds,

" (1.46) Let N = G, & < Ire{N) and suppose 7: Z[&]° — Z[Irr(G)]° is a
. lineyr isometry. Lel ), &; © & such that &) ~ 5 # (. Assume either

Filz3 or that & ={¢, x} with (1) = x(1). Show that
. t) 15 coherent.

Hint  1&.f; %, = Ire(G) and &; = + | be such that g, f; defines an appro-

" priate extension of v on Z[&). If |57,| = 3 for i = 1, 2, usc the hint for

Problem 7.15 to show that &, = & dnd f;(x) = faly) for y € &, m~ 5,.

t (11T Let K= G e TLEMN, with N = NgK) and

& m {pelr(N)| K £ ker 3).

Suppose that  is an exceptional character of G corresponding to x. Show
that the values of  and x generate the same feld over Q.
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(7'18) Lat Kh K; = G be TJFE.N, with N‘ "(K‘) and
# = {xelr(N)|K, & ker x}

and wssutne that the &, are coherent with &, the corresponding sets of
cxceptional characters. Suppose &, v & # (1. Show that £, = & and
K, is conjugate to K. .

Hint To show that K, = K,* it suffices to show that x¥ g K, for sorris
x6 K, x # 1, Use the fact that the K; arc nilpolent to prove this,

(7.19)  Suppose |G| is odd and that Cg(x) is abelian for every | # x€G.
Assume that G is neither abelian nor a Frobenius group atd show that every
nonprincipal y € Ir(G) is exceptional for some T.IF.N, subgroup.

Note A group with all Cix) abelianfor ] # x& G is called 2 CA-group::

Problem 7.19 is a step in M, Suzuki's determination of all simple CA-groups.

{7200 Lot K € G he TIF.N. with |K| even. Let N = Ng(K) < G and

& = LfelrriN)|K & ker ). Assume that & is coherent. By carrying out
the following steps, show that ¢ has a nontrivial normal subgroup of odd
order,

a) Show that G has a uniyue conjugacy class of invelutions and that N

cantains exactly ¢ = |N : K| involutions,

{n} Let ¢ € & and let * be the corresponding exceptional character of
(. For | # x € K we have y*(x) = sj(x) + a,, wherea, € Z is indcpendent of
X. Show that

valW®) = eval) (U1 — ef(1) = au)/1K|

where v 1% as in Theorem 4.5,
(c) Show that (y*)y = Wy + a,lz.
(d) Show that there exists €% wilh ker(y*) # 1,
(e) Complete the proof,

Hinty (2) See the hint for Probiem 4.11, b

(b) Letw; = {xeG|x # L.x*=1};
&y = {xeG|x* £ ], % is conjugate to st element of K);
My = G — () W)

Compute ¥ *(x%) separatcly on each.of &\, &3, and &, Note 'thagj;

in.ﬂ‘; 4,-(:‘2) = Exi aily ""(x)'

(©) Letmy, = (¥*(1) — ai(l) — a,)/|K|. C

Usc (b) to study the behavior of m, as y varies over & and conclude that
my = 0. Use the [act that m, is proportional to (1),
(d) Mote that K is not elementary abelian.

Problems IF...

Notes A corollary of Problem 7.20 is that a simple Zassenhaus group
-of odd degree has degree 1 + 27 This is another special gase of Feit's theorem,

There do exist simple groups with T.LF.N. subgroups of even order. If
G = BL{2, 2", with n = 2, then the Sylow 2-subgroup K of G is T.LF.N,
It is elementary abelian of order 2 In this case, coherence fails becausc
IN(K):iK| = 2" — ] and the set % contains only one gharacter.,

If G = §2(2% with odd n > 1 [the Suzuki simple group of order

{2 = DR + 1)],

then again the Sylow 2-subgroup is T.LF.N. Here, case (b) of Theorem 7.25
holds,

" (1.21) (Sibley) In the situation of Theorem 7,20, let ¢ = |N: K| and
. k= K[ 1Mmis as in 7.20 (b), show that

~eh/k+ ) <m < efl/k - 1)

" In pamcular. if K is not an elementary abelian p-group, show that m = 0,

’ Hmts Let | ¥ xe K and use lhc inequality
G lca(xil > Z W),

lf...'- LT

when:\d’ is the sel of r.mcpuonal charactcra Derive that
v o zm + ’e*:- 'm’(k - 1y N

TRy e

(722} 1.:! K¢ GbeTlfN with N wm N(K) and
= {xeln'(N)lﬂ & ker x)
cuhcrent Ler ¢ E Irr(G) with K ¢ ket 'y,

(IR TH t PPN T ST S PR TEY S
(n) :a If @ ia nonexupuonal show.that | K| < (1) + 1 = [¥g, 1)
« (B} 1 i is exceptional, show, that |K| < (1)%..

"' Hinits' (b) Rediack 66 the muthﬁr’ Vu'= 3 + A, where y € & and either
A'=0or K : Ket A'If A r# 0, apipesl to Problem 7.21. I A = 0, pick an
irreducible constituetit,  # Iz of ¥ and apply part (a) to n.

AR Sl dtap 0 el
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If R = Z, we dclete the subscripis and wrile (G, #) and J{G, X).

(8.2) 1EMMA Let # be a collection of subgroups of G and let R be a ring
with £ & R & C. Then

<) G, H) = S (G, H) S RII(G)] € HW(G, #).

e (b) R{G, ¥#}is aring in which S (G, #) is an ideal,
) . . ! r

’ ]‘l o ! eoon } . - (Addition and multiplication are pointwise.)

8 Brauer's theorem MATE IS

_|.
T TR S D P PRI A

. "“I'Proof The containments in (a) are¢ all obvious from the definitions, To
prove (b) obscrve that Z[Ire(H)) is & ring for every He &, Since Z = R, it
follows that R[Irr(H}] is a ring. If @, 3 cH (G, ), then

M, : (g = @3y & R[Ire(H)]
and hence 9 & R4(G, H), which is, therefore, a ring.

.- To prove that ¥ 4(G, #) is an ideal, we use the fact that if o 15 a class
*function of H & G and $ is a class function of G, then (afy)® = «%4. This is
immediate from the definition of induction (and appears as Problem 5.3),
. Let peSiG, #) and SeRp(G, H). Then @ = 3y ()® with

" Y € R[Ire(H)). Now

oo o8 = );(V:'un)a'g = g("'tmsh‘)ﬁ'

ince U;(H)QHER[IH‘(H)], it follows that 8 e 4G, #) and the proof is
complete. |

ey ' . [
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There are many ways in which class functions of a group ¢an be gnn;
structed. For instance, we could define Hg) = (Ng(g))l or @) =11f¢
is conjugate 1o some fixed x & G, and Hg) =0 otherwm: It, i pgrhaps }:;e‘:“’ _
much 1o expect that such arbitrarily defined' functions will turn’ out to
characters, (For instance, in the second example given, 8(1) = 0‘11' x#%1)
One might hope, however, that a well chosen 9 will be a gennrah‘-.-.ed _char- :
acter, that is, § € Z[Irr(G)], or at least that it is an R-linear, combination of } ,

irreducible characters for some specified ring R with Z& R C. (We
denote the sct of these R-generalized characters by _R[Irr(G)].) ‘ ’
How can one decide if a given class function .'l_:p,a:q,Rjg;eneralxznd charn,
acter? Of course, if one knows Irr(G), the answer 18 casy; sn_mply chﬁck that
[9. x1 & R for all yeIrr(G). A more typical situation s that one has ;noug,h :
information about some family X of subgroups of .G so that it can be shown
that 8, € R{Ir(H)] for cvery H € 3. The main point of Brayer's theorem if
that for suitable families 2#° the last relationship is sufficient to guarantne that s Co
8 € R[Irm{G)]. For instance, this will be true if o is the collection of all, : 8.4)
nilpotent subgroups of G. . '

N ! {a) A Class fhnc!ion 3 OrG 189N R.genf:ralized Chal’ﬂclﬂr iff SE c R[[rr(E)]
(8.1) pERNTION Let Rbearing withZ & R < Cand let # beafamilyof for every elementary E & G.
subgroups of G. P (b) “Every y € Irr(G) is a Z-linear combination of characters of the form
(a) 9Hy(G, #}is the sct of class functions 8 of G such that 8 & R[Irr(H)]}

for all H & . o
(b) (G, #) is the sci of R-linear combinations of characters ¢ for

g e ln(H), He ¥

, It follows from Lemma 8.2 that in order (o prove that S (G, #) =
R[IrK(G)), it suffices to show that 1; & #(G, #°). Furthermore, if this can be
one for some family #, it follows that

F (G, #) = RIIM(G)] = & (G, )
Florall RwithZ = R C.

83) DERINITION (Brawer) A group E is p-elementary (where p is a prime)
E is the direct product of a cyclic group and a p-group. We say that E s

HEQREM  (Braugr) LetZ © R = C, where R 15 a ring,

Let & be the set of elementary subgroups of G, Statement {a) of Brauers
heorem is exactly the assertion that R[Irr(G)] = @ 4(G, £). This part of the
“result is often called the " characterization of characters.” '

124
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Every E € & is nilpotent and hence is an M-group by Corullary 6.14. If
g e Irr(E), then ¢ = AE, where A is a linear character of some E, € £, Since
Epedand % = A% it follows that F(G, &) is exactly the set of Z.linear com.-
binations of A% for lincar A ¢ Irr(E) with £ < &. Therefore, statement (b) of
Brauer's theorem amounts to the assertion that Z[Irr(G)] = F(G, £ This
it often called the “theoretn on induced charactery.”

By Lemma 82, both parts of Brauver's Theorem 8.4 will be proved when
wa show that 14 € 5(G, £). We work Loward this goal. The proof given here iy
based on an idea of B. Banaschewski, It is sugpested thut the reader also
cousull the Braver-Tatc puper for another approach.

(8.5} LnMMa  (Banaschewski) let § be a nonemply finite seband let R be

plication). If the funetion 15 with constant value | does not llein
exists x € S and a prime p, such that p divides f(x) for every f ¢

Proof For each xeS, let I, = {f{x)|f e R}. Then I, is an additive
subgroup of Z. Iiforsome x & S, we have I, < Z, then I, = (p) for some prime
and the result follows, Assume then, (hat {, = £ for every x € § For ¢ach x,
we may th:.n:fore choose f, & R with f(x) = |, Thusf, — 1, vanishes at x and
[Tses (fx = 19 = 0. Expanding his product yiclds an expression for 15 85 a
lincar combmallon of products of the funetions f,. Thus I;eR. |1

To obtain a ring 10 which we can apply Lemma 8.5, we consider per-
mutation characters of G, that is, characters of lhe form (1,)¢ for subgroups
H=¢G,

(8.0) LEMMA Lot f, K = G, Then (1,)(14)¢ = T ay{1,)° for subgroups
U = H and integers ay = 0

Proof Write 9 = (15)% so that (1))%(1,)% = ¥{1,)° = (9,)° by Prob-
lem 5.3, By Lemma 5.14, 3 is the permutation character of ¢ acting on the
sel of right cosels of K. 1t follows thal 3y is a permutation charagter of H and
hence 8y = ¥ ay(1y)¥ for subgroups U = H and integers ay = 0, Since
({1 = (1,)%, the result follows. |

(8.7} coroLLARY The set of Z-linear combinations of charaeters of G of
the form (1)) is a ring I(G). Lel o be a collection of subgroups of G wi9|
the properly that il K &= H e 3, then K e 5#. Lat P(G, ') denote the set of
Z-lincar combinations of characters of the form {(1,)° with He#. Then
P(G, #) s an idcal of P(G).

To apply Corollary 8.7, we definc a class of groups morc general than -

elcmentary groups,
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(8.8) ORFINITION A group K is pgquasi-elementary it # has a cyclic normal
p-complement for the prime p, We say that H is quasi-elementary if it is p-
quasi-clemgntary for some p.

'Note that subgroups of p-quasi-clementary groups are Lhemselves p-
quasi-elementary. Thus in the notation of Corallary 8,7, H(G, A) is closed
under multiplication, where M is either the set of all quasi-clementary sub-
groups of G or is the get of all p-quam-:lementary subgroups of G for some
fired prime p.

(89) rLeMmA Let x € G and let p be a prlme Then there exists a p-quasi-
elementary subgroup, H & G, sat:h that (1,)%x) is not divisible by p.

Proof Let C be the p-mmplemenl in the group <x} (Possibly C = Lor
C=(p)Let N m NG(C), so that x e N, Since {x>/C Ir a p-group, we may
choose H/C € Syl,(N/C) with (x‘) '; 'H. Then C is 4 normal p-complement for
H and His p-quasn-elmnentat'y ,

Now (1)° is the permutation characler of G acting on the right cosets of

H and so 1 )“(x)u |{Hy|ny==Hy,yeG}| If Hyx = Hy, we have

x'e H and hence €’ < H. Rowever, C is the unique p-complement in
H and hence O e Cand yé N We thererore need Lo count the number of
fixed points in the action of <x} on the'cosets of M in N.

Since C = N, and C 5 H, we see that € if in the kernei of the action of N
of the cosets of Hin N Since <x)/C ina p-group, it follows that the number of
nonfixed coséts is dmmble by p and hence (1,)%(x) = |N: H| mod p. By th..
choice of H, pt| N H| and the’ prool' is complete.

(8.10) - THEOREM'r (L. Soiomon) Tet W be the set of quagi-clememiary
subgronps of G and ., the set of p-quasi-clernentary subgroups for some
prime p. Then

@) 1g € P(G. #)
(b) mlge MG, H,)forsomemeZ with pim,

Proof By Corollary 8,7, P(G, #) is a ring of Z-valued functions on G.
If 15¢ P{G, oF), then by Lemma 8.5, there exists x€ G and a prime p with
plolx) for all @ e XG, A#). This contradicts Lemma 8.9 and 5o (a) is proved.

For(b)let R = {p + nplgle e (G, A ), ne 2} Thon R is a ring. il there
exists x € ¢ and g prime g, with | @(x} for 3ll ¢ & R, then since plg e R, we
have g = p and thus we have a contradiction 1o Lemma 3.9, By Lemma 8.5,
we conclude that 1€ R and hence {I — npll; € PG, #,) for some neZ,
This cOmplctcs lhe prool' 1

Dnly part (a) of Theorcm 8.10 s needed to prove Braver's theorem; how-
ever, part (b) is usefil for certain refinements of the result. Recall that we
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need 1 € #(G, €). The method of proof is essentially to use 8.10 to reduce
the problem to quasi-elementary groups, We peed o lemma.,, C .

{8.11) LEMMA Suppose G = CP where C-a G, P is & p-group and g CJ.
Let 4 be a linear charavter of € which is invariant in ¢ and suppose
CAF) s ker &. Then 4 = 1.

Proof Let K = ker d. Since Ais lincar, it takes on distinet constant values
on the distinct cosets of K in C. Since A is invariant under the action of P, it
follows that P normalizes cuch cosel Kx for x e C.

In the conjugation action of P on Kx, the number of moved points is
divisible by p. Since p¥|K|, we have pJf|Kx| und thus Kx n CAP) # .
Since C{P) = K by hypolhesis, we conclude that Kx = K and thus K = C
and A = 1. as claimed, | . S

Proof of Theorem 84 As was remarked following the statement of the
theorem, it suffices to prove that Lg € #(G, &), We use induction on |G|, We
may therefore suppose that 1, € S(H, &) whenever H -ﬁ G, where £ is the
sct of elcmentary subgrowps of H, Thus Z[Ir(H)] = #(H, #,) for these
H by Lemma §.2. By transilivity of induction (Problem 5.1), it follows for
peF(H &), that ¢%c #(G, &y) 5 F(G, &) Thus for all H< G and
p & [rr(H), we have @ € A(G, &) and it will suffice to show, that 15 is a Z-
lincar combination of characters induced from proper subgroups. '

By Solomon's Theorem 8.10(a) we are done il G is not quasi-elementary
and so we may assume that G hay the cyclic normal p-complement C, Let
P e Syl (G)and Z = C{P), Sinc¢ we may clearly assume that G is not ele-
mentary, we have Z < Cand E = PZ < G, ' '

Write (1,)% = 1; + E, where E is a possibly reducible character of G,
We shall show that every irreducible constituent of 2 is induced from a proper
subgroup and thus 15 = (1,)¢ — 2 & #(G, &) as desired. .

Let x be an irreducible constituent of 2, Now CE=Gand C~ E = Z
g0 thal ‘

1 + Ee = (1% = (12

ki

by Problem 5.2, Thus

L= [z, 1) = [l ¥ 8 12) |
and hence [Ze, L] = 0. Thus [xg, 1c] = Ooifys o o, o

ot

T

Let A be an irreducible constitucat of xc. Thea 4 o 1o However, Z < G
and 50 Z & ker((1,)% and hence Z G ker y. Wa thorefore have Z < ker A
and thus by Lemma 811, 4 is not invariant in G, Let T.= I4l) = G, By

Theorem 6.11, y = ¥ for some ¢ & Ire(T), Tha result now follows. ]

. [ I
The following is a ugeful special case of part (a) of Brauer’s theorem, |
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(8.12) COROLLARY Let x be u class function of G. Suppose

() xgis & generalized character for every clementary £ = G
(b [ ;CJ =1;
(9« x(1) = 0.

Then x e It (7).

Froof Using (a) and Theorem 8.4(a), we have y = ¥ & for Eclr
X 4 ¥ = & . F G
and a; € Z, From (b) we ¢onclude that at most one u, #LO and y = & (Iog
some { & Irr(G). Then (c) yiclds the result, []

Before gni:uxg on to reap some of the harvest of applications of Brauer's
thcorem, we digress bricfly to derive the “local® version of the resuit, In the
Braver-Tate proof, this is obtained as an intermediate result.

(8.13) coroLLARY Lot &, be the set of peal
p-tlementary sub 8 of
some fixed prime p, Then ’ y suogroups of G for

mly G 5(G, &)
for some m e Z with pym,

- P.mqf By Theorem 8,10(b), there cxists m € Z with pAm such that ml  is
a Z-linear combination of characters of the form (1,)% for p~quasi‘¢lcmcmgry
‘H = G. Let 8, denotc the set of elementary subgroups of H. If M is p-quasi-
, elementary, then &, = #, and by transitivity of induction, we have

(1lyfe#G, &) = #(G, &)
The result now{ follows.

We shall use Braver's theorem to remove the solvability hypothesis from

nding characters, To da this we need part {¢) of the
will be used in Chapter 13.]

(8.14) LEMMA Let N =<3 ¢ and let 1 i =
8 ‘ Z&lrr(G) with yy = S lre{N), Let
¥ & 1re(G). For each coset Ng of N in G compute " ™

nNg) = (1IN 5 i)

LT

() [y, 97 # O, then y e Irt(G/N).
(b) IM(yy, 87 = 0, then p(Ng) = 0 for al) @
() Ifx =y, then n(Ng) = | for all g

e 2 e By 1R p R i - i

ol o e
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Proof Conjugates of Ng in G/N all have the form Ng* = b~ {(Nghk lor
he G. Tt follows that » is a class function on G/N. We may thus write 5 =
Y &, where & runs over Irr{G/N) and b, € C. Now

1 e
by=018] = I‘J—lf\f—l:vuzamﬂ{N gi(Ng)

1 ———
AR AR

where in the last expression, we view & ¢ Trr((G) and use thefact that as such, £
i5s constant on cosets of N,

We thus have b, = [y, . Now by Corollary 6.17, y¢ §1rr(G) and the
charactcrs y§ are distinet for distinct & € Ire(G/N). Therefore n =Y b &
satisfics # = O unless ¢ = y& for some & eTrr{G/N) in which case y = &,
By Corollary 6.17, ¢y = y¢ for some & iff [y, 3] # 0. The result now
follows. §

(8.15) THEOREM (Gallagher) Let N = G with 3elrr(N) invatant in G.

Suppose (X1, |G: N|) = |, Then 3 i3 extendiblc to G iff det ¥ is extendible, =

Preof The “only if™ part of the assertion is trivial, Assume i = det 9
is extendible to peIrr(G) If N < I € &G with H/N solvable, then 3 is ex-
tendiblie to H by Theorem 6,25, By Lemma 6,24, there is 8 unigue extension
Yo such that dex(y,) = gy, Define the function y on G as follows, 1f
gs G, let H={N, g% sothat JI/N is cyclic. Set x{g) = xynig). We shall use
Corollary 8.12 to show that y € [er((),

First we establish that y is a class function, Il g, x€ G, let H = ¢N, g}e./’,"‘. .

50 that HF = (N, g*%. Define ¢ on H* by y(h™} = y(h) for he H. Since th
map k- k" is an jsomorphism and y, € Ire(FF), we have Jr € [er(H®). Also,
{det ) (k™) = (det(y )} () = plh) = p(h™), 50 that det b = yy.. Furthermore,
if ne N, we have Y{n) = yun("* ") = Hr*™') = 3%(n) = Hn). Tt now follows
from the uniqueness of xgu, that ¥4~ = ¥ and hence

G = Heef™) = W@ = qom)le) = xlg)

and y is a class fungtion,
Mext, let £ & Gbeelementary and set = NEsothat /N = EAN n E)

is nilpotent and y4, is defincd. We shall show that the restriction x; = ygn. T8

and thus yg = (Y)e which is a character of E. If ge H, then <N, g» =
K = H. Clearly, (y,4)x 15 an extension of § to K and det((xn)x) = px 50

that (xynlk = Xk Therefore, x(g) = xx(@) = Lanlgh hence xy = X 88 ;

claimed, and y, is a character. . _
Next, we compute [y, xJ. For each cosct Ng of N in G, we have

E |l(x)|z = Z |X(H)(x”1»

Xe Mg xaMyg

LA

Braver's theoram 123

‘Where H = (N, g> = (N, x> for all xeNg. Since Ot = 9 & Ir(N),
Lemma 8.14(¢) yields 3.,y |xys(x}I? = | N | and it foltows that ¥, ¢ [(x)?
e |GIN[IN| = |G| and {n.x] w1,

Finally, x(1} = H1) = | and hence % € Irr(G) by Corollary 8.12, Clearly,
Av = 3 and the-proof is complete. |

{8.18) 0(‘5R6L'r.4_\m: Let N'=o G and e Ire(N) with 3 invariant in G. Sup-
pose (|G N[, of K1) = 1, Then 3 has a unique extension, y e Irr{G) with
{(1G: NI, o(x)) = 1.1n fact, o) = o(f). In particular, this holds if (| G : NILIND

Praaf This is immediate from Corollary 6.27 and Theorem 8.15. (See
the proof of Corollary 6.28.) §

We have already seen several conditions sufficient to guarantee that a
character value is zero, The following is a powerful onc.

(8.17) THOREM Let x & Ire(G) and suppose p (|G /(1) for some prime p.
Then x(g) = O whenever p[afg), . P

"i-Progf Define’d on G by ¥g) = x(g) il profg) and Hg) = 0 if ploig), We
shall use Brauer’s theorem to show that 9 is a generalized character.
Let E & G be'elementary. Since £ is nilpotent, we may writc £ = P » 0,

wherc P is a p-group and pt|Q|. If x € E and pAo(x), we have x & Q and s0 §
vanishes on E - Q and g m Xo- '
Let yr € Trr(E). We have
/

|E|(95, ¢ = ;Zaxfx)m = 10| Lxg. Yol

Since |E| = |P||Q|, we conclude that IP1[¥s, ¥]c Z

. Now let & = w_ be the algebra hormomorphism Z{C[G)) — C associated
m‘th_‘x 80 that u{K) = x(g)|#'|/x(1), where ¥ is the conjugacy ¢class con-
taming g and K = Z¥ e C[G]. We shall write ug) for the plgebraic integer
t{K), 50 that

_ xg) = x(axg)/| A | = p1exg)| Clg) /1G]
Now
1
IEIC32. ¥ = 3 300000 = Kt 3 a1 Gt

. xs xs{

Since P & Colx) for x € @, we hav'e"'
[Gl1Qi IG1|E)

S (% ¥] = AOIFl (9. ¥] = “qu(x)ﬁﬂlcc(x) 1P
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which is an algebraic integer, Since | PI[3g, W] & Z, we have [, ¥] & O and
thus (|G| Q1IN [95. ¥ € Z. Since |G| Q|/x(1)€ Z and is relatively prime.
to | P|, we conclude that [, y] € Z and hence. #p.is a generalized character,
of E. G R

Brauer's theorem now yields that, 8 is a.generalized character of G..In
particular [9, xleZ. Now [8, 11 = (/IG)) Y {Ix@)]*Ip4olg)}. and so
0 < [, 1] < [, ] = 1. We conclude that [§, x] = D.f-,\ﬂ and

O=[x- 9= ,—,1;—, Y {lx@)*p] olg)}

The result now follows. i \

v it

A character y € Irr((7} is said to have p-defect zero if p does not divide
Gl . ‘ . .

In Chapter 2 we discussed the question of what information can be ab-
tained about a group from a knowledge of its character table. Since Dy and
Qp have the same table, one cannot determing the orders of the elements in
the various ctasses. Nevertheless, it is possible to determine the sets of prime
divisors of these orders. To do this, we shall-apply Theorem B.4(a) in a situ-
ation where R 2 Z. P R

Il g = G, we shall use the notation n{g) to denote the set of prime divisors

of e{g). L . o e ten ot

(8.18) LEMMa Let g&G und let @ be a'set of primecs. Then there ;ciﬁl
unigue x, y & G with : '

@ g=xy=yx

i

(b) mx)smandn(y)nr = 5 ﬂ _

Furthermore, x, y & {g>. I T SR

Proof Write olg) = mn such that every prime divisor of m is in #'and
no prime divisor of n is in . Then (m, n)y= 1 and we have km +in =t for
some k, (€ Z Let x = g and y = ¢*" so that g = xy = yx and x, y e {§)>-
Since x™ = | = y*, (b) foliows. - SO - -

Now suppose g = wv = vy with nlw) S 7 and a@)rm = & Then
v = Cly) = Cx) and hence a(xu~') £ =(x) v m(u) < . Similarly,

Ay~ v} = wlv) v =), o

so that a(y™'v} N orleu™') = &, Sinee y~lv = xu”!, we have xu”
1 w y~'v and uniqueness follows. ot

i

It g, 7, x, and y are as in Lemma 8.18,-we write x = g, and y = g,.. If

t= {plwewritexm g and ymg,.. ¢

o
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(8‘.1_9) LEMMA Lt |G = mn with (m, n) = | and lel 7 be the set of prime
divisors of m. Let g € G, with g = g, and define § on 6 by

EEAREU A _Jn i x. isconjugateto g
&x) = . . \ '
0 if x. isnotconjugate to g

rL/c‘:‘t R be the ring_ of algebraic integers in Qfec], wherc ¢ is a primitive xth
root gf 1. Then 3 is an R-generalized character.

. Rro_qf !..et E = (G be elementary. It suffices to show that 85 € R[Ier(E)].
Sinec £ is nilpotent, we may write £ = H x K, where H isa #-group and K
12 a n'sgroup. Then for xe E, we have x = up, veH, veK and thus u = »
and v = x,., "

If g is not conjugate to any element of K, then 9¢ = D and there is nothing
o prove, Suppoxc then, that.g,, g5, ..., g, are the distinct elements af K
which are conjugate to g. Then the elements x ¢ E with X,. conjugate to g are

- exactly the elements of the coscts Hg, 1 =iy

Let ¢ & Ire(E). By Theorem 4.21, we have y = for
and n € Irr(K). We have V= Exnforsome Le (retH)

IEN98.¥1 = 3 T Sug)Blig = n 3 70 5.

in]l uc i f=1 we ll

i, Since Zwan E() = O unless & = | 4. we have cither [9,, 4] = 0 or

|E|[9%. 41 = n1#] ¥ 760,
=]

Now |E| = |K||#]and | K||n and thus {85, ¢] is a multip] 7G 0 whi
. 1 . N r
ies in R, The result now follows. | =¥ iple of X, igi) which

et R be the ring of algebraic integers in Qfel, where ¢
root of 1. Let pe & be a prime and let / be a maximal
Lot x, ye G. Then x_ and y, are conjugate in G iff

1(x) = x(y) mod | for wyery y e Ite(G).
o Proof Write |G = p
conjugate 10 x,- and 9g) = 0, dtherwisc, By Lemma 8.19, § is -gener-
alized ::haraclc; of G. Y 71 an Regener
3 Suppose x(x) m y(y) mod ! f

; or every yeler(G). It follows that (v
E Hy) mod I Now Hx} = n If S(y) = 0, then n = O mod f and ne 1. Sin(cr?

e fand pon, it fol!owg that | = (p, n)e J and this is a contradiction, Thus
8(¥) = n and hence y, is conjugate to X, a5 desired,

ith p¥n, and define & on G by Hg) = nif g, is

Conversely, we may suppose Xp =g @ p. and we show that 2%} = 2l

= 1) mod I Write ., = ¥ 4,, wherc the A are lincar characters. Since
g5 {x}, it suflices to show that Ag) = A(x) mod I for lingar 1.




v

[ ol | ool

=R

136 Chapter 8

MNow x = gh, where h = x_ e {x> and I{x) = A{gA(h). Let Ah) = § so0
that 87 = | for some m. For a € R, let 2* denote its image in R/ which is a
field of characteristic p, We have 0* = (§*)*™ — {* = (§* = 1*¥" and thus
d* — 1" =0* gnd § = 1 mod L It follows that X(x) = A(g) mod [ and the
resuft follows, 1 -

Note that by Theorer 8.20, it follows that if x,. and“y,- are conjugate and
x & brr(G), then x(x) — x{¥) lics in every maximal ideal of Rwhich contains p.

(8.21) THEOREM {G. Higman) Let 47, X5, ..., A", be\the conjugacy
classcs of G. Then the character table of G determines the \sets of primes
n, = nlg,) forg, €. -

Proof TLetIrr(Gy= {yt]l = i = k}. Weare given the complex numbers
@, = xig,) for g, X, If 1€ X", then v is the unique integer 1 = v < k,
such that ay, ¢ Z and oy, = |a,,| for all i, p and hence we know x, = . For
notational simplicity, we now assime | ¢ ¥°,.

MNext we compute ¥, (2;,)* = |G| and let R be the ring of algebraic in-
tegers in Q[£], where £ is a primitive | G|th root of 1. For each prime, p|| G,
we choose a maximal ideal of R, I, 2 pR. Construct the equivalence re-
lation ~, on {g|1 = p = Kk} by sctting g ~, v if ¢, = a;, mod [, for all
i, 1 =i = k. By Theorem B.20, 4 ~, v iff the tlements of &, and ¥, have
conjugate p'-parts. In partioular, if g ~,v, then z, U {p} = m, U {p}.
Furthermore, piven g, there exists v, with p ¢ ,, such that g ~ , v. To sec this,
take g € X", and choose v so thal g, € X7,

Let 7 be a set of prime divisors of G. Using induction on | ), we show how
1o construct the sct &, = {p|n, = n}. We have &y = {1}, If nm = &7, write
T = m, u {p}, where p ¢ n,. By the preceding remarks, it follows that

Fo={ulpd ¥, and p~_ v forsome ve ¥ L

The proof is now complete. ]

Transfer theory is a tool commonly used for producing normal sub-
groups of a group, especially normal p-complements or normal n-comple-
ments. Many of these transfer theorems can also be proved using characters,
and in particular using Brauer's theorem. An cxample of a typical transfer
theorem is the [ollowing: Let A be a Hall subgroup of G (that is, (| H|, |G 1 H|)
= ]} and suppose that H i3 nilpotent and that if x, y € i are any two tle-
ments which are conjugate in G, then x and y are already conjugate in H.
Then H has a normal complement in G,

In the above situation, lct & be the set of prime divisors of | H |, Using the
assumption that H is nilpotent, it is not too hard to prove that f U = Gisa
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nilpotent #-subgroup, then U/ is eonjugate to a subgroup of H. Because of
thig, the following result is a generalization of the above transfer theorem,

(8.22) THEOREM (Brauecr—Suzuki) Let H be a Hall subgroup of G and
suppose that whenever Awo elements of I are conjugate in G, then they are
already conjugate in H, Assume for every elementary subgroup E € G, thay
if |[E||| H|, then E is conjugate to a subgroup of H. Then there exists K= G
with HK = Gand H A K = |,

FProof  Let © be the set of prime divisors of |/, 50 that by hypothesis,
every clernentary x-subgroup of G is conjugate 1o a subgroup of H. Let §
be a class function of H. We define a class function 3 on G as follows. For
ge G, {g,> is an ¢lementary n-group and henee g, is conjugate to some ele-
ment x € . Set J{g) = 8(x) and obscrve that this is well defined since if g,,
is also conjugate to y & H, then x and y are conjugate in H by hypothesis and

s¢ %) = 50n. - : .
For x € H, let p{x) denote the number of elements g € G with g, conjugate
to x. Let x,, x,,..., x, be representatives for the conjugacy classes ol H. 17 9

and ¢ are class functions of M, we have
- 1 g —
™ [8, 33 = = T 8x (e hpix)).
|Gl

MNow let R be a ring with Z &= R € € and suppose that § is an R-gener-
alized character of H, We claim that § is an R-generalized character of G. To
prove this, let £ S G be elementary. We show that (9 is an R-gencralized
character-of E. Write E = [J. % V, where U is a n-group and V is a n'-group,
We mayassume that U s H, - .. ¢

Ifuet and pe ¥, then (uv), = u and hence Huv) = Hu). Since U < H,
we may write 8y = }. a ¥ forw e Irr(U) and a, € R. It follows that (e =
54 a(:x 1,), which is an R-generatized character of E. Thus 3 is an R-
generalized character of G by Brauer's theorem as claimed.

Mow let R be the ring of algebraic integers in Qi{e), where ¢ is a primitive
{H|throotof 1.Forl =1 < t,define 8, = Y, iy P(x), 50 that 3fx) = 0
if i %'7and 94x)'= [Cxlxi)| by the second orthogonality relation. Also, 9,
is an R:generalized character of H and hence [3,, 1;] € R and

l ]
- (x| x|
3. 1a] G| F_:l&{xj)#(-fﬂ -

We conclude that u(x){Cu(x)]/IG| is a positive rational number which
is an algebraic integer. It follows that it is a positive rational integer and thus

Sl I , . .
' axNCE)N/1Gi = 1

LT

e G

5
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and p(x;) 2 IGI/ FCyix;} for all i, We now huve~ LS v

IGI . IHI IGI " :.‘u.' [ L ..".-“’:?.
G = L i L
161 % IHIZICu(xDI.. rm' " Tl
Therefore, cquality holds throughout nnd p{xaulGI/IC,,{x.)l Thl,ﬁ;
Equation (*) yields L

@ EIr{E n N), such that

' '(a) NE = G;
v (b) @ is invariant in £:
(€) [95an. @] is prime to p.

/ }l"raoj' By Corollary 8,13, we have
* ‘ mlg = Zawc,

where ¢ runs over irreducible characlers of p-elementary subgroups, u, e
.and ptm. If E is p-clementary and ¥ e lr{E), we compute [, (y¥),] for
‘Geinvariant class lunctions B of N. Now (%, = |G: N|# and B, =

|EN:N|B, Since 5% and 8% both vanish on EN — a
o EN|3‘” i [/} nish o N, we have {(f%,,

: L DB O] = (84 YO = [, ¢,
; f’/ where the latter equality follows sinec W¢ s (WP This yiclds
[ W] = 1G: ENILE™ Y**] = |G : EN LB, (™))

= |GLEN|[B (ygnn)"],
where wa have used Problem 5.2 to obtain the last equality,

- Weapply Lhis with § = 35, For cach  in Equatio ile
for pelementary £, £ G, We obiain ¥ in Equation (*), wrile € I:AE,)

o m=8hml) = };u,[.ﬂ.ﬁ, (%]

'1-| Py
' o

ﬂ(xg)fﬂ(xl)lﬂl [ '
15,01 = 17 3, S Gl |

Now supposc & Lrr(H). By lalr.mg R Z we conclud: that ¥is & gener-
alized character of G, Since [, 7] = tx. x] w 1 and 3[1) = x(l) > () It
follows that ¥ € Irr(G).

Let X = (\{ken(¥)|x € Ire(H)}. Then K« G, IfueH " K ‘then x(u]
) = §(1) = /1) for all yelee(H) and thus w = 1. On the other hand, l’!‘
pém, PeSyl(G), and veP, then v, =1 and ¥u)'= x(1) = (1) for’ all
x€lrr(H), s0 that ve K. Thus P & K and hence |K| 2 |G: HE I follows
that HK = G, |1

To demonstrate the power of Theorem 8,22, we show how ¢axily Burn-
side’s transfer theorem follows lrom it,

FENTEFA D l—"

(8.23) comroLuany Let e Syl (G) and suppuu P S Z{N(P)} Then there

exists K9 Gwith KP m Gand K n P = L. - ¢ .

Proof W E & Gisa p-group, then £Eis conjugﬂle to EQme subgmup nFP,
by Sylow's theorems, It therefore suffices Lo assume X € P are canJugatz in
G and show that x and y are conjugatein £, .. 0.0 L

We have then, y = x? for some g€ G. Since P is abelian, P s Ca and
P Cax®) = Csly). Thus P* =P for some ceCg(x) and hence
gee N(P) = C(x) by hypothesis, Now y = x¥ = (x?F = x*.= x and the
proof is complete, | , ; .

= Z ay|G: NE,| [5G, ('f’s, YA

'. Since pym, there cxists  such that p docs not djvide |G :NE|[B8, (¢

" whare we have wrilten £ wo E,. Since G/N is 4 p-group and p¥|G : f';ﬁ ﬂ)w]e
conclude that NE = G, and (a) follows.
. Nowwrite £ == E ~ W 55 Lhat

[‘9‘3'( )NJ = ['gl.'gl'..r 'lt’l.] = [‘QL' '»t’b ‘g.l.]

is prime 10 p, Since 9 is invaridut in G we ha ve J i invariant in E and we may
(wiite 3, = ¥, e, A, where A ruits.over sums of orbits of the action of E on
Trr{L)and e, € Z. Write y = 1/, 9, s6'that 7 is invariant in £, We have

[Ors iy, 3] = Z eald, v

18, prime to p, Choose A such that phes[A, yland write A = p, +
iwhere the @, e Irr(L) and are conjugate under E,

We also remark that Theorem 8,22 provides an alternate proof of
Frobenius’ Theorem 7.2, It is routine to check that a Frobenius complement
necessarily satisfies the hypotheses of Theorem 8.22,

"

QOur next results depend on Corollary 8,13 where we restrlct mtentmn to
p-elemenlary subgroups [or some fixed p, -

(8.24) rusokeMm (Dade) Let NG wxlh G/N 1 };-g}oup. Let Selrfb_\f) '

be fnvariant in . Then there exists a p-clementary subgroup E = &, and e




140 Chapter 8

Since y is invariant under £, all [, ] are cqual and [, y] = [e,, v].
Fiowever ¢ is a divisor of |E:L| = |G Ni\and s0 is a power of p, Since
pATA) ¥], we have t = 1 and @, = ¢ iy invariant in E. This is (b). Finally,
(91, 9] = ¢, is ptime to p and the praol is ccr:hn L |

An interesting special case is when N = .

(8.25) corolLakY Let ¥£1rr(G) and let p be a fixed prime, Then there
exists pclementary E € G and ¢ e lrr(E) with [xg, ] # 0 mod p.

Examples exist which show (hat in Corollary 8,25, £ cannot always be
laken to be a pegroug.

Dade's Theorem 8.24 has a nice applieation to the question ol‘ character.
exlendibility.

{8.26) THEOREM Let N-a G with G/N a p-group. Let PeSyl,(G) and
assume that ¥ ~ N © Z(F") and thal every linear character of P N is
extendible to £, Then every G-invarianl irreducible character of N is ex-
iendible to G.

Proof Let S Irr{N) be invariant in G. By Theorem 8.24, choose a
p-elementary subgroup E = G, with EN = G, and peln(E n N) such
that pd 9, n. 0]

We have E = Q » C, where ¢ is o p-group and C is cyclic. We may
assutne that € is a pl-group so thal E~ N = (@ A N) x C and we write
=0 % Awhere aclrr(Q m N) and ieIre{C). We may assume Q S P 50
that @ n N S P~ N, which is abelian, It follows that « is extendible to
P ~ N and thence to P by hypothesix. Therelore o has an extension & € [rr{(?)
and ¢ = & » A is an extension of @ (0 E.

Now since EN = G, we have (%) = (@g.4)" = ¢ and hence

[‘E’G)H- '9] = [rp~1 S] = [l‘P, 'c}l!ﬁh‘]u
which is prime 10 p. Thercfore, there cxists ap irreducible ¢onstituent y of
&% with ptxy. 91. Since 3 is invariant in G, it follows that xy = 28 with
pie. Now ¢ divides |G : N| by Problem 6.7 and since G/N is a p-group it
followsthal ¢ = | and ¥ cxtends 9, (Note that Problem 6,7 follows immediate-
ly from Corollary 6,19 by induciion) |

We remark thal in the notalion of Theorem 8,26, the hypothesis on P will
automatizally be satsfied i £ is ubelinn, More generally, it mﬂiceq for
PANal, e

1t has been mentioned that if ¥ =2 G and § € 1rr(N) is invariant in G, then
it suffices to show thal § is extendible to the inverse images in G of the Sylow
subgroups of G/N in order to prove that § is extendible to &, Tt is for this
reason (hat it is uscful to obtain results like Theorem 8.26 which give suf-i
ficient conditions for extendibility when the factor group is a p-group,
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Problems

{8.1) Let Z = R = €, where R is a ring and the additive group (Z, +)is a
direci summand of (R, +). Let # be a family of subgroups of G, Show thal
S R(G, ) Z[IHG)] = S(G, H), :

Hint Writt R e Z 4+ $, 119 = ¥ a,¢% whercall o, € S, then [9, x] ¢ §
for al) x € Trr(G).

Note The Brauer-Tate proof of Brauer's theorem uscs his fact applied
to R = Flc], where s is a root of unity.

{8.2) Let @ be the collestion of abelian subgroups of the group G. Show
that the following statements are equivalent;

(a) laE..ﬁ(G, Lﬂ’):
by G, o) = Z[Ir()]:
{¢} every Sylow subgroup of & is abelian.

Hint 11 a Sylow p-subgroup of G te nonabelian, consider the function
9 = (1/p)p, where p is the regular character of G.

{8.3) Let y be a character of G. For g€ G and prime p, write g = g,4, in
the notation introduced following Lermma 8,18, Define the class function x,
by 1,(0) = x(g,) Show that (x,)y is a character for ¢very nilpotent N € G,
Show that if G is not nilpotent then x, is not a character of G for some
x € Irr(G@) and some prime p. !

. Note Tnfact, x, is a character for cvery ye Irr(G) iff G has a nt)l“mﬂl

. Sylow p-subgroup. Of course, by Brauer's theorem, g, is always a generalized

chamcter
(8.4) Letyandiybe charactcrs of G and suppose |G| = mn, where (m,n) = 1.

" Let

= E x(mmu

where'the sum is taken over those g & G such that o(g}|m. Show that afm e Z,

(8.5) Let ye[rr{G) and suppose |G| = mn with (m, n) = 1. Assume thal
x(x) = O for all | # x &G such that x" « 1, Suppose vy & ¢ and p™ # |, Show

that x(y) =

8.6) Let G and H be groups with classes X", and #, respectively and ir-
educible characters y, and ¢, mpeclwely Assume that whenever g € X',
nd heS#; we have y{g) = y (k) for all i and f. (In short, G and H have
dentical character tables,) Let x e Z(P) where P e Syl (G). Suppose x € X',

. Let y € %,. Show o{x) = oly).

.
1
fa
t
H
4
+
]
!
:
4
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Hint 1 o(y) > ofx) and 7 ¢ H, with (3> = (z) and y* = z*, show that Y B LetyelriG .
z & %, and conclude that p|| &£, |. See the hint for Problem 2,12, Y . Lt 05 G xw“h (p }Ef:ﬁ;?&liﬂgﬁ;ﬁ;g ‘(‘a; “g;h :’*“(Fl‘fc‘ “]f' the prime p. _
character of . PG ow that (I/[P[)xy is a :
A

C (8.12) LetP G, where Pis g p-grou
- poandlety e Irr(G/P) be of defect

P ICro
ﬂ G“t’:;h respect to p, Let 3 & Ire(P) be invariant in G, Define the function ;
Wig) =0 if g,¢p i1

W) = Mg dxlg,)  if g,eP. ]
(a) Show thatyisa generalized character of ¢, 1 |
(b} 1 G = PCy{P), show that ¥ g Irr(G). i
it

(8 13) LetN < Gbea Hall n-sub
group. Define the function
HyeCalx)|yisof n "-order}|. Show that v is g generalized c;;ﬁge?);;(ﬁ |

(8.7) Suppose G and H have identical character tables and that Gis solvable
and has an abelian Sylow p-subgroup, Show that G and H have isomorphic

Sylow p-subgroups.
Hint I ¢ has no nontrivial novmal p-subgroup, then its Sylow P
subgroup is normal. Use Problem §.6.

(8.8) (Dade) Let N= H € (7. Assume the following:

(@) (H:NL|G:H])= 1.
{b) 1If x, x*e H for some g€ G, then there exists he H and ne N wnh

x* = xMy, al
ic) If ES G is elementary and ([E|, [G H[)= l then B g Hfor

i1

e A s S e o ety L

some g € . ,

Show that there cxists M = G such that HM = G and H M =N, irreducible), define § on G by

Hint If 3 is a_G-invariant character of N (which is not necessarily s

4

) = g,

Himt Mmuc the proof of Theorem 822 Consider only those class .
Show that J is a gencralized character of G and compute B3, 161

functions & of 4 which are constant on cuscts of N r-

LY

Nore  Many of the important, “ transfer™ lhzommfollow from Problemt 3

8.8, for instance, the Focal Subgroup Theoremz,i . » i
Let Pe Syl (G)andiet N = {x"'xf|x¢ P x' &Ry, GG} ThmA"(G) > Ji

MY s et e e o

I-iere A'(G) denotes the normal subg;roup of G mlmmal ‘siich that
factor group is an abelian p-group. Problem &.8 yields M < G with MP'=a' ¢

and M ~ P = N. It follows that M % AXG), The reverse inclusion follows | ;
. (n-- ;

from N S G’ o ANG). R R T .
(8.9) Show that a group G is quasilementary iff | ; cannot be written m th
form ¥ ay(1,,)® for proper subgroups H, with a, ¢ Z. #
Hint For “only if": Assume 1g = ¥ ay(1y)% where the H run o);;r:‘
representatives for the conjugacy classes of proper subgroups. Let © be

eyelic normal p-complement for G. Choose H, minimal, such that
pHlay, |G Hgl), und let A be a [aithful linear character of C/(C i~ Hp). Con-\'
l'

sider the numbers [(ayd1,)%)¢, A].
Note Problem B9 essentially says that Thcorcm 8. l()(a) iz the bast
passible. o

R ST SR T B

tey ol

hc taken to be the p’-part of |G|. ;




9 Changing the field

So far we have restricied our attention almost exclosively to characters,
representations, and modules over the complex numbera, In this chapter we
digress from our study of the properties of Irr(G) 10 consider irreducible
group represcntations over arbitrary fields. (Tn prime charaeteristic, this falls
far short of the general case, since not all representations are completely
reducible) In particular, if F & E i a ficld extension we explote the connee-
tions between the irreducible E-representations nnd F-representations of a
Broup. In prime characteristic, we shall see that this situation is (surprisingly)
under somewhit better control than it is in charagteristic zero, which will be
more fully considered in Chapter 10

Let F g F and let X b2 an Fercpresentation of a group G. Then ¥ maps
¢ into & group of nonsingular matrices over F Lhat, of course, are also non-
singulat over E, We may, therefore, view X as an E-representation of G. As
such we denotc it by XE (The superseript (hus merely indicates & change in
point of view.) If X, and ¥, are similar F-representations, then X, % and X%
are similar and it follows that if ¥ corresponds to the F[G)-modulc ¥, then
thers is a uniqucly defined (up to isomorphism) E[G]-module V¥ that cor-
responds to £*, (For those readers familiar with tensor products, we remark
that V& = V @ E.) We shall not, however, nced to refer to VE again, since
it is usually easier to work wilh the representation X5, »

The Fercpresentation ¥ may be extended by linearity to obtain a re-
presentation of F[G], which we shal! continue to call X, Undetr this con-
vention, the E[G-representation X® is an cxtension of the F[G]-reprasen-
talion X,
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L} ;“ is irreducible, then clearly so is X. However, ¥* may well reduce, even
if X is irreducible. To illustrate what can happen, we consider two examples,
both for the field cxtension ® = C. Tet G = {g> becyclicolorder 3and let X
be the R-representation defined by

p) = (_? _:)

Then X affards the character A + 1 where A is a fajthful tincar character of
G and so X° is reducible. Since A is not real valued, it is not afforded by any
R-representation and it follows that X is irredugible over [,

Now let (p = (a. b) br the quaternion group of order 8, where o{a)
=4 = ¢{h), Dchine

ot 0 o0 6 0 1 ¢
-1 0 ¢ ¢ 0O 0 0 1
=14 o o 1) ¥O=\_| o o o
0o 0 1 o 0 -1 0 0

It is not hard to check that this defines a representation of Q. (In fact this is
the representation whose module is the qualernion algebra H = K + Ri +
Rj + Rk with respect to the basis {1, i, j, k], where a = i and b = J act by
right multiplication.) Now %€ affords the character 2y, where y € Ir{(,) and
(1} = 2. By Problem 2.5(b), x is not afforded by any R-representation of 0,
and thus ¥ is irreducible over R, (This can also be deduced from thé fact that
H is a division algebra.) ]

(9.1) DEFNITION Let X be an F-representation of G. Then X is absolurely
ireeducible if XF is irreducible for every field £ = F.

(9.5), ‘\ THEOREM Let X be an irreducible Frepresentation of G with degree n,
The following are equivalent.

‘(a) X is absolutely irreducible.

{b) X is irreducible for every finite degree extension E = F,

(€) The centralizer of ¥(G) in the matrix ring M (F) consists of scalar
matrices. '

(d) HFLGY) = My(F).

" Proof That (a) implies (b) is trivial. Now assume (b) and let M ¢ M(F),
with MX(g) = X(g)M for all g€ G. Let E be a finitc degree extension of F,
chosen so that M has an eigenvalue, 4 € E. Since X2 defines an irreducible
representation of E[G] and M — AJ is a singular matrix centralizing its
image, it follows from Schur's Lemma 1,5 that M = A/ = 0, Thus () follows.

That (¢} implies (d) is immediate from the IDouble Centralizer Theorem
1.16. Finally, assume (d) and let L 2 F. Since every M e M,(L) is an L-linear

iy

[T S T W

e e
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-’l@ugm&mtations similar to the 3, are the irreducible constituents of X:ihose
similar to 3, being top constituents and those similar to 3, being bottom
onatituents, (Of course sotme of the other irreducible constituents of ¥ may
‘dlso be top or boltom constituents since 3§ is not necessarily the only rep-
. «regentation in triangular block form to which X is similar.) Note that the
' eharacter afforded by a representation is the sum of the characters of all of

the irreducible constituents (counting multiplicities). We emphasize that
!:y the Jordan-Hélder thcorem, the representation ¥ has only finitely many
ureducible constituents (up to similarity), namely thosc which appear in any
.1 8ingle triangular block representation similar (o X.

(9.5} cOmOLLARY Let F be a field and G a group.

for every L representation ) similar 10 X, we have S(L[G]).» M. (L) and 80
). cannot be in reduced form. Thus X.ia irreducible over. L. and the proolis
complete. | O I Y (XY T T LTI
(9.3) perNITIoN  The field F is a splitting field for G if every irreducible
F-representation of G is absolutcly irreducible, ‘
{9.4) coronlary [IFF s algebruically ¢losed, then F isa spliting fleld for
£very group. coe e gl e g
Progf Since F has no proper i'inite"ch-:gi-'e:u-.i ’eitgniﬁnf 'dphflli'tiﬁ’ri (B) of
Theorem 9.2 holds for every irreducible F-representation of G. |l T
ML LN '
Suppose F is a splitting field for G and E @ F. Then every irreducible
F-representation X determines an irreducible E-representation X2 If {¥} is
a sel of representatives for the similarity ¢lasses of irreducible Ferepresen-
tations of G, then {X.f} is a complete set of representatives for the irreducible
E-represantations of G, In order to prove this, we neéd 1o discuss the “irre-
ducible constituents™ of a possibly reducible representation, .
It V is dn F[G}-modulc, then a composition series for V is a chain of
submodules ' o :

: () Every irreducible F-representation of ¢ is a top constituent of the
" regular F-representation R,

b) Thero:- exist only finitely many similarity classes of irreducible

* F-representations of G,

f (c? IfE = FEund P is an irreducible E-representation of G, then Disa

*eonstituent of X* for some irreducible F-representation X,

Proof Statement (a) is immediate from Lemma 1.14 and (b} Iollows from
;1,(8) via the Jordun-Holder theorem, Let 3 bo any F-represenation of G, The
wureducible constituents of 3 may be found by taking the irreducible con-
g itituents X, of 3 and then finding the irreducible constituents of the ¥,5. Now
N (¢) follows by applying this remark to J=%H ]

Ve

]»; .E’I:“ﬂ\, K

Valh>WVso 2l ‘50 ,l:ul‘.lllt‘i.-'rl’ﬂ-:'.l;u L
such that each ¥,_ /¥, is 4n irreducible module, The modules V,_ /V, are the
Jactors of the series. The Jordan—Hélder thcorem asscrts that the factors of
any two compaosition serigs for V' are the same up o isomorphism (and
counting multiplicities). An irreducible module W isomorphic 1o a factor of
some (and hence all) composition series for V is called an irreducible con-
stituent of V., If W is isomorphic to an irreducible submodule of V, then W is
a constituent of V. We call it a botiom constituent in that case, Similarly any
irreducible homomorphic image of V is a constituent, These are the top
constituents of V. If V is completely reducible [e.g., if char(F)¥{G|], then
every irreducible constitucnt of ¥ is both a top and a bottom constituent.
{Caution; the converse is lalse,) c :
All of the preceding rcmarks may be translated inlo the language of
representations, If X is an Ferepresentation of G corresponding ro the F[G]-
module V, then X iy similar to a representation .3 in triangular block form

The following result is a useful tool for establishing the similurity of (wo
F-representations of G and for other purposes,

! :(3.6) THBOREM Let X be an irreducible representation of F{G] and lot
. g€ F[(?]. Theln thera exists b € F[G) such that X(b) = X{a) and Dik) = 0 for
: every irreducible F{G)-representation ) which is not similar to X,

n Prapf Let {¥,;} be a set of represcntatives for the similarity classes of
1rr¢.duc1ble F[(F]-representations, Let I, = {xe F[G]|X(x} = 0} 50 that f, is
N ideal of F[G) and in the notation of Preblem 14, JIF[GY) = (I, Let
‘A = F[G/((\1,), 50 that ezch X, may be viewed as a representation of the
lgebra A. As guch, the X/urc irreducible and pairwise nonsimilar, In par-
g:,{,hcula.r_. J(A) = 0 and by Problem 1,5, A is semisimple. By Theorem 1,15, A
" has minimal idenls M,, suh that XM)=0ifj# |and (M) = E(d) =

3@ " it
. . XAF[G]). Now suppoge X =\X,, Choosc b in the inverse ima ein F[G)of M
) = Ja(@) . ) with X{b) = X(4). The result follows. | * o3 l
o J 3 ={(27) COROLLARY Let ¥ and™) be irreducible F-representations of G,

uppose F < £ and that ¥f and P*have a common irreducible constituent,

where the irreducible representations 3, correspond to the factors K-i/W “Then X is similar to ).

P

[ S

S MBI by ik e At e it k.
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Progf Let 3 bean irreducible constitucnt of X¥ynd of P If % and 9 are
not similar, view them as representations of F{G) any choose b e F[ 7] with
X(h) = Z(1y and V) = 0. It follows that if U is any E[G]-representation
similar to X%, then U(h) is the identity matrix and henice J(b) is the identit
matriX. A similar argument, working with 95, shows that 3(b) = 0 and this.
contradiction proves the result. ] '

(%.11) COROLLARY Let G = F <. C. Then F is a splitting ficld for G iff
... every x e Irr(G) is afforded by some F-representation.

Proof If F is a splitting field and y e Irt{G), choose & G-representation
;’f, .“"1[?]: ;ﬁ%'t::" ﬁ.rgz* ;l?v‘:crmigﬂ. x ::_slr‘mlar to P for some Furepresentation

Ci:"nversely. Suppose that every y € Irr(G) is afforded by some Ferepre-
gentation. !..et X be an irreducible C-representation and let D be an F-
representation which affords the same character. Then by the linear jnde-
pendem::c of Irr(G) and using the fact that € has characteristic zerg, it follows
1hat X is the unique irreducible constituent of Y€ und occurs with multi-
plicity 1, Thus §)€issimilar to X. The result now follows from Theorem 9.9, ]

Note that Corollary 9.7 asscris that the representation X in Corollar
9.5(¢) is unique up to similarity.

(2.8) cornuLaRy Let F be a splitting field for G and et {X,)} be a set of
representatives for the similarity classes of irreducible F-representations,
Suppose £ = F.Then E is a splitting ficld and {%F} is a set of representatives
for the irreducible E-representations of G. Coe ‘ ,

We ghall now discuss the character theory of a group over an arbitrary
splitting field. The following result is actually true without the assumption
that E is a gplitting field. We shall prove the more general fact later,

(?'.l?) LEMMA  Let E be a splitting field for G. Then the churacters of non-
§|m:lar irreducible E-representutions of ¢ are nonzero, distingl, and lincarly
mdependenl over E.

Proof Since the X, are absolutely irreducible, the %" arc absolutely
irreducible, They arc pairwise nonsimilar by Corollary 9.7, Finally, suppose
P is any irreducible E-representation, By Corollary 9.5(¢), T is a constituent
of £ for some i, Since X,F is irrcducible, it is similar to ) and the prool is ..
complete, || "

(9.9} THuOKEM Lel E be a splitting feld for G and let F < E, Then Fisa
splitting feld iff cvery irreducible E-representation of G is similar to Y% for
some F.representation {}, "

' ‘Pm?f Let {X)) be a sct of representatives for the similarity classes of
|rt_'educ1ble E-representations, and let ¥, be the characler afforded by X,.
View ¥ s being defined on all of E[G]. Since X(E[G]) is a full matrix ring
. over-E, we may choose a & E[G] with gda;} = 1. By Theorem 9.6, we may

Proof Suppose F is a splitting ficld, Then by Corollary 9.8, every irre-
. assume that xa;) = O if i % /. The resull is now immediate, |

ducible E-rcpresentation is us desired. Conversely, let Jj be any irreducible ;7
F-representation and let X be an irreduciblc constituent of 35, By hypothesis, 78
there exists an irreducible F-representation ), such that ¥ is similar to X

and hence P and 3 have an {rreduciblc constituent in common. By Caorol-
lary 9.7, 9 is similar to 3. and thus 3% is absolutely irreducible, it follows that .
2 is absolutely irreducilyle sinee Lthe only F-matrices which centralize all 3(g)

arc scalar. The proof is complete, |

. M i
If E is a splitting figld for G, we shall us¢ the notation lrrg(G) to denote the
set of characters of the (absolutely) irreducible E-representations of G. The

- poinrt._of the next result is that in some sense Irr (G} is not as dependent on the
 particular field £ as the notetion would indicate.

(9.13) ;’-LE'MMA Let'E be a splitting field for G and lct y & lerg(G), Suppose
- K 5'Eisasubfield which containa y{g) foralig & Gand let F D X beanother

(9.10) COROLLARY Let F be any ficld and G a group, Then some finite splitting field for G. Then 1 € TreylG).

degree cxtension of £ is a splitting field for G,
Progf We may replace F by a K-isomorphic copy and assume that E,
F =.L for some field L, By Corollary 9.8, L is a splitting field for G and
Iref{G) o Itey(G) me Irrg(G), The result follows, ||
S R S S SR TR :
. Thr: fiext result is of gredt :rnpor‘tance in studying representations in
¢ prime ;haractgrlstlf.‘l’ts proof depends on Wedderburn's theorem which
; ﬂsscrtq"'thal finitc division rings are commutative. As the quaternion group
it of order 8 shows, Theorem 9.14 would be false in characteristic zcro.

Proaf Let F be the algebraic closure of F, so that F is a splitting ﬁcéd.)
Let (%} be a set of represenlatives for the similarity clusses of irreducible .
F-representations. By Corollary 9.5(b), [{¥}| < co and hence only finite]
many elements of F ocour as entries in any of the matrices £(g) for g G.,
Adjoin ail of these elements to F so as to obtain the field E. Since F is alge-
braic over F, it follows that [£: F| < oo, Singe each X; may he viewed as an

E-representation of G, it follows from Theorem 2.9 that £ is a splitting field. . 1+
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of the form x" — 1 over K. Since this polynomial yickds a Galois éxtension
with an abelian Galois group, it follows that K(y) is a linite degree Galois.
extension of K and the Galos group #(K(x)/K) is abelian. il
Assume that £ is a splitting field for Gand that F 5 E. Il x, f e TrrfG), we -
sdy that ¥ and b urc Galois conjugate over F if F(x) = F(y) and there exists
a & F(F(x)/F) such that y* = . Tt is clear that this defines an equivalence”
relation on Jreg{G).

(9.17) LeEMma  Let E be a splitting ficld for f and let g e Irrg(G). Let & be :
the cquivalence class of ¥ with respect to Galois conjugacy over F where
F < E Wt have

() K< E Kiz)= K,and e ¥(K/K ~ F), then y" ¢ &,
(b) IfF, = Fand €5, then y is Galals conjugate to y over Fy.
€ |F1=IF(x).F|.

Proof (a) By 5.16, y" e Irr{G). Now (K m F}{(x) 2 K m F is 2 normal
cxtension and so (K ~ F)(x) & K is invariant under o. 1t is thus no losa to
assume that K = (K m F)(y)and so K £ F(x) and no proper subfield of F(y) -
contains hoth F and K. It follows by Galols theory that regtiction maps
HF(x)/F) onte ¥(K/K n F) and so y° = " for some ve #(F(x)/F). Now:
F(y') = F(x) and so y* = "€ &, il

(b} This is immediate by applying (a) to Fy and taking K = F(y). o

(¢) We have that ¥ is the orbil of X under #(F{x)/F). By definition of "
F(x), the stabilizer of ¥ in this group is trivinl and so |[¥| = W[F{x)fF)l‘

=|F@):Fl. 1

Now let F be any Beld and lct % be an irreducible Ferepresentation of G.'-
Lct E o F be a splitting field for G, What docs %€ look like? We shall prove™
that it is completely reducible; that all irreducible constituents oecur with . :
efual multiplicity; that the characters of these constituents constitute a
Galois conjugacy ¢lass over F and that (he common multiplicity is 1 except
posaibly when F has characteristic zero,

(9.18) 1LeMMa Lel F = Ewith|E:F| = n < oo and let V bean lrrudumble
E[GTlmodule corresponding o the E-representation X, Then V' may be
viewed as an F{Gl-module and as such let it correspond to the Fe-repregens
tation 3. Then

(a) degB3an deg X

(b) 3 has a unigue (up to similarity} irreducible constituent. It is the
F-representation P such that X i a constituent of PF,

() I X affords thc E-character y and F(y) = F, then 3 affords ny.

Propf We may certamly view V a5 an F-spacc. Let vy, vy, ..., ¢y be an
E-basis for ¥ and let e, 4, ..., 2, be an F-basis for E, It is routlne L] chcclr'
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that {v,e;} is an F.basié for V and so V is finite dimensional over F, 3 is
defined, and (a) follows.

Let T be 8 (unigue up to gRimilarity) irreducible F-representation of G
such that ¥ is a constituent of PE, By Theorer 9.6, choose b & F[G] = E[G],
such that Py = P(1) and Pyik) = 0 for every irreducible F-rcpresentation
P, hot similar o 9. Since ¥ is a constituent of PF and (b} is an identity
matrix, then so is %(b) an identity matrix. Thus b acts as an identity on ¥ and
hence 3(f) is an identity matrix and Pb) O for every irreducible con-
stituent ), of 3. Thus every 9, is similar to 9 and (b) is proved,

For (c), let g€ G and write v,g = ¥, v,a,,, where o€ E and x(g) = ¥, ay.
Now write

Xjy€y = z fvﬂum
for 1 < 4, v < nand f,.eF. Let 3 afford the character . Then
(vie)g = JZtue.ﬂu... coand  Wlg) = ¥ B

LT

We have o
(2 Gy gy = rzevﬁﬁur

Bnd since we are assummg that b T = x{g) € F, we conclude thal

*
ity

T 2 all = E ﬁ“ul

foreachp, l Su<n i"l'fn: result now follows, 1§

(%.19) ocoroLLARY Let F < E with |E:F|=n < oo, Let X be an irre-
ducible E-representation 'of G und let P be an irreducible F-representation
such that ¥ is & constituent of D=, Then deg P divides n{dag ¥).

Proof Let 3 be an F- reprmntauon obtained by viewing an E[G]-

module corresponding to X as an F{G}-module, By Corollary 9.7 and Lemma
9.18(b), we conclude that 9 is the unigue irreducible constituent of 3 and so
deg-P divides deg 3. The result now l‘olluws from 9.18(z). J

_lN '!I."he fullowms mmllary”m ‘what st Survives of Theorem 9,14 when the
ypothesls of pnme chnractcnstlc is dropped

9:20)" COROLLARY" Lt % be: o’ abﬂolutely jrreducible E-representation of

G which affordsthe character y, Let F & E be such that F(y) = F. Then there
eXists an irreducible’ F-representation 9, such that ¥ is the unique (up to
. kimilarity) irreddcible copstitucnt of Y. Tn particular, P affords my for some

intéger m.
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Proof If F has prime charactersitic, then by Theprem 9.14, there exists 9
such that 9% is similar to ¥ and there is nothing to prove. Assume then,that
char(F) = 0, b mhemine i g to

It will suffice to show for some positive integer,n that l‘ha character ny is
afforded by some F-representation 3. This is-sutﬁcien.t,'smcx by the linear
independence of Irr(G) for a splitting field L = {3. it follgws that svery
srreducible constitucnt of 3~ affords x and so.is similar.to %L, We may thus
take ) to be any irreducible constituent of 3 and quote Corollary 9.7 ¢
complete the proof. R o Vot

't?o produfc 3, let K 2 F be a splitting field with | K: Flp= n < . By
Lemma 913, yelrrg(G). Let 3 be the F -repres?nta.tmn which results by
taking a K[G]-module which affords y and viewing It 88 an FIG]-madule.
Then 3 affords ny by Lemma 9.18(c) and the result follows. 1

Of course it follows in the above situation that if P is any .irrfadupib‘le
F-representation such that X is a constituent of (D )F, then ;})n is sirnilar to )
and hence X is the unique irreducible constituent of ($e)”. .

9.21) THEOREM LetF < E where E is a splitting field for G. Let 9 be.an
irreducible’ F-representation of G. Then

. ‘.u-n5! :

’

(2) The irreducible constituents of P8 all occur with egual multi-
plicity m.

(b) If char(E) # O, thenm = L. ' ' .

(¢} ‘'The characiers g € Irr,{G) afforded by the irreducible constituents
of P* constitute a Galois conjugacy class over F and so the fields F{y) are all
equal, . .
(d} Let L = F(z). The irreducible constituents of YL oceur with
multiplicity 1. ; ) o

(¢) If 7} is any irreducible constituent of 9 then 3° has a unique
irreducible constituent. Its multiplicity is m. L .

() V" and P* are completely reducible.

i PR e

Progf Let X be an irreducible constituent of 9¢ and suppose ¥ affords

yeligG). Let L = F(y) and let 3 be an .irreducibk_a conmitl:lcnt gf ‘Il‘;;spah
that ¥ is a constituent of 3%, By Carollary 9.20, X is the unique irreducible

constituent of 35, Let m be its multiplicity, so that 3 affords the characier my,

If char(E) # 0, then Theorem 9.14 y'felds',m - '_l" m"ld‘ﬂ ls ,‘3“]3’,?0!‘:“‘1)’ ‘i‘;;:éﬁ-

ducible.

Ly %y Xz, -« o Xy e the distinct Galois conjugates of x over F so that =
n =L|";. ?:F | lf; Lﬁmma 2‘SCU.I'J'I[‘.‘.). For o e #(L/F), form the I_.,-represematluq 3
definad by 3"(y) = J@)". As o runs over W(L/:F' )} we oblain n representations -
'3* affording the characters my,. 1 5 i < n. Sinee m = 1 when ‘I:ha_r(E) # 0, :
the my, are distinct in atl cases and thua the 37 are pairwise nonsimilar. Algo, |
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each {3°)f has a unigue irreducible constituent and it occurs with maltiplicity .
m. This follows from the characters if char(E) = 0 and it holds in prime
characieristic since then all of the 37 are absolutely irred ucible.

We claim that the n = |L: F| representations 37 are exactly thc irre-
ducible constituents of 9" and that each occurs with multiplicity 1, Since the

/'irreducible constituents of {39)F and (3% are nonsimilar il & # t, statements
(a)~(e) will follow when the ¢laim is established.

Since 3 is a constituent of PL and {PL)° = P for o e F(L/F), it Tollows
that 37 is a constituent of P* for every o. Therelore nideg 3) = deg ) since
n = |%(L/F)|. By Coroilary 9.19, deg ) divides n(deg 3) and we thus have

equality. Therefore the 37 are the only irreducible constituents of YL and
" each has multiplicity | as claimed.

All that remains is to show that P and PF are completely reducible. This
follows from Maschke's Theorem 1.9 if char(£) = 020 we assume char(g) 0.
We may assume without loss that [ is a bottom constituent of Y% (since some
. cqnstituent certainly is). Since (D) = D%, it follows that 37 is a bottom
constituent for every o e ¥(L/F). Now let ¥ be an L[G]-module corre-
‘sponding to " and let W be the sum of all of the irrcducible submodules of V.
. By Theorem 1,10, W is completely reducible and it suffices to show W =V,
' Singe every irreducible constituent of " is a bottom constituent, every
" composition fagtor of V oceurs as a composition [aetor of W. Since the com-
.position factors of ¥ all have multiplicity 1, V/W is necessarily trivial, The
proof for P* ix similar since 3* is irreducible in this case. 1l

We obtain some consequences now. The first generalizes Theorcm 9,14,
" (9.22) corRoLLARY Let F be any field. Then the characters of nonsimilar

. irreducible F-representations of @ are nonzero, distinct and linearly in-
: dependent over F,

" Progf Let £ 2 F be a splitting field for G. By Theorem 9.21, the char-
acters of nonsimilar irreducible F-representations of G are nonzero multiples
of sums of disjoint subsets of Irry(G). The result follows from .12 |

}

{2.23) cORoLLARY Let F — E be ficlds of prime characteristic, Lel % be an
i cirreducible E-representation of G which affords the character z. Let 3} be an
irreducible F-representation such that X is a constituent of 9% Then deg 9
- |F(x): F| deg X. In particular, if F(x) = F, then X is similar to 9%

Progf Let L 2 £ be a splitting field for G and let { e Irry(G) be the
Gharacter of an irreducible constituent of £* Let % and & be the Galois
conjugacy clusses of { over E and F respectively, Singe E has prime char-
.acteristic, it suffices by Theorem $.21 to show that | 7] = |F(x): F||&°.
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By Letima 9.17(b), we have % = & and thug y = Z 5 takes on values inl
F({)and 5o F(x) € F(0). Sincc |Z7| = | F(0): F| by 9.17(c), we must show thay
[ = |F(§}: F(x)|. Let % = S(FQ)/F). If o € @, then N

En=z:=x"= Zq”' [,
LT ned” ' e
and it follows from the lincar independence of Trr(G) and Lemma 9.16 that
& permutes &, Since only tbe identity of  can fix [, this yields || = (¥ =
[ F(§): Flx)|. However, F(yx) & E ~ F{{)and thus '

|#| = |E): E| = [FI): £ n FQ) = | FID): Fip)l
and the proof is complete, || '

Praoblems

(9.1) Let F £ E be ficlds and lct ¥ be a finite dimensional E-space, Lét
W £ V be an F-subspace. We writc V = W, E provided V = WE and
dimg(V) = dime W), ;

{fa) Il V=W and Us W is an F-subspacc, show that UE
=[e. L

(b) I X is an F-represcntalion of &, show that dimr(I(F[d])) =

dimg{XHE[GT)).
Note  The symbol +, denoles an internal tensor product,

(9.2) Let X be an F-representation of G and let £ 2 F. Let ¥ bean RG]
module corresponding Lo XE,

{a) Show (hat ¥V = W «, £ for some G-invariant, Fsubspace W = ¢
such that the F[G]-module W corresponds to ¥,

{t) Let U s W beun F{G)-submodule, Let U and W/U correspond to
the F-representations 9 and 3. respeetively. Show that UE is an E[G]-

submodule of ¥V which corresponds to 9 and that V/UE corresponds to 35
(9.3) Let W be an F[G]-module and let F = E with |E; F| = n < o, Lat

’

W*be an E[G]-module corresponding to X£F where X is an F-representatio
corrcsponding to W, Now view W¥as an F-space. Show that the resulting
F[G)-module is isomorphic to the direct sum of n copies of W,

_ Q’am It follows from the Krull-Schmidt theorem that if V and W are
F_[_Gj-modulcs ad VeOVS--@VEWDIWES- - @ W, where egch
direct sum has n terms, then V 2 W, We conclude via Problem 9.3 that if

and 9 are F-representations of G and X% is similar to 9%, then X is similar to

W, provided [E: F| < oo,

Froblems 18

94) Let.F S E be p field extensiotiof possibly infinite degree. Let Xand P
be F-representations of G and assume EX and P¥ are similar.

« + () .»Show that there exist matrices M,, M4, ..., M, ovet F and elements
€3y €244+ iy &y € E such that X(g)M, = M, D(giforaligeGand | <i < kand
such that e, M, + - -« + €, M, is honsingular over E.

(b} 1If|F) > deg X, show that X is'similar to D.

Hint [For ()] Let I (g, x5, ..., %) be & nonzero polynomial over F
and assume that the degree of fin'¥, ie "< | F{ for each |, Then there exists
Ay, 0ouy g € F such that f{a, ay,..0y0) 2 0.

(9.5) Under thé hypotheses of Problem 9.4, show that X and 9 are similar
without agsuming anything about |F|or |E: F|.

Hint Combine the results of Problem 9.4¢b} and the notc following
.Pl'ﬂblcm 9-31 R IR | .

(9.6) Let F'E E and i€tV e an irrediicible E[G}-module which affords the
character x. Assume that £ = F(x). Show that ¥ is irreducible when viewed
as an F[G}-module; ‘ :

(9.7} Lét F have prime charactéristic and let ¥ be an irreducible F-repre-
sentation of G. Let D be the centralizer of X(G) in the matrix algebra M (F)

- where n = deg X, Show that D is a ficld,

Hint'' Let £ 2 F be a splitting field and consider the centralizer of XE
in M {E}.' Use Theorems 9.21 and 9.2. S
(9.8) 1n the situation of Problem 9.7, let x be the character of an irreducible
constituent of £F where £ 2 Fis a splitting lield for G, Show tha( the natural
isomorphism between F and F - 1, the scalar matnces in M {F), extends (o an
iwomorphism Fiy) = D,

Hint LetL = F(y)and let V be an L[G]-modulc affording y, View V ag
an F[G)-module, Then D = Eqq (V). Use Problem 9.6,

(99) Let X be an F-representation of G and assume ¥* is completely
reducible for some £ 2 F. Show that ¥ is completely reducible.
Hint Consider £(J(F[G])). Use Problem 1,10,

(9.10) Let X be a completely raducible F-representation of Gand let £ 2 F,
Show that X% is completely reducible.

Noate The analogous statement for algebras other than group algebras
doeg not hold, in gencral.

(9.11) L&t Fo E and view F[G] = E[G). Show that JE[G)) =
J(F[G]) ¢ E (in the notation of Problem 9.1).
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{(9.17) Let F have prime characteristic p. Show that O4(G) (the largest

normal p-subgroup of ) is the intersection of the kernels of the irreducible
Ferepresentations of G. .

“(9.18) Let k = char(F).

5

. , o and
Hint To obtain JE[G]) S (HF[GDE; use Prpblum? 9.2(b), 9.10,an
110 t: arguc that E[GY/NFIGE s & etmpletely Mmbln E[GT-module..

(9.12) 1f X is an F-represcutation ‘of G et (%) denbté dinti (E(F[G])) Let
Dy, ..., Dy be the distinct itreduciblé constituents-of I.-‘Shuv:r rthat' -l; o

Ty IH

{a) If k # 2, show that Q, has a unique (up to similarity) nonlinear

' f ' Lo t Lt . R R
Y (D) = (%) : ' irreducible F-representation.
t . che ‘1 - {by Ifk # 0, show that F }‘5 a splitting field for Q. _
with equality if ¥ is completely reducible,. RETRTEN T o T (&) Ifk = 0, show that F is a splitting field for @, iff —1 is a sum of rwo

{9.13) Let X be an irreducible F-rcpreamtaltic?n ot'G Let' 9 be an*xin'e- squares in F,
ducible constituent of ¥, where E 2 F s aspliningfield.Show that ms{ )f::

deg(¥) deg(D), where 5(X) is as in Problem 9.12 and m js the multiplicityof P
asa mnS‘titlu:n( of ;E. vt e e i witiete 0 o\

! irreduci ' d kt D be.the cen-
9,14) Let ¥ be an irreducible F —rchsmlauon of G an o
iraliz):r of X(F[G]) in the matrix ring MdF) whepe;n = degl¥), betd 7
dim (D). $how that HX) - e P O NN R TP

*{9.19) Let F = £, where E is a splitting field for G. Does there nccessarily
. exist a splitting field K such that F = K < E and |K: F| = a7 Consider
- zero and nonzero characteristic separately.

Hint Consider F = @ and E = Q(a, f) € C, where «, p are snitable
«« transcendentals, Take G = Q.
I ‘ ' 0 that V becomes a
Hint ‘Let V bean F{G)-module corresponding to 3:' 80 that .
vector space over the division ring D. Expresy A¥) = dimAX(F{G])) in lerms
of dimp(V)} and 4. Use Theorem 1.16. , Db e e

i i itustion’ blem 9.13 we obtain
Note Applying Problem 9,14 in the situstion of Pro :
mnd/d = ms(%) = ndeg()and mh = d deg(¥)). Sincen = mdeg(®)| F): F ],
where x & Irr{(G) is afforded by ), we obsind = m’_iF'(x) . F|. Compg_wttl;]ls
with Problem 9.8, This formula can be used 10 g.ﬁ??rﬁlfﬁ E’yqplem 9i8 to the
charactcristic Zero case. e e

(9.15) Let ¥.be an irreducible F -rcprcs::ntation of G 1m:l Iet y be th.;ﬁl?ar-
acter afforded by an irreducible constituent 9 of X5, wl)ere Ez ‘t;sl : :
splitting field for G. Let D be the centralicer of X(F[G])as n P.'mblgt_n‘h: -
Show that the isomorphism F = F- 1< D exiends 1o an I.S-Dmm‘?lllﬂ"{l
F(y) = ZD). | i
Frints  Let L = F(x) and let 3 be _th_e irrcducible constituent of':f ‘St_uch
that %) is a constituent of 3% Let V be an L{G]-module corresgondmg tcttg'.=
Let Dg = ELIGI(V) and I9)|14= Epﬁ;l(Vhicihgﬂk tl}?‘ Dlo =1 D1 = D. Uul
following Problem 9.14 1o show that Do = Dy, " TR
nmi.et Zm .%'.{Do} = L-1. Observe that Do = E;m(_lvj’)._ Let 98 be the .Jt-
representation corresponding to ¥ viewed asEa Z[{G1-module, and cc:;mpl:l &
the multiplicity of §) as a constituent of BE, Now use the note fgl owing ¢
Problem 9.14 again 1o show Z = L-1. Y . n

(9.16) Let X be an irreducible F-representation of G and Im. EnF. Sh;\: _
that g € G lies in ker(¥} iff g € ker() for every irreducible constitucnt Pol

(9.20) Let G be cyelic of order nand let F have characteristic not dividing r.
: I.c:.t E = F(g), where ¢ is a primitive nth root of unity, Let m = |E: F[. Show
* that every faithful irreducible F-represcntation of G has degree m and that
] _t“l}e.re are exactly @(n)/m similarity classes of such representations,

' i, Note If|F| =g < o0, then m can be characterized as the least positive
integer such that n (g™ — 1).

. (9.21) Let G = GL(n, p*) be the full group of nonsingular » x » matrices

+ over GF(p*). Show that & has an irreducible representation of degree #e over
. GF(p).

(5.22) Let F < £ be fields of prime characteristic and let ¥ be an E-rep-
- resentation of (7. Assume that X affords a chacacter y such that F(y) = F.
' Do not assume X i3 irreducible.

10

" '(a) Show that yis afforded by some F-representation.
“"{b) Find an example where X i3 not similar o Y) for any F-repre-
~ sentation ).

4

T e e
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/ﬁ_ We collect some facts,

10 The Schur index

(10.2) comoLLARY  Let x€lenG)and F < C. We have

() mulx) = ().

(b) Let & be the Gulois conjugacy class of y aver F. Then mdx)(¥ )
is the clmraclcr of an jrreducible F-represenratmn al G,

() lr is the chamcter ol’ nny F»reprcsentatlon. thert mgx) divides
['-'l 1]

(d) “mp{x) it the srrmllest mtcgcr m such that my is afforded by an F(x)-
rcpresentauon
: (¢) mglx} is the umque mtcgcr m guch that my is afforded by an irre-
ey ducible F(y}-representation. ..., .

: N WFcEcC, then mp(x}dlwdew mgx).

@) "MF S E= Cand |E:F| = n < oo, then m{y) divides nmgx).
th)  mgly) divides ¥(1).

Proof Part (a) follows from Theorem 9.21{e) and part (b} is a consc-
quence of 9.21(a, ). Let ¥ be the F-representation in (b). Then 9} is the unique
(up to similarity) irreducible F-representation whose charpcter v satisfies
[, x] # 0. Since mg(x) = [¥, x], part (c) follows.

, To prove (d) and (e), we may assume (by (a)) that F = F(y). Now &% = {x}
and the representation P of the preceding paragraph affords my. Parls (@)
and (c) are now immediate.

Now let F € E & C. Any character afforded by an F-represcntauon is
also afforded by an E-representation, Now (I) follows from (b) and (c).
Assume |E:F|=n < o0, Then ny = |E(0): F{x} = |E: E ~ F(x)| which
divides n, Since mg(y)y is afforded by an E(y)-represcntation, we conclude
from Lemma 9.18(c) that noms(z}x is nﬂ‘orded by an F(y»rcpresentation, Now
(c) and (u) yield (g).

Finally, let p be the character orth: rcgular F-representation of G, Then
[p, ¥1 = (1) and (h) follows from (c). The proof is complete, ||

The main question considered in this chapter is the lollowing. If y & Ire(G),
then for which ficlds ¥ = € is y afforded by an F-representation? [ F = Ciis
not one of these fields, we wish to measure the extent to which g fails to be
afforded over F. This and the results of Chapter % (and, in particular, Thcarcm '
9.21) suggest the following definition, “

(10.1) peEPNITION Let F & E, where E is any splitting ficld for G, Let
x € Irr (@), Choose an irreducible E-representation X which affords y and an
irreducible Ferepresentation P such that X is a constituent of Y, Then the
multiplicity of X as a constituent of 9F is the Schur index of y over F. It is
denoted by mely).

Note that given 1 s above, representations X and 9 do exist and aré
unique up to similarily and so my(x) is well defined. Actually, may) does not !
really depend on E, If L 2 F(x) is another splitting field, then x g Trr (G) by
Lemma .13, A routine argumerit shows that m(y} is the same when com-
puted in E orin L. ‘

By Thecram 9.21(h), Schur indices are always irivial {that is, equal to 1)
in prime gharacteristic. For this reason we how restrict dur attention 1o the
chargoleristic zero vase. In facy, it is really no loss to ¢onfine ourselves (o
sublields of the complex numbers, C

Muny important results abeut Schur indices appear to depend on deep
facts about division algebras and number theory, Nevertheless, as this |
chapter will detnonstrate, much ean be done by elementary means, In partie-
ular, some of the results of Chapter 8 will prove invaiuable,

-A useful method for obtaining information about Schur indices is to use
induced representations, Let FE Cand Hg G. If 9 is a characicr of H
which is afforded by an F-representation of H, then 3% is afforded by an
F.representation of G. (Se¢ Theorems 5.8 and 3.9.) This idea underlies much
of the remainder of the chapler We use it 10 prove the following celebrated
result,

(10.3) THEOREM (Brawer) Let G have exponent n and let F = Q(e?™'m,

Then F is a splitting field for G and every y € Irr(G) is afforded by an F-
tepresentation,

160
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Proof The two conclusions are equivalent by 'Corollary ‘9.11.VLet

y e Ir(G). Since F(y) = F, it suffices !)y‘lp.%q) to shqw that mg(y) = 1l gy’

Prauer's Theorem 8.4 we may write '~ ‘ S
i) -

g =Y a,% R o
N P TR

where 4 runs over linear characters of subgroups of G and ¢, £ Z. Mow a
linear 4 ¢ Irr(H) is obviously afforded by an F-representation of H and hence
A% is afforded by an F-representation of G. By 10.2(c), we have m()1{49, 1)
and since . 0
=[x =Y a,[25 x), el

A - I b
it follows that me(x) = | and the proof is complete. [ - B

. te i ' L
We wish to exploit the ideas in the above proof in order.to obtain some
more delicate information about the Schur index. .

(104) Lemma Let H = G and F 5 C. Suppose i € Tre(H) and y elrr(G),
Then mgly) divides m Q@) Fix, ) : FOoITWE, #1. ' :

Proof We may replace F by E = F(y). This 15 50 since my{y) = mgly)
by 10.2(a) and mgly)|m () by 10.20) (and of course F(y, y) = E(y)).-Thus
we assume F = F(x). ) R E T R

Let & be the Galois conjugacy class of @ aver F 5o that mgy) ). & is
afforded by an F-representation of G, Therefore my(y) divides ... .

me¥) ¥ (701 o

was

by 10.2(c) B
Now if n e &, then ¢ = n” for some o e #(F(¥)/F). We have x = x” and

(% 21 = Ly, x1 = W% a1 .
and thus my{x) divides mpy)| #1[¥5, y]. Since | &)= |F(y): F|, the proof is‘
complete, |l oo o o o ‘

The next theorem is & variation on a result of Brauer and Witt. jt allows
us 10 analyze my{x) one prime at 4 time in terms of cartain sections of a group
with sharply defined properties. (A section of .G. is-a factor group, H/K;
where K = H < G) ’ . N L LV AU
(10.5) prFramon  Let F & C. Then (H, X, %) is an Fltripté i;rovndcd ‘

(a) Hisagroup, X = H, X « Ci{X);

{b) 9 lrr(H) is faithful; - _ o o '

(&) the irreducible (lincar) constituents of 8y 'are Galois conjugate
over F(9), il o

fFe ds

e ar
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(10.6) COROLLARY

( Let (1, X,
stituent of 3, Then

) be an F-triple and let A be a linear con-

(@) Lis faithful and X js evelio:
yelie;

(€ Iy is afforded b : :
@ Hx = sy, TOMeDresentation;

Proo i SR .
s L o oot e o
";j;_‘l:? )?:;h;:ti(lr)n- clcm?:n.ts _uf X, it' folluw:dt)h;”i?gf flgc f}i:;lfzsé&%istinct
Also 9, is o xuh:rr:i ;_7-3{1;‘ lr_rcdum ble by Theorem 6.11(a), Now (b) follnow{l
constitute the full Galois ) = [H: X| distinct lincar characters. These must
then (2%, 8] = [, 9,1 5 0. S 50T A0ver F9)sinceif 7 € (L Fs)
Iy is afforded by an i:i‘cd .'blmLe gl = 1, Corallary 10.2(b) asserts tha
Finally, for each I:L(ml e F(S)_-rcpresmnalmn and {c) is proved
7 <o Now ar it (t,;e»)rf—?xm(s.f - };"iqwla"e G(F()/F(3) such that
and wa have n - _= A " = >, Therefore gy, =
Now ker o ooy 1R, 6 H — GUFLIYF), defned oy iy -
Aconstitule a full Galo

X. Since it was shown ah
. 1 hove that the H-conjy ;

i conuay o 20V jugates of
F(FANF (8)) and the proof i com;);lctc.h G follows that apsonte
(10.7) THEOREM Let xelr(G

Some prime p, Then there exists

Jand Fe Assume p* djvi
= C. P divides
an Futriple (H, X, ) such thiy ) for
(@) H isa section of G;
| ((b) P my3);
k. ¢} H/Xisa p-group:
- () pHFir, 9): Feyp).

Froof By Lemma 9 17(b), |
2 , it follows that jf i i
som o . 1 (H. X, 3 =
; byefo anF' then it is an F-triple. By 10.2(f, a) we ma; lli:rr::ff e for
By Ry CIm;l 50 we assume F = Flx), 1 feplace
¢ mduction on |G|, If there ex;
s ' Cxists K < G and € her(K
o ngl;ayxg‘;;]]s ;:h,rél_i‘(lg) ! F"l. then by Le‘mma 10.4 iy follo:f:s that(l)“)":ufk?) ;hiil
" an Ferriple n uct:vF: hypothesis 1o K with Fespect to o an ] b i
T ‘g ; .X.I.SJ) which satisfiag ), (b}, and () s o
. + 5): FI9). Since also p | Fey):; | ' AT W
the pruof 18 complete in thig case. We tl;
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attd thus

1 =[] = Y aglixa” £

€ # such that p does not divide [(xo)% ] = [xg. xol I ¥ is any
irredudible constitucnt of ¥, then since F(x) = F, cvery elemen.l of the
Gialdis conjugacy elass of ¥ avet F has equal multiplicity as a constituent of

7 and we may wrile xg = Y byA where byeZ and A runs over sums of .

Galois conjugacy classes over F in Irr(Q). Thus p does not divide ), ba*[A,A)
and we choose A such that ph,3[A, Al Write A= ¥ ¥, where is &
Galois conjugacy class over F and let ¢ . Then by = [xg, n;.'] = [z ¥°]
is not divisible by p and [A, A] = | 5| = |Flg): F|is not divisible by p. By
the result of the second paragraph of the proof, we conclude that G = Q 15
quasi-elementary. : .

Thus G has a cyclic normal g-complement C for some prime g. ‘By
Theorem 6,15 wec have (1) is a power of . Now if ¢ = 0, the result is trivial,
taking H = X = |, and so we assume ¢ > 0 and plmg(x). Since mp(xllx‘(l}
by 10.2th), il follows that ¢ = p and G/C is a p-group. Lctlx - @, wup
X = C be chosen maximal such that X is abelian, By the inductive hypothesis
applicd to G/ker y, wc may assume that y is faithfu), Wc shall show Lhat
(G, X, x) is an F-triple to complete the proof. _

We have X € Cg(X) =2 G. If X < Cg(X), then since G/X is a p-group,
(here exists U <1 G with X & U g Cy(X)and |U: X | = p. Thus U is abeha_n
and this contradicts the choice of X. Thus part (a) of Definition 10.5 is
established. . )

Now let 4 be a linear constiluent of xy and let § = {g el is Galois
conjugate to A over F}. If 5y, 5; € 5, there cxist oy, 0, eF(FQAYF) with 3" =
am. 1t follows that A% = 1°2%! and thus s,5; €5 and § is a subgroup of G.
Let T = [4{4) = §. By Theorem 6.11(b), therc cxists a unique i £ Tre{T) such
that g = y and [y, 4] # 0. Let y = #® so that i€ = x and ¢ € Ire(5}. We
claim that F(y) = F.

T.et dc‘?ﬂ(gg(t#. A)/F). Then 3" = x and so [27, xx] = [4 xx] # 0. Thus
A7 = ) for some g € G and since A° is Galois conjugate to‘A over F, we have
¢ & S. Since Galois conjupate characters have the same inertia groups, we
have T2 §and so (n"} ' e Ter(T). Now

(P = ") = xT =
and
Llrm? ™ ey 21 = [ 4] = 072, A7] # 0.
By the uniquencss of n we conclude that (7°)F"" = n and 50
W= = = =
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since g € 8. Since F(, ) is a Galois extension of F, il follows that y takes
values in F and thus F(§) = F as claimed. By the result of the sceond para-
graph of the proof applied to (8, ), it follows that § = G. Thus condition (c)
of Dfinition 10.5 is satisfied and the proof is complete. |1

~ Before proceeding to ouir major applications of Theorcm 10.7 we derive
two easier conscquences which demonstrate its power, These are included
in Theorem 10.9. '

B
(10.8) LEMMa Let H = ¢ and suppose 71 has & complement in G. Let

@ & Irr(H) and suppose ¢ = y € Ir(G). Then my(y) divides (1) for cvery
FsC .o

Proof LetU & Gwith UH = Gand U ~ H = 1, Since (1,)% is afforded
by an F-répresentation, we have mp(x) | [(1,)%, 23 Now [(10)% x] = [(1u)°. ¢%]
= [(10)%)n. @). However, (1% = (1,4 = py, the regular character
of H. Thus [(1,)%, ] = [px, #] = ©{1) and the result follows. |

(10.9) THEOREM Let y € lre(0) and assume p|mely} for some F = C and
prime p. Then the Sylow p-subgroups of G are not eletmentary abetian and
pmg(y) divides |G,

Proof Let p" be the p-part of m.{) so that a > 0. Since m{y)| (1}, the
second statemem will follow if p**? divides |G|, Let (f1, X, ) be the F-triple
whose existence is guaranteed by Theorem 10,7, Thus 3 = 1 for some lincar
lEIrr(Z‘X")I‘ by Corollary 10.6(b). Since m{9) > 1, we conclude from: Lemma
10.8 that X is not complemienied in H.

‘Since H/X is a p-ifoup, it follows that a Sylow p-subgroup of H is not
clementary abelian, Also, if PeSyl(H), then P~ X # 1 and 50 W1) =
|H: X'« |P|. Since p* 2 mg9) < ¥1), we have p* < |P| and so p**!||HJ.
The result now follows, ||

There is &n important case when we can decide whether or not mg(8) = 1
for an F-triple (H, X, ). 1f H/X is tyclie, the problem * reduces ™ to a question
in field theory. If E 2 F is a Galois ficld extension and « e E, we definc
Ngpla) = [oawmn 6. The image of this norm map is clcarly contained in F.

(10,10) Turorem Let (H, X, ) be an F-triple for some F = € and assume
H = X, where C i3 a ¢yclic group. Let 4 be a linear constituent of 9y and
write E = F(i)and K = F(§). Let m = | X ~ €| and let ¢ be a primitive mth

-+ root of unity in C. Then g€ K, Also, mg(9) w 1 iff £ lies in the imape of Npy.

'Pr:béf “ Ginde X A C}‘;?{H) and § e Irr(H) is faithful, we can choosc a
generator y of X = C,isuch that Hy) = eX(1) and thus pe F(9) = K, Write

» XX A Clemsand |H: X| = |C: X ~ €| = t and choose generators x and
" cfor X and C such that x* = y = ¢'. Note that A(x)’ = A(y) = & By Corollary
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Write x* = x* for some integer.r. cop 2 b bort pow an B 6L cpoadat Bl

By Definition 10.5 there exists o € #(E/K) such that 7' = 29, Tt follows
that the orbits of A under € and under (&) are identical: Since'C is transitive
on the ¢ distinct linear constitucnts of 3, we conclude that |{e>! E"ILJ!:
|9E/K)| and thus #(E/K) = (&), Therefore, !

‘ Neglo) = aa®o oo™ A '
for we £, Also, Alxy = Ax") = i*"'(x} = A(x)".

Let V be the (unique up to isomorphism) irreducible K[XJ-module
which affords 8. (S8ee Corollary 10.6(c).) Now m,-(-?)_ =1i 313 aﬂurdad‘.b‘g
a K[H1-module (by Corallary 10.2(d)) and this happens iff there exists a
K-linear action of C on ¥ such that for ve ¥ we have o

10.6 we have

AV

I
(a)y v-c" =g

(b} (0:c™!) x) e = p-x. | \

{The sufficiency of this condition involves an easy generators and relations

argument on H.} R o a

View £ as an E[X] module affording 1 so that f-u = a(u) for ue X.
With this same action of X on E, we now view E as 2 K[X]-module of
dimension |E: K| = +. By Lemma 9.18(b) it follows that ¥ is an irreducibic
constituent of the K[X]-module £. (This is because 4 is a constituent of Y%
where ) is a K-representation corresponding, to V) Since dimg(V) = (1)
=t = dim,(E), il follows that V = £ as K[X] medules. We conclude that
mp(9) = 1 iff there exists a K-linear transformation & of E such that for
al fe E

(@) p-&' = fe; , E
() (B2 A& = P . -
MNow suppose that mg(3) = 1 and let & be as above. Write & = A(x),
@ = 1-gandletn = Obean integer, We ghow that (§%) -2 = a8 by induction
on n. This is clear for n = 0. For n = 0, the inductive hypothesis and ('), .
yicld ) ' ‘
(Snr) S m (((détl—lv} . 5_1)5) & nl'msln.—nr‘srﬁq “év '- HY -
as claimed. Since 3° = & we have (§") ¢ = a(8")". Since E = K(1) and .=,
A{x), the 3" spun E over K. The map § - af” for e E is K-linear and agrees
with & on the 8" We conclude that g. & = afi” for all f e E. Now (a) yiclds

g=1-(& = aao® v 0™ = Ngglo) &

)

ag desired.
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Conversely, suppose N_,;,x(u) = ¢ for some «€ E, Definc 2 on E by f.¢
= aﬁ' and observe that & is K-linear. Check (hat (a’) and (b} are satisfied,
Thl.;ls'n}r,{S) = 1 and the proof is complete, |

(10.11) LEMMA Let p be a prime and let | # ke Z, Assume that pj(k — 1)

" / and if p = 2, assume 4{k ~ 1). Write

fle) = (k™ — Dk — 1)
for 0 < ¢ e Z. Then p* is the exact power of p dividing f(e).

Proof Since f(0) = 1, we assume ¢ = 1 and use induction on i
F ) ) & Since
K" = L (k= 1)fe — 1), we have

K = 1+ plk = 1)f(e = 1)

~1
+ P(—”z——-’(k ~ 1%(e ~ m 4 (k — 1)f(e — D

for suitable integers m, n. Thus
- -1
fley = fle— I)[.p + w)—z—-—)(k = L + (k — I)zn]

gpq llt:. ]s.ugiceg to show that the second and third terms in the brackcts are
wisible by p°. Since p|(k — 1), this is clear if p 2. If p = 2, the hypothesis
that 4[{(k — 1) yields the result. ] F

Welm:xt give our principal result about the Schur index, Note that il
generalizes Brauer's Theorem 10,3,

(10.12) THEOREM (Goldschmidi-lsaacs) Letye Irn{), where G has cxpo-
nent n and iet ¢ be w primitive ath root of unity in C. Let £  C and assume
that #(F(e)/F(x)) has a eyclic Sylow p-subgroup P. Then p 4 mgly) except
possibly when p = 2, P > L and /=1 ¢ F(y).

, Proof We may replace F by Fi{x) and assume J\"(x ppose
pImgy) and let (H, X, %) be the F -triple whose existence is given by Theorem
10.7 so that p|mg(9). Let 1 be a linear constituent of 8y so that Fly) =
F o F(8) = F(A) S F(e). By 10.6d), H/X = FIF(A)/F®) which is a section
O #(F(e)}/F(x)). Since H/X isa p-group, it must be cyclic, Also, since (1) = !
we have H > X and we conclude that P = 1. '
‘ 'I'here exists a cyclie p-group € with XC = H. Let [Cl= p'and |C ~ X|
= p° and write E = F(1) and K = F(Y), Since mel8) £ 1, Theorem 10,10

yields that no primitive pth root of unity lies in the image of N gy, but that

‘K d?es_ contain such a root, Since N (1) = 1, we have 5 > 0 and K contains
; & primitive pth root of unity.

LB B B

L=
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Let 3 be a primitive pth roet of unity in C. Then |K(y): K| divides p*=*
and K{yl = F(z) Also |E: K| = |H:X| = ¢ *and E & F(£). Since #(F(e)/K)
iz abehiaky and has a cychic Sylow p-subgroup, its subgroups of p-power
index are \incarly ordered by inclusion. The fundamentrl theorem of Galois

theory now, ylelds that K(y) < E (since |K(y): K} < {E: K{) and 50 yeE.

We computenN y,.(y).

Write t = p**P. Iy e K, then N gxly) = 7, which is a primitive p"th root
ol unity, a contradiction, Thus y¢ K. Wrile 9(E/K) = (a), where of7) = ¢
and y" = ¥* for some initeger k # 1. Then ™' = y* and '

Newly) = yy*pht e gk ™t = 90,

where ¢ = (k' = 1)jtk — 1) 1 p==* is the exact p-power divisor of g, then 39
is & primitive p*th root of unity which is not the case. By Lemima (0,11 then,
p¥lk=1Difp#2and 4tk — 1)ifp =

Let 8 € K be a pnmitive p“th root of unity with @ chosen as large as pos-
sible. Then O < b = @, Since y¢ K, we bave a < c and S€¢y) so that § =
8" = §* and p*ltk — 1). Since @ > O, we have p=72 and 4 =1 so that

«/ — 1 ¢ K. The proof is complete. 1

(10.13) comoLLARY (Fong) Let G have exponent n = mp®, where p is
prime and ptm. Suppose F & Cand F contains a primitive mth root of unity,
Let x elrr{G). Then mg{y) = 1 unless p = 2 and ./~ ¢ F, in which case
me(y) < 2.

Proof Wfp=2and /—1¢F. letE=F[/—[]sothat|E:F| = 2and
mtp( X 2mg(x)) by Corollary 10.2(g). Thus it suffices to assume that ./ =1¢ F
it p = 2 and to prove mp(y) =

Let ¢ be a primilive ath root of unity in €. The hypotheses on F now
suarantee that #(F(e)/F) is cyclic. I g is a prime divisor of my{y), then Theorem
1012 yields ¢ = 2und ./ ~1 ¢ F, Thus p # 2,44m, and mg{x) is a power of 2,
We have d4n and thus a Sylow 2.subgroup of G is slementary abelian and
24mg(x) by Theorern 10.9. The result follows. §

(10.14)  copoLLARY (Roquetie) Let G be a p-group and yelrr(G)
Lol # £ C, Then mylx) =1 unless p=2 and /= 1¢F in which case
mylx} = 2,

Progf Immediate from 10,13,

Note that taking G to be the quaternion group of order 8 shows that the
exceptional cases in the three preceding results can, in fact, occur.

(10.13} coroLLARY (L. Solomon) Lct & be the product of the distinet
prime divisors of |G| and let F & €. Assume that F contains a primitive
(2k)h root of unity. Then mgy) = | for all ¥ € Ire(G),
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Progf Note that if 2]§G 1, then ./ —1 € F. Let g be a primitive ath root of
unity, where n i< the exponent of G. Since every prime divisor of » divides k,
the hypothesii on F guarantess that F(F(£)/F) i cyeclie. Wy e r{G) and pis a
prime divisor of me(y), then Theorem 1012 yields p = 2 and ./ =1 ¢ F, Since
m,{x)|1{l) we conclude that 211G\ .and we have a contradiction. |

N l'

Most of the above results are dnrccted 1o showing Lhat Schur indices are
smali. We have not yet seen an examplc to stiow that m{y) can be greater than
2. In fact every positive intcger can otcur as a Schur index. Here, we shall
settle for an indication of how to prove that every prime can occut. We need
two facts from number theory

{a) Let F =~ Qe), where ¢ is a root of unity. Let R = Z[¢] and lct ] be
a proper ideal of the ring R. Let « € F. Then a = u/v for some u, v R with
not both u, vel.

{b) (Dirichlet) Leta, beZ with (g, b) = 1. Then there exists a prime of
the form ak + b for some ke Z,

Let p be a prime. By (b) above, choose a prime g = pk + (p + 1) for
some k. Then p|(g — 1) but pli(g = 1). We now construct the semidire-ct
product G = QP, where 0 is cyclic of order g and P is eyclic of order p* and
acts hoptrivially (but not faithfully) on (. There exists faithful y & Irr(G) with
1) == p, We claim that mq(x) = p, ,

(10 16). THEOREM Let Cf XP where X = G i wyelic of order pq, PAG
i eyclic of order p? and |G| = pq for primes p and g such that p*f(g — 1).
Then thete exists faithful ¥ ¢ Ire(GY such that mg(y) = p.

Proof Note that X = Cg(X). Let 4 be a faithful linear ¢haracter of X
and let ¥ = A% Then y € Ire{G), x(1) = p, and (G, X, x) is 1 Q-triple. Since
mg(x3]p by 10.2(h), It suffices to show that mg(y) # 1, Let K = Qiy), £ =
@(4), and w ¢ K be a primitive pth root of unity. By Theorem 10.10, it suffices

10 show that w i not jn the image of Ngx.

Let v be a primitive gth root of upity in £ and write & = wv so that ¢ {s a
primitive (pqith root and £ = ((e). Let R = Z[g] and let | 2 gR be a maxi-
mal ideal of R. Since R/J is a field of characteristic ¢, the only ¢th rool of
unity in R/l is 1. Thus if o € #(E/K), then v = | = v mod [ and since w € K,
we have ¢ = ov® B v = & mod L. Since R = Z[g], it follows that r* =
rmod I for all r ¢ R. Since |E: K| = p, we conclude that Ngelr) = P mod |
forallreR.

Suppose, by way of contradiction, that w = Ngyla) for some ¢ ¢ E. By
Fact (a), write & = b/e, where b, ¢ € R but not both b, ¢ & I. We gonclude thay
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b® = Nyglb) = Ngplo)N gulo) = cfw mod 1. Since not both. b, cel; we
conclude thatw* = (b*/c*¥, where s R =+ R/l is the natural homomorphigm.
Now | + x + x* 4 .. + x""! e [HZ! (x = ) and setting x =.1, we

see that | — w divides pin K. Since p* # O'in R//, we concluge that o, % 1.
Thus b*/c* is a primitive p? root of unity in R, ~ ' e
Since plig — 1), there exists 2 € Z such that a* is a primitive pth root of
unity in R/I. Since {g*)f = |, we have &* = (a*)f for some k and hence
ecZ+ 1 Thus R=2[s]=Z+ [ and RI g Z/(Z n 1) = Z/yL. Since
p*Alg = 1), Z/qZ does not contain’ a, primitive p* root of unity and, this
¢ contradiction completes the proof. f © " " S T
Tl -
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=y b,

Suppose F < E < C, with |E: F| m n < o0 and let % & Ir(G) with F(x)
= F. By 10.2(g), mdy) divides nmy{x). In particular, if x.is.afforded by.an E-
representation, then mgly) = 1 and so my(y) divides | E:: Fi|. This suggests the
question of finding minimal fields E = F over which y is afforded. .+

[
(10.17) ThEOREM Let yelrr{G)and F = C with F(y} = F. Let m = mgx).
Then there exists E 2 F such that y is afforded by an E-representation and
|E: F| =m,

Proof Let V be an irreducible F{Gl-module 'which affords my (by
Corollary 10.2(b)). Let D = Ey;(V), the centralizer ring of V, so that D'is
a division ring by Schur’s lemma. Let E be any maximal subfield of D, Then
E acts on V and V may be viewed as an E-gpace, Since E commutes with the
action of G, we may view V as an E[G]-module. Now Egg(V} is the ccn}ral-
izer of E in D. The maximality of E thus yields Egg (V) = E and thus the
E{G)-module V corresponds to an absolutely irreducible E-representation X
by Theorem 9.2{(a, ¢). Let 3 be the F-representation corresponding to the
F[G]-module V. By Lemma 9.18, X is a constituent of 3E. Since 3 affords
my and ¥ is absolutely irreducible, we conclude that X affords . Finally, by
9.18(a) we conclude that m = | E: F} and the proof is complete. 11

We can, of course, find an F-isomorphism of E into € in the above situ-
ation, and so the result remains true if we add the condition that E's C,
However, it is not always true that if F & L < €, where L is a splitting field
for Gand ¥ € Ir(G} with F(y) = F,then there existsa field Ewith F S E £ L,
|£: F| = my{x) and such that y is afforded by an E-representation.

We close this chapter by stating a few morc facts about the Schur index, -

The proofs of some of these secm to require a fairly deep knowledge of number
theory and division aigebras. o

(8) (Fein) If x€Irr(G), then mglx) divides n(y", 1g] for every positive
integer n. ' !

v e
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rﬁu(::}i)g (fmuer—Spefser} {Corollary of (@) If ye Irr(7) is real valued, theq
“*A{e) ' (Fein-Yamada) 1If 2 elr(G),

then mg(x} divides th
&nd mg(x)? divides | G}. @ ¢ cxponent of G

\/ Problems
(101) LatH =@, He Irr{H) and y € Irt(G). Suppose F = .

" (@) ¥ xm =Y, show that mlx) | mp(3) and mg(9) :
. \ : H9) = |G Himg(x).
. (b) I §% = y, show that mAB) mely) und mely) < |G : Hmg(8),

(1&2]) ll;;,t N =3 Gand @ e Irr(N). Let F = Cand put if = I {e). Lct 8 be an
freeducible constitent of o™ and let x = 9% Show that ivides
ING(H): B |mg{9), mey) divides

+Hint - Consider {g & G| and ¢ arc Galois conjugatc over F(y)h.

3{0..3) Let xelr(G) and F < C. Define Ii{y) 10 be the greaicst common
C:::ort of t?e Eﬂegers n,;‘ = |F{y, ) F(OI[AY, ] as A runs over linear

acters ol subgroups of &, Show that me(x)|le(x} but that % CXis
Where mty @ 1o () () cxamples cxist

Hint For the example, take G = Q.

(10.4) Let X elrr{G) and F = C. We say that y is F-semiprimitive if there
,does not exist # < G and ¢  Trr(H) such that /% = x and F{y) = Fiy).

l_(a) If ¥ is F-semiprimitive and N -0 G, show
‘S.tllucnts of xy are Galois conjugate over F ).
() Let G be nilpotent and assume J:TE F
1 &Irr(G) is F-semiprimitive iff ¥(1) = 1.
.. (&) In the situation of (b) and the notation of Probl

em 10.3, sh
) = 1 for all y e Ire(G), $

that the irreducible con-

if |G| is even. Show that

| :“:{u'ur A non.cyclic p-group in which every normal abelian subgroup is
;_qych_c is necessarily a 2-group and contains a cyclic maximal subgroup.

, " Note Since mp(y)| /), this problem provides an alternate (and more
,__clemenla_ry) proof of Cerollary 10.14. Since {5{y) can, i gencral, exceed
ting(x), this resultl strengthens Corollary 10,14 slightly,

(10.5) Let F = C be a field in which —

; I is a sum of two squares. Let G be :
.;Z:grgup and y e Irf(G). Show mp(y) = 1, A ’

Hint  Reduce to the case where (1) = 2 and Qe = G,
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Note 'This strengthens Corollary 10.14 in a different direction and sug-

gests a strengthening of Theorem 10.12, In fagy, B, Fein has proved that the
cxeeptional case in Theorem 10.12 can only oceur if — 1 is not a sum of two
squares in F. f

(10.6) Let yelrr{G)and FE C. Let H=G = G = -+« x G be a direct

g

m i) divides mg(x),

Note™ Tn fact if H is the product of my) copies of G, then mgly) =
Conversely, if mg(i) = 1 and H is the product of n copies of G, 1then mp{y)|
provided |F: Q| < o0, ‘

(10.7) (Fein) Let H bethe product of # copies of G and let 7 and i be as in

Problem 10.6. Show that mg(y) divides [x*, 15].

Note Problem 10.7 and the note preceding it prove that mg(y) divides

nlx" 1g] for every n = 0 and ¥ € Irr{G),

(108) Let H =G x G and lct zelrr(G). Let ¢ = x x §&Trr(H). Show -

that mgl(y) =
(109) Lot G = @y x Zy and let y & Trr(G) be fuithful. Show that mg(g) = 1.

(1010) Let G =H x Kand yelrr{t)and 9 eTrr(K). Let x = x 3. Let "

F=C,

(a) Show that mg(y) divides m{frim ()

(v)  Show rhat equality necurs in () provided (m(f), ()| F(9): F|) = 1
and (m 3% W(DIFd): Fl) = 1

{c} Let p, g be primes such that pp{y — 1) and gt{p = 1). Show that pg
oceurs as a Schur index.

(10.11) Let x € Trr(G) and p|mg(z) for some odd prime p, Show that ¢ con-
tains an element of arder pg, where ¢ is sorne prime such that pl(g — 1),

{10.12) Let p bean odd prime and let # be a nonabelisn p-group of order p?
and exponent p. Tt iz possible 10 find H < Aut(P) such that H & Qy and
Cr(H) = Z{P) = Cglr), where 1 iz the involution in /. Let G = PH, the semi-
direct product. Let 3 € Irv(P) with 1) ='p.

{a) Show that § tan be extended to 8 ¢ Irr(G) such that 3() = +1 and
91 = pmod 4. A

(5) Show that [J,;, x] = (p — 3(t))/4, where x & Irr(H), y(1) = 2,

(¢! Conclude that —1 is a sum of two squares in Q(e2™P) if pw 3
or 3 mod &

oduct of copies of G and let = ¥ x ¥ % .+« x ycIrr{H). Show that
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Hints  Obtain § viz Corollary 6.28, Compute 3(¢) by working in ¥ =
{P, 1>, Note that |Cy(t)| = 2p and that the p — 1 Cialois conjugates of 3y
are all equal at 1, If p = 3 or 5 mod B, show that m{x) = 1, where F =
Q(ehifr). .

Note Conversely, if «1 is a sum of two squares in Q(e**'#), then
p # 7 mod 8. Some primes =1 mod 8 ¢an occur, however,

(10.13) Let P ES)’I,,(G) be abelian of CxpOncnl p°. Show that P Amolx)
forzelrr(G) EEE rH- -

Him IIX==Gis cychc am;i G/X is 4 p-group, then thereexists V = G
such that ¥ » X = | and |G : VX[ < p~

{10.14) Show that the following two statements can be added to the con-
¢clusions of Theorem 10.7 provided p # 2.

(¢) If Y is the pcomplement in X, then C,{Y) = X,

(N Ir UeSyl(X) and P eSyl(H), then U = ®{P), the Frattini sub-
group.

Hints I Cu{Y} » U, show that H has a noncyclic normal abelian p-
subgroup. If M o P and MU = P, then Jyy is irreducible.
(10.15). Suppose mgly) = x(1} for some z & lrr(G) and F < C.

(a) If H = G, show that all irreducible constituents of y, are Galois
conjugate over F(y) and that mg{9) = 1} for each such constituent 3,
(b) If x # 1, show that G is not simple.

" ey M 2kpl)or./=1€F,show that G/ker x is solvable,
Hint Use Lemma 10.4,

(10,16) Suppose that m,{xi x(1) for all x & Tre(G) with F < €. Show that
every subgroup of G is normal. ,

[
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:: Before proceeding with the study of projective representations, we digress

to 'givc an instance of how they can arise in the study of ordinary represen-
tations, |

(1 1:2) THEOREM Let N = G and suppose 9 is an irreducible C-represen-
\/ tation of N whose character is invariant in G, Then there exists a projective
C-representation ¥ of G such thai for all n e N and gy € & we have

(a)  E(m = Pn);
(b)) X(ng) = EmEy);
© X(gn) = X(g)X(m),

Furthermore, if %, is another projective representation satisfying (a), (b),

and (c), then X,(g) = X(ghy) for some functi e nE tal
stant on cosets of N, e ¢ function u G - C7, which is con-

. Proof For geG and ne N, write 9(gng™') = D4(n). Since ) affords a

Ggl;\}vanant character, we conelude that §) and D are similar representations

Gein :
.Now choose a transversal T for N in G (thal is, a set of coset represen-

‘ tallves)_. l’l‘ake 1T, Foreachte T, choose a nonsin gular matrix 7, suEhe (Ezl

PP = Y. Take P, e I. Since cvery clement of G is uniquely of the

: formatforne N and t e T we can define X on G by X(nt) = Y(n)P,. Properties
(a) and (b) are immediate and {c) lollows since f

Let N =0 G and supposc 3 € Irt{N} is invariant in §, For each irreducible
constituent y of 3% we have that yy = e(x)9, where e(y), the ramification, is
a positive integer. In Chapter 6 we oblained some information about hese
mysterious integers. If  is extendible to G [which is equivalent to saying that
some e{y) = 1], then the e(x)'s are exactly the degrees of the irreducible
characters of G/N. {Sce Corollary 6.17) We shall see that, in genera), the
e(x)'s are the degreds of irreducible * projective representations” of G/N.

(111} peFmiTioNn  Let G be a group and F a field. Let £ G - GL(n, F)be
such that for every g, h € G, there exists a scalar ag, h}e F §uch that

E(g)E(h) = E(ghkg, h).

. . . . L)
Then X is a projective F-representation of G. Its degree is n and the function -
a: G x G — F is the associated factor set of X, '

Mote that the “facior set™ x has nonzero values and is uniquely deter-
mined by X. Both of these obsaervations follow [rom the fact that the matrices.
X(y) are nonsingular.

Let Z(n, F) = GL{n, F) be thc group of nonzero scalar matrices, [Note,.
that Z(n, F) = Z(GL{n, F)).] By definition, PGL(n, F) = GL(n, F)/Z(n, F) is,
the prejective general linear group. If X iz a projective F-representation of G of °
degrec n, then the composition of X with the canonical homomorphiam:
GLin, F) = PGL(n, F} is a homomorphism G ~ PGL{n, F). Conversely, if"
= G — PGL{n, F) is any homomorphism, we can define a projective rep-:538
resentation X of G by sctling X¥(g) equal 1o any element of the coset mlg) of-
Z{n, F)in GL{n, F). '

174

X(n)¥(m) = Dim)P, Dim) = VD m)P, = Diiems Pl
= Xt ™' ) = Xt - m).
Properties (a), (b), and (¢} yield

X@)Vin) = Xgn) = Egng™' - g) = Digng™ )%(g)
X@D0)Xg) ™! = Dgng™")

ADMA™! = Ygng 1)

ﬁrallneN then 4~ 1 ¥(g) comtnutes with all THm) £ .

o  the orn &N and thus 4~ ' X,

, ““'I'fu: scalar matrix by Corollary 1.6, If X, also satisfies (a}, (b}, and (c), we m(zf’y)
.. '-.-ul = Xy(y) and conclude that X(g) = X(g)u(g) for sorme wg)e T*. Also

 E@ERDR)ER) " X(g)~* = ¥(g)D(hnk- D¥X(g)! = Ygank g,
n;;n'paring this with
TR EhyD(n)Xigh)™" = Plghnh =g~ 1)

A
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definition of a factor sct. The finite dimensional algebra F*{G] is the (wisted
group algebra with respect to &, Note that if ais the trivial F* -factor set, that is,
wig. h) = 1 for all g, h, we can identify F*{¢] with F[G].

In order to see that F*[G] has a 1, we need the following.

' (11,5) LEMMA Let a be an A-factor set of G. Then a(l, x) = o1, 1) = fx, 1)
forallxe G ’

Proof We have

yields X(g)X(h} = Z(ghldg, k) for some alg, h) € €* and thus X is a projective |
represeniation.

All that remains now is to check that u is constant on cosets of N. We have

* En)Egu(g) = XoEola) = Eolng) = Enghuing). e

2

Since X(n)¥(y) = ¥(ng) is nonsingular, the result follows. | )

Of course, the above argument does not really require that 9) be a com-

plex representation. Using Theorem 9.2 and Lemma 9.12, any absolutely ;
irreducible representation will do.

v

al -1, (1, 13w a(1, 1 - x)ex(t, x}.

Canceling ofl, x) yields ofl, 1) = oft; x) for x=G. That a(l, 1} = a(x, 1)
follows symmetricaily. § :

We begin our study of projective representations by considering ﬂ"le ;
associated faclor sets. . ..

Let o bo an F*-factor set of Gand let v=c(l, 1)" e F. Now (vI)§ =
vjoll, g) = § and gimilarly g(vI) = g. Thus v is the unit element in FY[G].
Tt is now immediate that the elements § ¢ F[G) for g € G all have inverses,

Mow let & be an F ™ -factor set of G and let § be any representation of the
algebra FR[G). Define X(y) = D(F). Then X(g) is nonsingular and

X(g)(h) = DEGDA) = DG - h) = ighalg, h)) = X(ghklg, k)

s0 that X is a projective representation of & with factor set a.

Conversely, if ¥ is & projective F.representation of ( with factor set &, we
can define a representation P of FFLG] by setting 9(7) = %(g) and extending
by linearity, Tn other words, the projective F-representations of G, having
factor set a are in a nedural onc:to-One, correspondence with the represen-
tations of the twisted group algebra F*[G). The situation is analogous to the
connection between ordinary representations and the ordinary group algebra.

Exactly as in the case with ordinary representations, we define two pro-
jective representations X and 9) to be similar if P = P~ XP for some non-
singular matrix P, Also X is irreducible if it is not similar to a projective rep-
resentation in the form

' [ ] [ ]
62

Note that similar projective representations have equal factor sets and
correspond to similar representations of the appropriate twisted group
algebra, Also, irreducible projective representations correspond to irre- -~
ducible representations of the algebra. Since every finite dimensional algebra
has irreducible representations, we have proved the following.

(11.6) coroLLARY Let« be an F"-factor sct of G. Then G has itreducible
projective F-representations with factor set a.

(11.3) 1eMMA Let w: G x G — F* be the associated factor set of a'pro- 4
jective F-representation of G. Then .

afxy, 2yx, ¥) = ofx, yayly, z)
forall x, v, zeG.
Proof Let X be the projective represcntation. We have
X(x)ENE(E) = KxnE(2lal(x, v) = Elxyzha(xy, 2}, ).
Also
X(0)X()X(z) = X()X(yzha(y, 2) = Elxyzhlx, yr)aly, 2)
The result now follows because all of the matrices are nonsingular. i
{(11.4) prANITION Let A be a possibly infinite abelian group and let G be
any group. Then an A-fuctor setr of G is & function G % & — A such that
afxy, 2)lx, y) = afx, ye)ely, 2)
forall x, v, 26 G.

"Thus the factor set of a projective F-representation is an F"-factor set
where F* denotes (he multiplicative group of F. Conversely, we sha!l show
(hat every F* -faclor sct is associated with a projective F-representation. To .
do this we introduce the “ twisted group algebra.” __

Let G be a finite group and F a field. Lel  be an F™-fuctor set of G. Let
F°[G] be the F-vectorspace with basis {g|g € G}. (T hat i:f., there is a spcclﬁe!:l
basis of F*[G] which is in one-to-one correspondence th]-'\ G) De.ﬁne multi-
plication in F*[G] by - h = ghalg, I and extend via the distributive law. To
establish that the multiplication thus defined is associative, it suffices to check
it on the basis clements § for g € G. That it holds there is immediate from the
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using 11.2(b) and (c), Furthermore,

Xg)X(nhm) = X(@)Xhn"m) = Elg) XWX (n"m)
. = alg, MEGh)E(n"m) = olg, h)E(yhn*m)
by 11.2(c). Since XE(ynhm) = X(yhn"m) is nonsingular
. E 3 . | =
) a{g, k) and J is well defined. That f iy a factor sctl.; isacle;:' rave slg, hm)
If X, were choscn in place of X, we have X, = Zp where it G = C* is

constaiit on cosets of : { ‘
o ao.thmn s of N so that we ¢an define v(gN) = u(g). I X, has factor

The set of A-factor sets of & forms a group under pointwisc multiplication.
[n the language of group cohomology, this group is denoted ZHG, A), the
group of “2-cogycles.” I p: G — A is an arbitrary function, we can define
MG x G Aby Con "

50 (a0 B) = g ulhaghy™ .

1t is routine to cheek that 8(u) is a factor set. ‘

Note that & is a homomorphism from the group of A-valued functions on
G (with poimwise multiplication) into Z%(G, A). The image of 5 is the sub-,
group BXG, A) = Z*(G, A) which is called the group of " 2-coboundari¢s’
The factor group £%(G, AY/BYG, A) can be identificd ‘with the second co-
homology group HX(G, 4). (More¢ generally in ‘cohomology theory,”one -
ussumnes that G acts on 4. Here we are considering only the “trivial action”
m‘) Lo I . I B

The superseript 2 above refers (o the fact that we are discussing functiong
of two variables on G. Since that will be the only situation considered here, we'
wrile Z{G, 4) for the group of A-factor scis B(G, 4) for the image of dand we
define MG, 4) = Z(G, AYB(G, A).

We say that two A-factor sets of G are equivalent if they are congruent
mod B(G, A). Thus H{(G. A) is Lhe sct of squivalence classes of A-factor, seis,
en G. o ' D
If X is a projective Forepresentation on G with factor sct &, and p: G- ,‘If:“"
is any funetion, define 9 = Xp by Dig) = E(g)ulg). 1t is trivial to chcclﬁ,thml
9 is a projective rapresentation of G with fagtor set f = ab{u), Thus Xand ).
have equivalent factor sets. . R

If X and ) are projeetive Flrepresentations of G, we say that X and ) are
equivalent if P is similar to X for some function u G ~ F*, This is casily:
seen to define an equivalence relation which pmunes’irrqdu;ﬁiblilily@' t s

We can now give a neocssary and sufficient condition for an invariant
irreducible character of » normal subgroup 1o be extendible.

2ol ) = alg. Bgigh) "+ "
. | = BlgN, AN)gN)uhN)(ghN)™ !
ang hence A is independent of the choice of X. If PP P~ were chosen in place

of 9, we can replace X by PXP ™! which lenves
of P, aves o, [ and 5
i3 uniquely determined once 3 is given. , unchaniged. Thus &

If § is extendible 1o &, we can ch 4 i
\ oose Xand Psorthat Xisare ati
Thus e e o ] X is & representation,

Converscly, if § = 1, there cxists v G/N = £ such thal
| HgN, hN) = vgNWhNpwghN)™ !,
Define ji: G = T by u(p) w WoN) Now deline ¥uiy) = -
X, is a projective representation of G with fa‘;lo: sc: )= Xalulg)™ so
2olg, h) = g, Wulg)™ ' ulh) ™" pighy = |

mi thus X, is ; : . i
'l;‘)”ﬁ hav: X, is a reprosentation of G, Furlherv-.om' since ¥(1) = Y1) = I,
l = “(l, l) Fry H(ljn(l)y{l" 1 = F{l).

“Thos pn) = (1) = w{l) = 1 for all neN and X
) : =X =
Thua X, is &n extension of P and the proof is cc.m(;’:fle)te. ;n)P(n) oo

A word of caution about Theorem 11,745 a i i
_ . ppropriate, In the notation of
hp_thmrcn}, ifa ¢ B(G, C’:)so that & =1 in J(G, CT*), it does not follow that
is e.xle‘n(flble to G. For instance, take G = Qu, N = Z(G), and § the non
rincipal lincar character of N. Then 9 is not c::ttf:w:!'b]1 1 !
G, ") = 1, (See Problem 11.18) e 10 G and yer

(11.7) THEOREM Let N ~a G and let 9 & Iro(N) be invariant in G. Let P bea 3
represqntation affording 8 and let X be a projective representation of Nt
satis{ying conditions (a), (b}, and (¢) of Theorem £1.2, Let o be the factor 810
%, Define f € Z(G/N, C") by figN, hN) = wlg, h). Then § is well-defined and
its image § € H(G/N,C*) depends only an §. Algo, 9 is exiendible 0

g \mag # The theory of projective representations is closely related 1o that of

Ll tral extensions,
Proof Fot m,neN and g, he G, we have

group I together with a homomorphism 2 of T onto & such that

aign, km)X(gnhm) = X{gn)E(hm) = ﬂﬂ)ﬂ"h"") e s 20,
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(11.9) Lrmma  Let (T, n) be a central extension of G with 4 = ker 7. Let X
be a sel of cosel representatives for A in T and write X' = {x_|g € G}, where
mix,) = ¢ Definge G x G- A by x,x = aly, x,. Then ae Z(G, A).
Furthermore, the equivalence class of ¢ 15 independent of the choeice of X.

Note that if 9 is an irreducible C-representation (or any absolulely
jrreducible Ferepresentation), then the condilion that §),, be a scalar rep-
resentation in Corollary 11,10 is automatically satisficd.

Henecforth we shall consider only C-represcniations,

Progf Thal o is an A-factor sel follows by computing x,x, x, 1wo ways.’ "
using the assaciative law in T If ¥ = {y,} is another set of coset rcpresen-
tatives, then y, = ,u(_t'f)x,, for some pig)e A, Now

Yora = ilgiphdx, xy = p(gulhiedy, hx
= ulypelhypelgh) ™ Lelg, M)ypn

(11.1) periNiTion Let (T, ) be a finite central extension of G. Let X bea
projective C-representation of G. We say thal X can be lifted 10 T if there
exists an ordinary representation ¥) of T and a function i: T — €™ such that

Nix) = E(n(xPdx)

for all x e [, Furthermore, (T, %) has the projective lifting property for G if

and the result follows, | every projcctive C-representation of G can be lifted 10 [

I 4 and U are abclian groups and A& Hom{4, U), then for each
ae Z{G, A), we define A(e) by Al2)(g, h} = Aodg. M), Tt is routine to check
that Moy e Z(G, U)

{11.10) corotLary Let (T, m) be a finite central extension of G and let -
A, X = {x,} and @ be as in Lemma 11.9. Let ) be an (ordinary) F-represen-
tation of " such that the restriction 9, is the scalar representation 4/ for some
AeHomia, F™), Dcline X@) = 9x,) for g€ G. Then X is a projective F-
representation of G with factor set A(x). Furthermore, ,

DY) = Kr(ly)

forall ye I, wherc 4: T° = F* i3 the function defined by u(y) = Ayxzy,). Also
X is irreducible ilf Yhg and the equivalence cluss of X is independent of the
choice of coset represeivatives X,

Proof We have
X@)E(h) = Dix 1 Nxy) = Dialg, hxp) = Aoy, K)E(gh)

and X is a projective represgniation with factor set Ale). If ye I, we havel
y = ax,, where g = n(y) and a € A, Thus K

D) = K@) = FrONAlyxsd)

In particular, ¥(G)and (") span Lhe same vectorspace of matrices over Fand

the assertion aboul irreducibility follows, ‘
Finally, il ¥, is the projective repraseniation determined by an alternate

choice of coset represcniatives, we have

£, () = Do)~ = L, (0! b
and X and X, are cquivalent, | .

Notc that if X is lifted to the representation P on U, then 9, is necessarily
a scalar representation and by Corollary 11,10 we can construgct a projective
representation X; of G by choosing coset representatives lor ker in T, Then

X, (r(xNp (x) = Dix) = E(r{x)plx)

and hence X, is equivalent to X. Thus if (T, 7} has the projoctive lifting prop-
erty for G, then all projective C-representations of G are equivalent to ones
obtained via the construction in Corollary 11.10,

We shall prove a theorem of Schur which usserts that every finite group
has a finite central extension with the projective lifling property. The point
of Schur's theorem is that it allows ug to apply what we know about ordinary
representations 1o the study of projective representations, For instance, in
the situation of Corollary 11.10, if 9 is irreducible and F = C, then we have
deg X = deg P divides|: 4| = |G| by Theorem 3. 12.Thus & consequence of
Schur's theorem is that the degree of every irreducible projective C-represen-
tation of G divides |G,

(11.12) oEFNrtion  The Schur multiplier of G is the group H{G. C"). It ig
denoted M(G).

For a finite abclian group A we use the netation 4 to denote the group
1re(A), 1§ (T, =) i3 & central extension of G with A = kern finite, we congtruct a
homomorphism n: A = M(G) rs follows, Choose a set X of coset repre-
sentatives for A in T and write X = (x,|g€ G}, where nix) =g Let
a € Z(G, A) be defined by x,%, = aig, hix, as in Lemma 119, For 1eA
define (1) = =), where 2(x)& Z(G, ) is defined by Aa)(g, i) = Alx(g. h))
and the bar denotes the canonical map Z(G, C*) — H(G, C") = M(G). Nowe
that # is a homomorphism, -

The map s A - M(G) is independent of the choice of cosel repre-
sentatives X, This follows since another choice would yield a factor set
B & Z(G, A), which is equivalent to = by Lemma 11.9. Since afi™' € B(G, A), it




182 Chapter 11 Projective repregentations

183
follows that Ae)d(f)~ Ii’l(“ﬁ__l }& BIG, ©"). Thus Alx) and A(f) are equiv-
alent in Z(G, C*) and i(z) = A(B). o
We shall call the unique homomorphism n: 4 - M(G) constructed above
the standard map. '

{11.13) THEOREM Let ([, 7) be a finite central extension of G and let # be
the associated standard map. Let X be a projective C-representation of G
with factor set . Then X can be lifted to I iff 7 lies in the image of », In parw
ticular, (I, m) has the projective lifting property iff y maps onto M(G),
Progf, Let A = kermand let X w {x, [g & G} be a set of cosel répresens
Lutives for A in T with n(x,) = g, Write x,x, = a(g, hlx,, 50 that a € Z(G, 4).
Now suppose § = n(d) for some 4 € A, Then 4(2) is equivalent to y and we hp.ve

g, b)) = g, Wplghuliuigh)” !

for some function u: G — C”,
Deline ) on T by Plux,) = A@E(gu(g) for a € A4 and g € G. We have’
Dix ) Dixa) = X Ehjulgluth) = Xighhlg, hug)ulh) -
= A(“(ﬂ» h))x{gh)p(gh) = 'D(ﬂ(a- h)xph) = q](xaxhl o
Since Yax,) = A@)D(x.) it follows that ¥ is & representation, Thus P lifta
YT, !
Conversely, if ¥ can be lifled, we have P(x) = X(n(x))u(x) lor some rep-
resentation P of I" and function s T' — C. Thus X(1) = (1) "P(1) and for.
every a€ A we have Diu) = X(lpia) = wah(l)”"P1) and s0 An) sy,
plaju()™ " is a linear character of A. Now write g) = u(x, ) We have |

Medg, B)Dxp) = Ve Dixa) = EERvighvih). o

Xalg, MvghiEgh) = . RvigVE(gh)
- and A() i5 equivalent to . Therefore v
n(d) = Aa) = § !

1114) LEMMA Let 4 be an {infinite) abelia '
.14 n group and let 0 = A witt
divisible, Assume |4: Q| < oo, Then Q is complemented in A.Q e

Proof  Use induction on |4 1 Q). We may assume 4 = n s
acd — Q. Letn = ofaQ)in A/Q and let w = afc @ Latve Sit?: :rl" f—.hzoé';
dwmbl]:tyknnd let b = ap~' 50 that & = |. Sinee aQ = bQ, it follows that
n = o{bQ) in 4/Q and thus <h> ~ @ = I, '

Now let 4= A4)b) o J = Q<by /Kby sathifies @ = Q ang |4 Ol =
[A:Q < |A: Q|- By the Inductive hypothesis, g is complemented in 1
and thus there exists B5G 4 with 8~ Q<by = b3y B =Ad, Now
QMBmQAQU)nBm(n <b> = ! and the proof is complete, ||

The above result remains true wi i
. _ e without the assumption tha( |A4: 01 i
‘ finite. We will ot need that more general fact, however, Qs

4 (11,13} 1iuoREM Ht F 'be un algebraically closed field and G g finite
group. Then H(G, F*) |s‘hmte and each of its elements has order dividing | G).
l'::'u.rthermore. B(G, F*)is complemented in Z(G, F*),

v Proof First, weargue that B(G, F™)is divisible I'f - {
Praof . . sible. Il fic B(G, F*)and n is
p::sxtwc mtegcr; write i = §(u) for some function p; G = F*. For c)acrll'l gnel Ga
choose vig)e F* such that wg) = Mg). Then &(v)" = 8(u) = . We can thus:
apply Lemma 11,14 when we show that TH(G, F™)| < w0,

Let a e Z(G, F*) and define

alg) = ] alg, x).

x& G

R
‘

N

Forlixed g, & G, we hyve a(g, hxhoelh, x) = i
B e o g hxjth, x) = algh, x)alg, h). Taking the product

e Hahthy = ulghx(y, b))

nd thus «!' & B(G, F*), This shows that H(G, F*}has ¢xpon';1;£ dividing | G/,

Nuwn let U= {eeZ(G F*)lal% = 1}, For 2EZ(G,F7), el 4 =

_H(g, F*), 2> By the result of the Previous paragraph {4: B(G, FH)

o r:1 pli: :ln C;l}.;'l“hus bi Lm‘nmaf ] d.m, B(G, F*)is complemented in 4 and the
15 a subgroup of U, Thus ¢ B ¥ (G, F*

gl (G, F*)U and hence B(G, F* )i/

. Now every element of U is a function from G x ¢ i

- n " - t 'G' =

inv:‘.e: this is a finite sel, it follows that | {7 | < oo and thlx?s0 wesly &

[H(G, F*)| = |B(G, F* Y B(G, F*)| < |U| = o
the proof is compiete. ||

Thus

and the proof s complete, [

Given an arbilrary finite group G we shall show that M(G) is finite.and
construet 4 central extension (T, nj of @ with A = ker x such that the standard. ;&
map 0 A — M(G) is an isomorphisma, This will thus be & group with the pro
jective lifting property for G with smallest possible order, namely [ G || M(G)|¢
Such a group I is called a Schur representation group for G, nslg

An abclian group @ is divisible if for every x € Q and positive integer n
there exists y £ 0, with ¥* = x, For instance, F* is divisible if F is algebrairally

theres ¥ * Next we need a general method for constructing central extensions.

ST L L A b At
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(11.16) Lemma  Let 4 be an arbitrary abebian group and let 2 € Z(G, 4).
Then there exists a cenlral extension (T, myof G with ker 1 = 4 and such that
a set of coset representatives {x,lg 5 G} exists with n(x,) = g and x,x, =
alg, M)x .

Proof LJ:l =G % A as a set and defing (g, a)ih, &) = (ph, alg. hiab),
That this multiplication is associative follows from the fact that & {5 an A4«
factor set, Let afl, 1)™' = zc A, Then (1, 2)M(g, a} = (g, «(1, g)za) = (¢, a) by
Lemma 11.5. Also

(0 e lelg™ ) 2)g, @) = (1, 2)
and hence T is & group with 1 = (1, z).

Clearly m: T — G dehined by afg, u} = gis 2 homomorphism with ker n =
A ={(l.c)ae A} That 4 = Z(G) follows since (1, g) = =(g, 1) by Lemma
11,5,

Since (I, za}{l, 2b} = (1, zab), it follows that g+ (1, 22) dcfines an
isomarphism A 2= I We identify 4 and A via this isomorphism. ‘

Let X = {{g. 1)lg € G}. Then n maps X one-to-one and onto G and 50 X
is a sct of cosel representatives for A in [, Now

{9, L)ih, 1) = {gh, aly, h)} = (1, zalg, R)Hgh, 1
by Lemma 11.5. Since (1, za(g, h)) = 2(g, h) under our identification, the
proof is comiplete. ||

{(11.17y THuOMEM (Schur) Given G, there exists a finite ecntral extension
(17, m) which has the projective lilting property for G, Furthermore, (I, ©) can
be chosen such that ker m = A = M(G) and the standard map 4 — M(() is
ah isomorphism.

Proof Let M be a complement for B(G, ©*) in Z(G, C*) by Theorem
11,15, Let 4 = M. Dehné
clear that in fact a(g, ) e M =

(a(gh, k), MXy) = vigh. kg, h)
using the definition of multiplication in M. Similarly,
(g, hiya(h, K))(y) = (g, hk}y(h, k)

and since y runs aver 4 set of factor sets, it follows that a € Z(G, A).

exl

Now let (I, ) and X = {x,|g e G} be as in Lemma 11.16 50 that x,x, =

ulg, M)xgn. Letz: A = M(G) be the standard map, We show that n maps onto.

For fe M(G) = Z(G, C*V/B(G, C"), there cxists yeM n § since M
complements B(G, C*) in Z(G, C"). Now define 1 on 4 = M 10 be the
evaluation map sl y. Note that L& 4. Now |

Aafg, ) = al(g. Ny) = Hg, b

hye A by wlg, Wy} = (g, ) for ye M. Tt is

Projective representations 188

50 that Aa) = y. Therelore
1) = ) = §

a5 desired,
By Theorem 11,13, it follows that T" has the projective lifting property for
G. Also,

14| = 1Al 2 [a(A)) = |M(G)] = | M| = 14]

and 50 rf must be one-to-onc and A = M(G), HMowcver A = A by Problem
2.7(c) and the proot is complcete, i

(1L.18) coroLLARY Let X be un irreducible projective C-representalion
of G. Then dep(X) divides |G,

Proof  Bee the discussion preceding Definition 1L(2, ]

Before going on to exploit Schur’s theorem, we give another result which
is useful in the computation of M(G). We have defincd a Schur representation
group of & 1o be a minimal central exiension with the projective lifting prop-
erty, The next theorem will yield another characterization,

(11.19) THEOREM  Let ([, 71) be a finite central extension of G with 4 =
ker # and lct i A = M(G) be the standard map, Let 4, = A n r'._ Then

kern = (e A| A, < ker 1}
In particular, n i8 one-to-one iff 4 = T,

Proof Let X = {x,|g € G} be as usual and write x,x, = alg, h)x,, with
a & Z(G, A). Suppose A€ ker n. Then | = n{d} = Xa) and so Ha) e B(G, C 7).

Thus
Hodg, h)) == plgu(R)jigh) ™!

for some function j: G — C*. Now define 3 on [ by d{ax,) = Aa)uig) and
check that

A Xx) = dx,x)).

(This is essentially the same calculation as in the proof of Theorem 11,13.)
It foliows that 1 is a Ynear charagter of T which cxtends A Now " = ker 4
and 50 Ay S ker A,

Conversely, let A = ker L Then A is cxiendible to A, € Ie(AT*/[™) by

" Aglax) = Ma) for x e I, Sinee /I is abelian, A, is extendible to A, € krr(I/T).

Now
Ay () (xh) = Aylx,x0) = dalg, BDA,(x,).
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Define iy} = 4,(x,). Then
Aadg, h)) = pig)pth)ulgh)™*

and the result follows. |1
v :

(11,200 coroLLary Let (T, n) be a finite central extension of G with
A=kern

(a} I 4 s I, then A is isomorphic to a subgroup of M(G).

(b) Assume |A| = |[M(G)|. Then A = I iff T has the projective lifting
property for G. In this case M{G) = A, ¢ : ‘ '

Proof (a) followssince 4 = A and (b)is immediate from Theorems 11,19
and 11.13, ] : b

Thus we see that T is u Schur representation group for G if T/4 = G for
some A € X} such that |A| = |[M(G)|and 4 = I

(11.21) coroLLary  Let p be a prime divisor of [M(G)|. Then a Sylow
psubgroup of G is noncyclic,

Proof ' Let T be a Schur representation group for G (which exists by
Theorem 11.17). We may assume that I'/4 = G with A< Z({[). Lat
P/A €8yl {G) and assume F/A is cyclic. Since A is central, it follows that P is
abelian and thug [ has an abelian Sylow p-subgroup. By Theorem 5.6,
p¥IIT (M|, Since A € T7 by Corollary 11.20, we have p¥|Al. Thus
pYIM(G). 1

The next corollary is quite important. It can, of course, be proved without
all of the complex machinery which we have developed,

{11.22) corOLLARV Let N G with G/N cyclic and let 3elrq(N) be |
invariant in &. Then 8 is exiendible (0 G, )

Proof By Corollary 11.21, M(G/N)= H(G/N, ") is tovial. The
result now follows from Theorem 11,7, | '

The above theory, together with some rather technical computations
yields a tool which is very useful when studying the characters of groups with
normal subgraups, Let N = G and let 9 € Irt(N) be invariant in G, Unde
these hypotheses we say that (G, N, 9)is a character triple. The analysis of thi
situation is much easicr if 3 is linear. We shall use a Schur representation .
group for G/N to replace (G, N, 8) by another character triple ([, 4, 3) §
which I'/4 = G/N and 4 is linear, Of course, this would not be of much valu
unless we knew that the character theory of [ was somehow closely tied to.;

o for ne Ch(H"|@). Note that oy(9) e Irr(M |9) and s0 ay(9) =
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the character theory of G. For instance, we would want A and 9% to have
the same n_umbers of irreducible constituents with the same ramifications.

We define below the notion of “ isomorphism ™ of character triples. This
rather complicated definition makes precise some of the ways in which the
character theory of two character triples can be related. We first introduce
some notation. If (G, N, 9) is a characler triple, let Ch(]5) denote the set of
{possibly reducible} characters % of G such that yy is multiple of & Let
IrnG [‘8) be the irreducible characters among these, so that Irr(G|9) is the
set of irreducible constituents of 9°. Note that if N = K € G, then (H, N, §)
isa charat_:tcr triple and y,, & Ch(H19) whenever YeChiG|9). iU v isgan
Isomorphism of groups and @€ Ire(Lf), let @' e Irn(V) denote the corre-
sponding character, so that @'(u") = o).

{11.23) DEFmvITION Let (G, N, 9) and (I', M. @) be character triples and
!cl T G/N — I'/M be an isomorphism. For N € H = G, let T denote the
Inverse tmage in I of 1(H/N). For every such H, suppose there exists a map
ou: Ch(H |8) = Ch(H"|¢) such that the following conditions hold for H, K
WithNE K2 Ha Gandy, ¥ e Ch{ff|9), '

(1) ouly + W) = ay(x) + o)

by Dnyl= Lou(, au(¥)]);

() oulye) = ()l .

W) aulxfy = aylx)f for fe Ire(H/N).

Let & denote the union of the maps oy. Then (1, 6) is an | ;
? : y S an {5 thism fr
(G, N, ) to (I, M, p) " (r, o) marphism from

_ Note (‘hat il {r. &} is an {somorphism from (G, N, 8) o (I, M, @), then ay
is determined by its restriction to Ire(£F|9), {This follows from {a).) By (b) it
follows that o, maps Irr{H|Y) one-to-one into Irr(H'| ). Therefore, to
construct an isomaorphism (v, #) it suffices to define ayon Irr(f | %) 1o be one-
to-one, then extend the definition by (a) and che¢k that (c) and {d) held for
xelee(H]9).

(11.24 LEMMA 'Lct {r. o) (G, N, 8) = (I, M, ¢) be an isumorph-ESm af
character teiples, Then ay, is a bijection of Ch{H|¥) onto Ch{H*| ) for all 4

with N € H & G, Furthermore, x(1)/%(1} = 6,(x){1}/e(1) for all %S Ch(H|$).

Proof 1f oy y\) = ¢4l for LECh(H|®, we have [ =
Laut), ou(4)] is independent of ; for all ¥ e Iee(FF )9). 1t follows thalx{ 'l’=] X
and hence o, is one-to-one. 1 :

For ye Ch(H|%) writc e(y) = X(1)/8(1) and similarly set o(y) = n(1)/e(1)
. We have
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An = e(x)d and nyy = e(hp and thus

Han(W = (ohy{xa = oxlin) = oule()I) = el
and thus e{oy(¥)) = elx) as claimed,
By Frobenius reciprocity, we have

= ¥ el
FRLTUE]]
and comparing degrees yields Y e(xP3(1) = |H: N|8(1) so that ¥ e(x)? =
[#/: N| where ¥ ruas over Iy r(H|.9) Similarly Y o{n)? = |[H: M| = |H:N|

for n £ Irc(H" ). Since 4y, maps IrriH]#) one-toone into Tre{H"| ), we have

HE:ND = Y e(x)? = T elogln)® < Y et = [H: NI

It follows Lthai every # € Irr{H g} is of the form a,{y) for some g & Ire(H | 5),
The result now follows. §

(11.25) corobLagy Isomorphism is an equivalence relation on char-
acter triples.

Pragf. ‘'The reflexive and transitive properlies are obvious. If
(t, ek (G N, ) — (I M, @)

is an isomorphism, thep a4 Ch(ff|3) = Ch{K]¢) is one-to-one and onto
where K = H'. We can, therclore, define 77 by {¢” )¢ = (a4)~" for
M= K < I where H = K™™', It is routine to check that

(Lo (T M, @)= (G, N, 9

is an isomaorphism, |

A ngarly trivinl example of an isomorphism of character tnples is given

by the following result.

{11.26) LEMMAa  Let (G, N, 9 be u character triple and let ;0 G = T" be an
onto homomarphism with ker 4 = Ker 3. Let M = u(N)and lct ¢ & Irr(M) be
e character corresponding to 8 € Ire{N/ker ), Then (G, N, Y and (I, M, )
are isomorphic character triples,

Proaf Wehave: G/N — [/M defined naturallyromu. For N e H 5 G

and y e Ch(H| %) we obtain ker y £ ker x and we may view y as a charagter

of Hiker . Let nr,,(x] be the corresponding charagter of (H) = H/kcr W
Check thal (r, &) is the desired isomorphism, |

Another examplc of an jsomorphism of character triples is provided by .

the following,
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{11.27) 1EmMMA Lel{G, N, @) be a character triple and let n ¢ [re{G) be such
that gy = e brr(N). For N = i = (&, definc oy Chilf |yp) = Ch(H|3) by
ay(¥) = dny. Leti; G/N - G/N be the identily map. Then

(i, o)X (G, N, 9) = (G, N, 9)
is 4n isomorphism of character triples.

Proof It is clear that oy docs map Ch(H |) to Ch(H | %) and that prop-
erties (a), {¢), and (d) of Definition 11,23 hold. Tt thus suffices (0 show thal o,
maps [rr{H | ¢) one-to-one into IreiH [ 9). This follows from Theorem 6,16, |

Given Invariant A, 3elrr{N) lor N = G, with (1) = 1, it follows that
(G, N, A} and (G, N, 8) are isomorphic if §4 7! is extendible Lo G

(1[.28) THEOREM Let (G, N, 9} be a character triple and lot (T, =) be a
finite central cxtension of ("/N having the projective lifting property. Lel
A = ker a1, Then (G, N, ) is ispmarphic to (T, 4, 4 for some de A

fragf By Theorem 1017, the triple (G, N, 9) determinss an element
B H{G/N, C") = M(G/N). Since T has the prajective lifting property for
G/N, we can find 16 A such that (i) = p~' wherc ¢ is the standard map
(Thegrem 11.13).

Now let G* £ G x [" be defined by G* = {{g, x)|§ = n{x})}. where § =
gN, the image of g in G/N. Note that G* is a subgroup of G x T Let L =
N # A and observe that L < G*. Define 3* and A* on L by 3*(n, a) = 3{n)
and A*(n, a) = A{a). Note that §*, 1* & Irr{L) are invariant in G*,

We have projection homomorphisms ug: G* = G and gty G* —+ T These
mapsareomtoand ket pg = 1 x A = ker P and ker i = N = | = ker A",
It follows by Lemma 11,26 that (G*, L, 9*) is isomorphic to (G, N, $) and
(G*, L, A% is isomorphic to (T, A, A). By Corollary 11,25, it suffices to shaw
that (G*, L, A*) and (G*, L. 3*) are isomorphic and by Theorem 11,27 we
will be donc when we show that 9*(A%)™ ! is extendible 10 G*.

Let D be a representation of N affording 3 and let X be a projective rep-
resentation of G as in Theorem 11.2, Let a be the fagtar sef of G bélonging
1o X and let § be the corresponding factor sct of G/N asin Theorem 11.7, Let
{x;13 & G/N} be a set of toscr representatives for A in [ with n(x,) = J. Tﬂke
x1 = 1. Write x,x; = W@, fxz 50 that y & Z(G/N, 4}, Since q(i] B, we
have

My)f e BG/N, T}
and hence
Ay, Mg, k) = W@~ w(H)~ (ah)

for some function v: G/N — {%,

ST e ——
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Every clement of G* is uniquely of the form (g, ax,) for g& G and 4 & A
Diefine 3 on G* by
Mg, axy) = EMa)™ ' g).
We computc
Bigs ax)3h, bxg) = X(gh)dlab)” Laly, KGR

and

Digh, abyig, Wxa) = Egh}ilab)™ ' A, W) *wh).
Since these Lwo expressions are equal, we conclude that 3 is a represcnlation -
of G*. i

= J1) = 1 and it follows that v(i) = W) =1 I'qr
ne :?‘;‘vhzg'f:r)e 3(1n:|a1)d=ﬂ(2‘)(n;.1(a)' | and 3, affords 3*(4%) *. The proof is
now complete. |1 N

t

We now consider some applications. ‘.
{11.29) COROGLLARY Let N = G and y € lre(G). Let §elrr(N) be a con-
stituent of xy. Then x(1)/1) divides |G N|. .

inerti ler(T) such that

Proof Let T = [g9), the inerlia greup, and let W e ‘ |
e ==n;c {x‘nd Yy = ed (‘:rheorcm 6.31). Sinde g(1) = |Gt Ty(1). it sutfices to
show that ¢{(1)/%{1) divides | T : N|. Let (I, A, 4) be & character triple lsomﬁ;‘-
phic 1o (T, N, 9) with A linear. Let { € lrr(I'[A) corre{spnnd 1o j[: e (T 8)
Then $({1YX1) = (YA} = {(1) by Lemma 11,24, Since A & Zi{) we have
Z(1) divides [T A| = | T+ N[ by Theorem 3.12. The rasult follows. 1

Note that by repeated application of this resull we can weaken the h?.'
pothesis that N is normal in G and assume only that N is subnormal, that
that there exist subgroups N, such that N

N<aN,< aN=G

In particular, if N is subnormal and abelian then since (1) = 1 wnqpl?tg}_rl_:

the following generalization of lo's Theorem 6.15. o

(11.30) coroLLarY Let NS G be subnormal and abelian. Thcnu;'g(l
divides |G : N| for every x € Ire(G). ]
be invariant in G
11.31) coROLLARY Let N =2 G and let Y elrriN) ‘
(Suppczne for every Sylow subgroup P/N of G/N that 91s extendible to P, The
% is extendible ta G

Proof Let(l,4,4)bea character triple isomorphic o (G, N, ) and with .

ilinear. N € H S Gand A S K & I'are such that H and K correspond
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then # is extendible to H iff 1 is extendible to K. This follows from Lemms
11,24 sinee cxtendibility of 9 is equivalent to existence of ¥ € lee{H | 9) with
¥(1/H1) = 1 and similarly for extendibility of A Thus 4 is extendible to the
inversc image in I of every Sylow subgroup of T/4. By Theorem 6.26, we
conclude that 4 is extendible to I and hence 8 is extendible 10 G, as desired. ||

We can use Corollary 11,31 to obtain an alternate proof of Galiagher's
Theorem 8.15, a proof independent of the results of Chapter 8. We are as-
suminyg that (G, N, 8)is a character triple it which (3(1), |G: N|} = | and that
det(9) is extendible to G. By Theorem 6.25, 3 is extendible 1o H for every H
with N < H = G and H/N solvable. The result now follows from Corol-
lary 1131, .

The following combines several of our extendibility griteria.

(1132} ToEOREM Let N =G and J¢Lrr(N}, with 9 invariant in G. As-
sume for gvery prime divisor p of (8(1)0(9), |G : N|) that & Sylow p-subgroup

- of G is abelian or if p # 2, that $ is p-rational. Then 3 is extendible (o G.

Proof By Corollary 11,31, it suflices to assume that G/N is a p-group for
some prime p. If a Sylow p-subgroup of G is abelian, then 9 is extendible o
G by Theorem 8.26. If p # 2 and § is perational, then § is extwendible by

5 Theorem 6.30. In the remaining case, {({G 1N, o(NI(1Y = 1 and Corol-
. lary 6.28 yields the result. |

As another application of the theory of projective represeniations, we
prove a thearem of T. Berger about the characters of solvable groups. Recall

" that x & Irr(G) is said to be quasi-primitive if xy is homogeneous (that is, a
multiplc of an irteducible) for every N =a G, Primitive characters are ncces-
sarily quasi-primitive and, in general, the converse is false,

: (11.33) ‘THEOREM (Berger) Let G be solvable and suppose yelrr(G) is
quasi-primitive. Then g is primitive,

In order to prove Berger’s theorem, we shall exploit the fact that there

' exists a central extension of G with the projective lifting property. We break
the proof into several intermediate results, The first of these is independent
g of projective representations,

© (11.34) THEGREM Let LS H < G with L =G, H maximal and G/L
~ solvable. Let § € lrr(H) such that 8% & y and 9, are irreducible. Then there
exists M = ( such that xy, is not homogenesous and M = L,

Proof We may assume without loss that L = coreg(H), the largest

normal subgroup of G contained in M. Let K/ be a chivl fagtor of & 50 that
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Proof The first assertion is immediate I'ro::n Frobenius reciprocity. To
prove that e5{#%) = (7Y when ¢ € Ch{H | #), it suffices to cheek that
[oot®) 2] = [onl¥)) 2]
for all y € Ire{l"| ). Since oz maps Irr{G|9) onto Irr(F| @) by Lemina 11,24,
we have x = a5() for some § e Tr{G|3). Now
Logl¥®). ma(€)] = [¥°, {1 = (¥, dud
= [agl), odfn)] = Loyly), (76(EDy]
= [(o4(¥N', 74(8)]

K/Lisanabelian p-groupand K & H, Thus G = KH by the maximality of H.
Since K/L is abelian, we have H n K=t K and since H n K -2 H wc con-
' alude that I n K < G and thus H m» K = L.

Let C = QuK/L). Then C=G and so CAH=H. However.
K = N(Cr H) and henee € m H <o (i, The maximality of L foress L =
CorH Wehave C = K(Cm M) = K,

WK =G then H = LG and sinae 9% e Ier(G) we have Ig(9) = L, by
Problem 6.1 and thus ¥, is not homogeneous. We assume, therefore, that

< G and let M/K be a chicl factor of G so that M/K is an abelian g-group
for some prime g. If ¢ = p, then (K/L) » Z{M/L) # 1 and the minimality of *
K/1. yields K/L & Z{M/L). This contradicts C{K/L) = K and we conclude
P =

We supposc that y, and y,, are homogeneous and write x,, = e for some
& Irr(M). Now ¢{1)/H)) = |G H| = | K : L]isa power of p. Since 3, ¢ Irr(L),
it 15 a constituent of 7, and hence # 1)/3(1} s an integer which divides x(1)/9(1).
Therefare n(1)/% 1) is a power of p. Since M/K is a g-group for g # p, we con-
cludc that g € [re(K) by Theorem 6.18 or Corollary 11.29.

Since y, is homogeneous, it is a muitiple of 3, and thus 5, is also. Let
R = M ~ Hand let 1 be any irreducible ¢onstituent ol ng, Then [t,, 8,] # 0
and hencc 7 = 94 for some ff e Irr(R/L) by Corollary 6.17. Since M = KR
and K n R = L, wc can find y e Irr(M/K) such that y5 = §. Now

et ——

and the result follows. I

{11,36) Lemma Let Z = Z({I') be such that T has the projective lifling
property for G = I'/Z with respect to the natural homamorphism m I' — G,
Suppose K=T, He L HK =T and H~n K 2 Z. Let 3¢ le{H/Z) and
assume H ~ K = Z{9). Then there exists y & Tri(T') such that K € Z{y) and
¥y = A9 for some linear 2 € Ire(H),

Proof Let 9 be a representation of A which affords 3. Let L =
H ~ K= H Sinee L © Z(3), 9, is a scalar representation and we can apply
Corollary 1110 to H/AL ~ ker 3) and construct a projective representation
X of H/L such that (k) = X(kL)u(h) for some function p: H — C*,

Mow let ©: G — H/L be the composite of the natural maps

GwI/Z-T/K = HK/K = H/L

50 that w(hkZ) = AL for he H and k < K. Let X% be the projective represen-
tation of G obtained by composing t with X so that I*AkZ) = X(hL) =
Dlkuih) ",

Now lift Z* to the rcprcsematmn 3 of I' so that Fix) = E*{xZ)(x) for
x e[, where v: I" = C*, This yields

3(hk) = Dikjuth)~ ' vihk)

for he H and k € K, Let 3 afford 2.

Reﬁtricting the above to H, we have J(h) = P{h}uth)” 'v(h) and hencc
Ath) = u(h)y~! v(h) defines o linear character AeTrr(H) and x4 = 34, Thus
x € Irr(D).

For k& K we have

M= (9B = Dy = (SR)MY-
However, since MH = G and M ~ If = R, we have
(90" = (0% = 2w = &y
and thus 1 = eny. Since ris & constituent of 7™ by Frobenius reciprocity, we .;

{ have [n, ny] ¢ 0. Since n, € lrr{K), Carollary 6.17 yields y = 1y, and hence
| N fi = {g and © = 3. Thus 5, is homogeneous and since (3,7 = ¢n we have
Pl

el _wwml wml wmi = wm W =R W

. §

e = ¢35 and n(l) = eX1). This vields $(1))M:R| = (9)*)(1) = £23(1) |
and [np.ngl= ¢’ = |[M:R|. It follows that n vanishes on M — R by

Lemma 2.29. As n is G-invariant, it vanishes on M — R¥ for all ge G and -
hence vanisheson M = (JR* = M — L. In particular, n vanishes on M — X
and so |M: K| = [¥g, 4] by Lemma 2.29. This contradicts nx e Irr{K) and |
completes (he proof, |l o

—

-

£

k) = D11}~ ik

which is a scalar matrix. Thus K € Z{y) and the proof is complete. [

(11.35) Lemma Let {1, a) (G, N, 9 — (I, M, ¢) be an isomorphism of
character triples and let N = H = G, Suppose  is a character of H. Then
e Ch(H|8) ilf ¥°eCh(G|9). Also, if ¥ eCh(F|9), we have og(y%) = -
(Tnld))T ’

The next result is a gencralization of Theorem 11.34 which includes
Berger's Theorem 11.33,
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(11.37 ThHrorReM Let L H « G with L =G and (/L solvable. Let
delrr(H), with 3% = y e Irr((), Then there exists M = G such that M 3 L
and yx, is not homogeneous,

Proof We may assume thal there do not exist subgroups Ly € Hy < G
and 9, ¢ Ier(H ) such that L < L, =1 G and (9,)% = y. We may also assume
that H is maximal in G. We have L = coreg(H). We assume thgut xc is homo-
geneous and write yp = ap with @ elIrr(L) 80 that (G, L, ¢) is a character
triple and 3 ¢ Irr{H [¢). .

It follows from Lemma 11.35 that the hypotheses of the theorem remain
invariant if (G, L, ¢) is replaced by an isomorphic triple, and similarly for the
conchision, Therefore, by Theorem 11,28, we may assume that ¢{l) = |,
Thus L = Z{y) and in particular, L = Z(3). ) o

Let ([, 7) be a finite central extension of G having the projective lifting
property, Let Z = ker nand identify G with T/Z via =, For subgroups [J .G,
let U* denote the inverse image of U in [ 50, that U*/Z = U and G* = I,

Let K/L be a chicfl factor of G so that K/L is abelian and K ¢ H, Thus
KH=Gand KnH=aKH 50 that K n H = L. We have e lrr{H%/Z)
and L* € Z(9). Also K*H* = T and K* ~ H* = L* = Z, Lemma’ 11,36
thus applics and yields 5 € Iee("} such that Ay . = 8 for some linear A g Tre(H*)
and K* = Z{n). :

We have

x o = (g = ATp

and hence 4" & Irr{T). Since A,. € irr(L*), Theorem 11.34 applies and we can
find M = L* with M = I" and (A"), not homogeneous. o _
If M= L* lct v, and v, be distinct irreducible constituents of (A"),,.,
Let u be an irreducible constituent of np.. Since L* o K“E Z(n) we have
#{1) = 1 and thus uv, and uv, are distinct irreducible constituents of (147),.
=« y;.. This is a contradiction since x; . is homogeneous. -
Thereforc, M > L*. Since (A")y is not homogeneous, Theorem 6,11
yields a subgroup T 2 M with T < and ¢ & Ire{T) such that ¢/ = A" Thus

1= =gt = g S

Since £ < ker y we have Z < ker{pr¥) and thus in G, ¥ is induced from
the proper subgroup T/Z < G. Also, T/Z 2 M/Z = L and this contradicts
the first sentence of the proof. I follows that x; is not homogeneous and the
proof is complete. |}

Problems

(11.1) Leta, feZ{G, F*), where F is a ficld. Il @ and § are equivalent, show
. o

that FF[G] = F[G].

Problems 198

(11.2) Let agZ(G, A) and let gc G. Show that afx, y) = oy, x) for x,
ye{g.

Note In general, xy = px does not imply that a(x, y) = a(y, x).

(11.3) Let e Z(G, A} and let x, ¥ & G commute, Assume that 4 is divisible,

Show that a(x, ¥} = aly, x) iff the restriction of z to {x, y> is cquivalent to the
trivial factor set.

Hint  Use Lemma 11.16.

(11.4) Letae (G, r_!). Say that g € G is a-special if alg, ¢) = ufc, g) for every
c & Cylg). Show that if g is x-special, then so is every conjugate of g in G,

Hint Let (T, m) be as in Lemma 11.16 with respect to G, 4, and a. Then
w(x) is a-special iff CHx)) = Cylmlx)).

Note If o and B are equivalent, then g€ G is a-special iff it is f-special,
Thus one can speak of @-special elements for g e H(G, A),

(11.5) LetaeZ(G, A)and let ¥ be g conjugacy class of G, Show that ¥

consists of a-special elements (see Problem 11.4) #f there oxists a function
X' — 4 such that

#lgatg, k) = piglah, g*)
forallge # and he G,

Hint  See the hint for Problem 11.4, Consider the conjugacy class of x,

' i_n I, where x, is the coset representative of 4 in I corresponding to g,

(11.6) Let (I, n) be a finite central extension of G with ket m = 4, Choose g
set of coset representatives for A in Tand let w e Z(G, A)beasin Lemma 11.9,
Let 2 ¢ 4. For each x €Irr(C14), choose a representation 9 aifording y und
¢construct the projective C-representation X as in Lemma 11.10, Show that
this defines a bijection of 1r(I"] 2} onto the set of gimilarity classes of irre-
ducible projective C-representations of G with factor sct Aba).

(IL7) LetaeZ(G, C*). Show that C* [G] is semisimple.

Hint Show that 3 (dim M)? = |G|, where M runs over a representalive

set of irreducible C*[G]-modules. Use Problem | 1.6,

(11.8) Letwe 2(G, F*). Show that dim Z{F[(7) 15 equal to the number of

conjugacy classes of a-special elements in G,

Hint Use Problem 115,

gl 19) Let(G, N, 9 beacharacter triple, If § € G/N, say that § is $-special if 9
18 extendible to N, g, ¢> for all c e G with 4. €] € N. Check that this is well
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defined. Let B e H(G/N, C*) be as in Theorem 11,7, Show thal §e G/N is
S-special iff it is B-special. (Sce the note following Problem 11.4.)

Note Tt is clear (without appeal to Problem 11.4) that conjugates of
9-special elements in G/N are J-special,

(11.10) (Gallagher) Let{G, N, 9) be a character triple. Show that [Irr(G|9)|
is the number of 8-special conjugacy ¢lasses of G/N,

Hint  Several of the previous problems ate relevant.

i
{11.11) The character (riple (G, N, ) is jfidly ramified if there exists

2 € 1rr{G | 9) such that (x(1)/H 1) = |G: N|. Suppose (G, N, 9 is fully rami-
fied and G = N, Show that no cyclic subgroup of G/N can be its own cen.
tralizer in G/N.

Hint Use Problem 1110,

(1112} Let (G N, %) be a character triple, For x, ye G with [x, y]e N,
defing the Gomplex number ¢x, ¥ as follows: Let ¢ be an extension of 3o
It = (N, ¥y Write §* = ¢d for Ae Trr(H/NY and put €x, v = (). Show
that ¢, % i Uniquely defined and thal

@) €x yp = &xn, ymPpforn,meN;
(b) &x\ %z, ¥» = Xy, ¥P Lxz ) whenever [x), y], [x3, ¥J€N:
€) &x.yp = Hlx, ¥ if 9is linear,

Note By (a) we can view €9 as being defined on commuting pairs of
elements of G/N. o

(11.13) Lot (G, N, 9) be a characier triple. If N  H = G, y < ChiH|9)

and § = gN € G/N we definc y' € Ch(H?|9) by y¥r") =
is well dafined. We say that the isomorphism,

(1.9):(G. N, B = (LM, @)

is strong provided (g (WP = ooy forall je G/NAlHWIth N E H g G
and all & Ch(H|%), Show that the isomorphism constructed in Theorem
11.28 is strong.

(11.14) In the notation of Problem 11,12, show that ¢x, y3 = €y, x3" "
and €x, p(yad = €%, piP€x, y2d if [x, 3 [x y2] € N,
Hint Viewing €% as defined on commuting pairs of elements of G/N,

it is invariant under strong isomorphisms of character triples, (See Problem
[1.13)

= (h}. Check that this
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{11.15) Let (G, N, 9) be a character triple.

(8) IygeGand €y, xp # 1 for some x € G, show that x(g)
¥ e Irr{G} ),

(b) IMgGe G/N, show that § is S-special iff €g. xp = 1 for all x & such
that €g, x3 is defincd,
See Problems 11.12 and 11.9 for definitions.

{11.16) Let E be clementary abelian of order p". Show that M(E) is clemen-
tary abelian of order p**= 192,

= [} for all

Hint Consider a Schur representation group for £ to get |M(E)|
£ pmnm 2 For cquality, let {x,|1 €= n} be a gencrating set for E.
Detine ¢ £ x E — € by e {T] x,*. [] x,%) = #*®, where ¢ is a primitive
pth root of unity.

(1117) Let G = A,. Show that [M(G)] = 2.

Nate 1n fact, |M(A,)| = 2 for all n = 4 except for n = 6, 7, where the
Schur muliipliers have order 6.

{11.18) Lel G = CH, whete H and C are ¢yclic, C =2 G, and H ~ € = Z{G),
Show that M(G) = 1, .

Hint - 11 T i a Schur représentation group for G, show that |G| = [T7],

{11.19) Let ([, n,) and (T';, n,) be Schur representation groups for G. De-
fineT g Ty % Fyby T = {(x, y){my(x) = my(y)} and show that Ty 5 M = T

Hint Let 4; = ker '»; and define 71, ' — G by a{x, y) = m,ix), 50 that
kerm = A, x Ay and (I, 7] is a central extension of G, Use Theorem 11.19
to show that [T = [T% |. Note that [T T (4, = A3) = (6],

Note Onecannol conclude that 'y & T, as the two nonabelian groups
of order p* show. If G = G' then I, = [ and ', = T’y in this case,
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/

. Gisa group, In this
Let c¢d{(G) denote* the set {y(1)|x ¢ Irr((F)}, where _
chapter we consider what can be said about ¢ when c:,d.(G) 15 known. We. have
already seen in Theorem 6.9 that if every f e cd{G)isa powerlof th.e prime p
then ¢ has an abelian normal p-complement. The ficst results in this chapter
consider a weaker hypothesis, namely that p divides f for every f Ec.d.((‘i})‘
with S = 1,

pAo{()}. Let s(G) = Longy x(1)*. Then
[QXG)Y = 5(G) mod p.

Proof Let N = OMG), Since Of(N) = N, N can have no irreducible -

. . ) L Irr(N) =
character with determinantal order divisible by p. Thus
F(N) u [ e Iee(N) | pl@(1)} and hence |[N| = Enmw;"’(l)z = 3(N) maod p.
It will therefore suffice (o show that s(N} = s(G) ]'nod P .

Now (G acts on #{N) and the resulting orbits are of p-power size. Le

&y == L € Ny 15 G-invariant}. Since all characters in an orbit have °

cqual degrees, it follows that s(N) & ¥, .o #(1)* mod p. We show that re-

striction defines a one-to-one map of #°(G) onto &, and this will complete the

roof,
§ If x e &(G) then (x(1), |G:N]) =1 and s0 yyelIr(N) b)_f Proble[n 6.7,
Thus gy & #,. Conversely, if ¢ € &, then by Corollary 6.28, s is extendible 10
G and a unique extension of ¥ lies in #(G). The resull now follows, ]

* The initials c.d. stand for ' churacter degeeea.™

o8

(12.1) THEOREM Fix a prime p. Write (G = {y e lrre(G)|pta(1) Iand
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(12.2) comoLLARY {Thompson)  Supposc Plx(ly for every nonlinear
xeIr(G), where p is a prime. Then G has a normal p-complement,

Proof 1n the nolation of Theorem L21, all 3 € £(G) are linear and have
kernels which contain O'(G). 1( follows that F(G) = Ire(G/G'OP(G)) and
HG) = G G'O"(G)|. Thus pAs{G) and hence by 12.1, pXIOMG)], Thus
O%(G) is a normal p-complement for G, I

The following lemma is very useful for inductive proofs of theorems
giving information about G when ¢d(G) is known.

(12.3) LEMMA Let G be solvable and assume thal ' is the unique minimal
normal subgroup of G. Then all nonlinear irreducible characters of G have
equal degree f and one of the following situations obtains:

(@) Gisa p-group, Z(G) is cyelic and G/Z(G) is clementary abelian of
order /2, -

(b} G is 1 Frobenius group with an abelian Frobeniyg complement of
order £, Also, G' is the Frobenius kernel and is an clementary abelian p-group.

FProof If Z{G} # 1, we must have that Z(G) is a cyclic p-group and
G' = Z{G)with |G| = p. Every y € Irr{G) with y(1) > 1 is faithful and satisfics
(1) = |G: Z(G)| by Theorem 2.31. If X, ¥ € G, then since [x, y]e Z(G), we
have [x", y1 = [x, y}* = 1 since |Gl = p. Thus x* € Z(G) for all x & G. This
completes the proof in situation (a).

Now suppose thar Z(G) = 1. Certainly, G' is an elementary abelian
" p-group for some prime p. Choose ¢|[G|, a prime different from p und let

Q & 8yL(G). Then G'Q «a G and it follows by the Fratini argument that

G=GN where N = Ng@). Now N~ &' —aN singg G2 G and
N~ G =G since G' is abelian, Thus N A G =2 G Now Q- G and so0
N<(Gand N 2 G'. By the minimality of G, it follows that N ~ & = ! and
thus N is abelian,
« 1M 1 # xeN, then N normalizes Co(x) since N centralizes x. Since
Cafx) =1 &' we have Colx) = NG’ = G. If Cgix) # 1, then x centralizes &'
and it follows that x € Z(G), a contradiction, It follows that Cg.(x) w 1 and
thus G is a Frobenius group with kernel G* and complement N by Problem
7.1, We conclude that )l nonlinear x e Irr{G) are of the form A% for lincar
Aelrr{(G'). Thus |G:G'| = |N| is the common degree of all nonlinear jrre-
: ducible characters of G. The proof is complete, J

The way Lemma 12.3 is applied in practice is the following, Given non-
belian G, Iet K <2 G be maximal such that G/K is nonabelian. Then (G/KY
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is the unique n\nnimql normal subgroup of (/K. Thus cither G/K is non-

solvable or else'satislies the hypotheses of Lemma 123,

Iy is a character of G, we introduce Lhe notation V(x) = <{g € G|x(g) # 05.
Then V{x), the vanishing-off subgroup, is the smallest subgroup, ¥V € ¢ such
that ¥ vanishes on G — V¥, Of course, ¥(x) = G.

The relevancs of ¥(y) to character degrees is this. Suppose y € Irr(G) and
V{y) = N =2 G. Then by Lemma 229, we have [xv, xv] = |G: N|. Now
write xy = ¢ 3'f=y ¥, where the 9, Irr(V) are distinet and of equal degree
(Theorem 6.2), We have |G N| = [xy. xx] = ¢3r and g{1) = etd(1), where
9 is one of the 4. 1t follows that [G: N|8(1)® divides x(1)% In particular,
|G N1 < %019 and x(1) is divisible by every prime divisor of |G : N|.

The following result is useful when K <2 ¢ and G/K satisfies the con.
ditions of case (b) of Lemma 12.3,

{124) THEOREM L&t K =0 G be such that (/K is a Frobenius group with
kernel N/K, an clementary abclian p-group. Let i € [re(N). Then one of the
following holds,

(&) |G: N[l ecdiG).
(b} V(¥) S K and thus |N : K| divides (1),

Pronf For Ae br(N/K), let T(A) denote I4(¢d), so that T = N If
T(A) = N for somce 2, then (4)% ¢ 1rr{G) and hence |G : N [¢(1) € ek (G). We
SUPpOSE thcn. that T(4) > N foruli 4.

Let W = V(K so that K & W = N and |et § = Ng(W)= N, Since

10y} normulizes V{y), we huve I:.(¢) < 5. However, V(i) = V{iy) for all
A e lre{N/K) since the A are lincar, and it follows that T(d) < 5 for al} A,
Now view N/K us an F[S/N).module, where F is Lhe fleld with p ele

ments. Since G/K is a Frobenius group, we have |G/N | divides | N/K| = 1

and thus pd|G/N|. In particular, p4|S5/N| and hence N/K is completely
reducible as an F[S/N]-module hy Maschke's Theorem 1.9, Since W/K ia
a submadule, we can write N/K = (W/K) % (U/K), where S normalizes U,

Now suppose W = K so that U <= N, Let Aelrr(N/U) with 1 # 1,
Sinee G/K is a Frobenius group, we have Jo(A) = N and thus [gd) = N
Therefore, |Irr(N/U) = 1 + |§/N|. We claim that there cxist distinct
A, e ler(N/UY with T(4) » T{p) = N, If not, then since N <« T() € § fDl'
all L& Irr(N/U) we have

IS/NL =1 = ZATEYN] = 1) 2 |Tee(NJUY > 1S/N,

where the sum runs over A e Irv{N/L/). This contradiction shows that }L
e Ier(N/U) exist with 70} ~ T(u) = N and 1 # g, as claimed.
Mow let x {T() n T{)) — N and write v = A Then A* = 4™ and

VA = (WA = AT = (P = (R = e
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and thus ¥rv = yv* and we have V() < ker(#v"). Also U = ker(iv*) and thus
N = Y)W = ker{iv") so that ¥v* < 1, and v* = v_ Since 4 % u, we have
v # Ly and I¢(v) = N. This contradicts x ¢ N and thus proves that W = K
and V() = K as desired, That this implies [N K1|y(1) follows from the
remarks preceding the statement of the theorem. |

In particular, in the situation of Theorem (2.4, we have for ¢ & Irr(N)
that eithet |G : N |¥(1) € ¢.d.(G) or p|y:(1). This most important consequence
of 12.4 could have been obtained with somewhat less work than was nceded
to prove the full strength of the theorem,

(12.5) THEOREM Let ¢.d(G) = {1, m}. Then at least onc of the following
OCCurs.

(8) @ has an abelian normal subgroup of index m.
{(b) m = p*lora prime p and G is the dircet product of a p-group and an
abelian group,

Proof’ 3uppose Lhere exists K -g @ such thal G/K satisfies conclusion
(b) of Lemma 12,3, Let N/K = (G/K) 50 that |G:N|]=m and N/K is a
p-group. Since G/K is & Frobenius group, m|(|N/K| — 1) and 5o pfm. We
claim that N is abelian,

Let g ¢ Irr{N) and let y be an irreducible constituent of %, Then y(1) = |
ot m and ¢(1)]x(!). In particulur, pfy(l). By Theorem 124, myt1) € c.d(G)
and thus y(1) = 1, This establishes the claim und situation (a) ol'the theorem
holds in this case,

We now suppose thal no K =3 G as above exists, Let z be the sat of prime
divisors of m, By Corollary 12.2, G has a normal p-complement for every
pen If|r| > |, then G has no irrcducible character of p-power degree and
hence G/OXG) is abelian for all p. It follows thal G is a ’-group. Since the
elements of ¢,d.(G'} divide elements of e.d.(G), we conctude that ¢.d (G') = (1}
and G' is abelian, In particualar, G is solvable, Now let K = G be maximal such
that G/K is nonabetian, Thus G/K satisfics the hypotheses of Lemma 12,3, By
assumption, we are in case (a) of the lemma and this contradicts m not being
a prime pOwer,

We may now assume that # = [p}, Lel 4 be the normal p-complement of
G so that A is abelian. Let A e Ire(A) and let T = 1,(4). 1f  is any irreducible
constituent of A9, then by Clifford’s theoram, |G : T'| divides (1), and thus
|G:T| < m. Now (15)€ is not itreducible and has degree < m, It follows that
all of its irreducible constituents are linear and thus G’ € ker({(1)9) = T
(Note that we have just done Problem 5.14{¢).)

Now if D we(Vyawiay TolA) then A = Z(¢) for all £clrr(D) and thus
A Z(D), Thus D = A » P for Pe Syl (D) Since G' & D, we have D1 G
and hence P2 G. Il G'= P then [G.AJS A P =] s0 that A = Z{G)
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the result follows, Otherwise, let K 2 P, K< G with K maximal such that
G/K is nonabelian. Since G is solvable, the hypotheses of Lemma 12.3 are
satisfied. By assumplion we are in case (a) of the lemma and G/K is a p-group.
Thus K = O(G) = 4. We have K 2 AP = D2 ' and this contradicts
G/K being nonabelian and completes the proof. |

{126) coroLLaRY If je.d(GY] = 2, then ' is abelian. -

[
Proof Let cd(G)={l.m). T 4G with |G: 4| = m then G/A can
have no nonlinear irreducible characters and 30 is abelian, Thus if case {a) of

Theorem 12.5 holds, we are done.
In casc (b) of 12.5, & is nilpolent and hence is an M -group by Corollary

6.14. The result follows by Theorem 5.12. 1

In the casc thal m is a prime we can sharpen Theorem 12.5 to give a
pecessary and sufficient condition on G that e.d{G) = {1, m}. The following
results prove more than is needed for this and will be used again. Theorem
12.7 is actually a generalization of Theorem 6.16.

{12.7) THEOREM Let N =3 G and suppose 8,, 9 & Irr(N) are invariant inG
and 9,9; e Irr(N). Let g, be an irreducible constituent of (9)¢ for i =1,2
and let ¢ be an irreducible constituent of y,x2. Then :

Wit (l) = ;(2(1).91(1)2.

Proof We have 0 % [x1xz, W] = Lxa. ¥4, and thus 1 is & constituent

of i, Also (¥l = (£2(1)/32(1))4; and it follows that
2213, = [32. W] = [l ¥nl.
However, (1:)x = (0{1)/8; (1), and this yields

20 oll)
mﬁs—l“—)[‘?nszﬂf’x]-. . it

Now 9,9, is the unique irreducible constituent of y and thus [$,5;, y‘:,.,j
= (1)/8,(1)9,(1). Substitute this in the above and simplify to obtain the

cesult.

(128) COROLLARY Let N -a G and suppose fie 1er(G) with N < Z4B). Let
Gelre{N). Then there exists an integer & such that b3{1)e c.d(G) and -

b2 = A(In, where t = |G ig($)].

Proof Let T = [g($rand lety be an irreducible constituent of fiz. Then

B is a constitucnt of ¥9 and so B(1) = ¥l Also, N & Z{y) and 'we wril

vy = A1) Let{ bean irceducible constituent of 37 and fet n be an irreducible
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constituent of £y, Since 94 € Irr(N), Theorem 12.7, applies and so
(1) = W3
Thus
UML) = NS = PONI(1)E,

Now 7" = 1) = 1,(0) and hence £5 5%
: ) X % € Irr{(¢) by Theorem 6.11. Let g be
whichever of £%, 1 has larger degrec, Then x(1) = b3(!) for some integer b‘;(md

DAY = f(1) = §E(pt1) = A1)
and the result follows, [ .

(129) coroLLarY Let c.d(G) = {! % i
‘ : JAG) = {1, p}, where p is a prime.
exists abeltan A= G with |G 4| = por ;12. ? prime. Then there

Progf By Theorem 12.5, we may ass at (7 :
: .5, y assume that (7 iz a p-group, Lel K= ¢
be maxima! such that G/K is nonabelian and | . ) B ,
: 4 b et Z/K = LG, f
123 it follows that |G+ Z| = p*. / (G780, By Lemms
Let fe lrr(G‘/K) witl'1 Bl = p and let S lee(Z). Then since Z = Z(f),
Colrollary 12.8 yields an integer b such that b = A(1) = pand bH!) & c.d(G).
This forces 3(1) = 1. Thus Z 15 abelian and the proof is complewe. ||

(12.‘10) LEMMA Lot 4 € G be abelian and let & = max(c.d.(G)). Then
(1”-4”;“(:(_;(“)' =z |Gl/h.
Frooft Since |Cgla)| = Zx | x(ent|? for 1e Irr{ (), we have
QHANTICH) = AN Y 2 e ? = X [tar 241
a x u £

However, x4 15 the s i R—
Thus La ¢ sum of x(1) linear characters and hence [, x..1 = x(1).

(1/1A1} X 1Cel)] = X x(1).

Furthermore, |G| = 1P <h ; ;
e o 198 Zz x(1) Ex x(1) and thus Zl (1) = |G| /b and the

(12.1f) TheorEM Let G be nonabelian and let p be a prime. Then ¢.d(G)

= (1, p} iff one of the following holds,

(a) There exists abelian 4 - G with |G: 4] =
(b) 1G:Z(G)| = p. dl=r

Proof 10{a) holds, then »(1)|p for every x € IrdG) by J1o's Theorem 6.15,

Since G is nonabelian, ¢.d.(G) = {1, p}. If |G: Z{G)| = p*, then x(1}* < p? by
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Corollary 2.30 and x{1}|p® by 6.15 (or 3.12). Again it follows that ¢.d(G)

= {L ph
Conversely, suppose e.d{G) = {[, p} and assume that (a) is (alse, We may
assumc thal G i a p-group. By Corollary 12.9, there cxists abelian A <2 G
with |G: A| = p%. By Lemma 12,10, we have
(/1A X 1Ce)] = |Gi/p.

odeA
Now A acls by copjugation on & — A and by Corollary 5.15, the number
of orhits of this action ig
(/AN T (| Cola)] = 1A = {1G[/p) — [Al.

acd
Tt follows thut the average size o of these orbits satisfies

w (|Gl — 1ADAGHP — LA = p+ 1 < p?

and so 4 hasanorbitofsize l or pon G — A. Since G does not have an abelian
subgroup of index p, 4 = Cg{4) and thus there exists x € G — A in an orbit
of size p. Let K = (A, x). Then Z(K) = C,{x) has index p in 4 and index p?
in &, We shall show that Z(G) = Z(K) to complete the proof.

Let & = LK) If xclrr(G) and x, is irreducible, then Z © Z{) and
[G, Z] = ker . On the other hand, if yx reduces, then all irreducible con-
stituents are lincar and K' = ker y Suppose [G. Z] = L. We also have
K > Il K' n[G %] S keryforevery y cler(G)sothat K' m [G, Z] = 1,
Now K'[d, 27 is the direct product of two nontrivial groups and so has an
irreducible character 9 with K’ & ker 8 und [G, Z] & ker 9. Let x be an
itreducible constituent of 8%, Then K' @ ker y and [, Z] & ker x. Thig
contradiction shows that [G, Z] = | and completes the proof, ||

We remark that the lust several sentences of the proof could be replaced by

an appeal to Problem 5.26.

Nexl we refine Theorem 12.5 in a somewhat different direction. Namely,
if c.d(G) = {1, m} and G has no abelian normal subgroup of index m, then
the nilpotence class of G is < 3, '

{1212) LemMa Let A =0 G with A abelian and G/A cyclic. Then |A| =
(G114 ~ Z(G}).

Proof et G/A = (Ag> and let ¢: A = A be defined hy a(w) = a~'a’,
Then o is a homomorphism and ker ¢ = C,(7} = A n Z(G). Let [ be the
image of ¢, Then g e N(/) und s0 J =3 G. Since G = A, g) and g centralizes

A mod J, it follows that G/I is abelian and G’ = I. Clearly, ] & G’ and henoe

|A] = |ker al|I]| = |A n Z{G)||G't
and the proof is compicie. ||
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(12.13) Lemma Let c.d.(G) = {1, m} and suppose A, B £ © ate abelian of
index m with A # B, Then |G| = mand G = Z((7),

Proof Tf K= G with |G; K| < m, then ¢ = K and hence K= @
by Problcm 5.14{(c). In particular, A <G, Lel A < K = G, then K-a G
and thus K'-a G. Il K' < ', let 1, # peler(G'/K") and kel g be an irre
dugcible constituent of 4% Now K’ £ ker x and so x, has a lingar constiluent
dand (1) < A%1) = |G K| < m Thus X1} =  and G' S ker y. It follows
that G € ker (i, contradicting the choice of j. Therefore K = G,

Since A # B letheB — A and let X = (A, b>. Thus K/A is cyclic und
16| = | K| = |A: A n Z{Kj| by Lemma 12,12, However,

AnTUKYZANB
and 50 (A A nZ(K) < |4: 4 n B| = |G: Bl = mand the first assertion is

proved.
For g € G, the conjugacy class of g is contained in the coset gG' and 5o has

“size < |G| = m. Thus |G: Clg)| = m and G = Clg) by the first sentence of

the proof, Since g is arbitrary, we have (' & Z{G)and the proof is complete. ||

(12.149 turoreM Let ¢.d{G) = {1, m} and suppose that G has no abelian
normal subgroup of index m. Then [G, G7] € Z(G), that is, G is nilpotent of
class <3,

Propf By Theorem 12,5 we may assume that ( is a p-group. Il G hasa
faithful irreducible character y then y = A% {or linear 2e Irr(K) and K = G
since G is an M-group, We have |G K| = x(1) = m and so K= G by Prob-
lem 5.14{c). Thus all irreducible constituents of ¥, are linear and K’ € ker
= 1, a contradiction,

Thus G has no faithful itreducible character and hence Z(G) is not cyclic,
Let Z,, Z;, %y S Z(G) be distinct subgroups of order p. If G/%, is of nil-
potence class <3, then [¢, G, G, G] € Z,. If this happens for two distinet
Z,, we conclude that [, G, G, G] = ] and we are done.,

Assume then that G/Z, and G/Z; (say) do not have class < 3. Waorking by
induction an |G, it follows (hat there exist A, B~ G with [G:A|=m =
|G:Bland A' ¢ Z,and B' & Z;. Let Z = Z,Z; sothat AZ/Z and BZ/Z are
abelian, Since G/Z is nonabelian, we have m e cd{G/Z)and s0 |G AZ| 2 m
and |G BZ|z m. ltfollows that Z = A m B.

M A/Z = B/Z,then A" & Z, ~ Z; = 1 and A is abelian, a contradiction.
Thus A/Z # B/Z and Lemma 12,13 applies to yield G'Z/Z S Z(G/Z), Thus
[G, G] & Z = Z(G) and the proof is complete.
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We now consider groups G for which [e.d.(G)] = 3. Although the in-
formation obuained is not as detailed as when |c.d.(G)| = 2, we do prove a
result analogous to Corollary 12.6.

(12.15) maeoreM Let |c.d.(G)]| = 3, Then G” = 1, that is, G is solvable of
derived length =3,

Before proceeding with the proof of this result we make some general
remarks. As the group A; shows, we cannot conclude from |cd(G) = 4
that & is solvable. Tt has been conjectured by G. Seitz that for solvable
G, d1(G) = |ed(G)]. {(Here, d.L{G) is the derived length of G; the smallest
intcger & for which G™, the kth commutator subgroup of G, is trivial) By
Theorem 5.12, this conjecture holds for M-groups, It has also been proved
when |cd(G)| = 4 (8, Garrison) and when |G| is odd (T. Berger). It is known
that for any solvable group, d.L{(G) = 3|ed.(G)].

{12.16) LEMMA Let N=o G with (|[N|.[G:N]|)= 1. Then
le.d(N)| = led(G).

Also if G/Iif is supcrsolvable and N is solvable with d.L(N) = |c.d.(N)}, then
d.L{G) = |e.d(G).

Proof  Let m be the set of prime divisors of |N|. If y € Irr((), let § be an
irreducible constituent of yy. By Corollary 11.29, »(1)/X1) divides |G: N|.
Since (1) divides | N|, it follows that $(1) is exactly the 7-part of ¥(1). Since
every 3 e Irn(N) arises this way, we see that ¢.d.(N} is exactly the sct of n-parts
of the elements of ¢.d{G). The first assertion follows. .-

Mow assume that N is solvable and G/N is supersolvable, it follows that’
G/N' iz an M-group by Theorems 622 and 6.23 and thus d.l(G/N) =
|e.d{G/N")| by Theorem 5.12. We may assume that N° > 1 und observe that

d(G) < dL(G/N'} + dLNY) < |c.d(G/N)| + dL(N) = |
£ 1d(G/N)| + |eddN)] — 1,

where the last inequality follows from the assumption that d.L{¥) 5 |¢.d{N}}

Now every f ¢ c.d.(G/N’) divides |G:N| by Itos Theorem 6.15 and thu
the s-part of {15 trivial. We conclude from the first part of the proof tha
led(M)] = |cd(G)| — [e.d.(G/N})| + 1and the result follows. ||

Proof of Theorem 12,15 Lot ed(G) = {1, m, n}, If {m, A) #¢ 1, then G hag-:
a proper normal p-complement N for some prime p by Corollary 12.2. By,
Lemma 12.16, |e.d.(N)| = 3 and s0 N is solvable and d.L(N) = |c.d.(N)| b
induetion if [¢.d{N}| = 3 and by Coroilary 12.6 if |e.d{N)| < 3. In this cass
we are done by Lemma 12.16.

- m~ -
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Assume now that (0, m) = | Suppose there exists K -2 G with G/
L {n, . : K
s?lvablc and nonabella‘n. We may assume that G/K satisfies the hypotheses
o 'Iﬁcmma 12.3, lf' G/K is a p-group then (say) n is a power of p. Let y e Irg(G)
:;;1;0 x(l}(; m."Smcg p,}’m;ﬁ we have y, cIrr(K) and thus by Gallaghers
rem (Lorollary 6.17), xff & Irt{G) for e Irf{G/K ). Thig i dicti
sinor o e Jfor 8 {(G/K). This is a contradiction
TT}ercfore G/K is a Frobenius group with kerne N/K = (G/KY, where
JSV"/K 15 a p-group and [G: N| = n (say). Suppose ¥ € Irr(N) with () > 1.
Since mf:(l) ¢ c.d.(_G). we conclude from Theorem 12.4 that ply(1). Let ¥ be an
1rreduc1blle constituent of ¥®. Then p|x(1) and since pAn, we have y(1} = m,
Thus y, is irreducible since (IG:N|, (1) = 1. We conclude that In =
apd (1) = m. T!ms CdN) = {1, m) and dl(N) 5 2 by Corollary 12.6,
Since G/N is abelian, we have dL(G) =< 3 as desired
Suppose now that no such K exists, Ify & it
) ‘ . My e Ier(G)with x(1) # 1, then G/ker
is nopabeha:‘\ andlthus 18 nonsolvable, However |c.d.(G/ker 0l = .'{k .¢.mc?lC
worlc-mg by mdu?uon on |G| we must have ker y = [. Therefore cvery
nonlhncar irreducible character of G is faithful, ,
ow let n < m and let relrr(G) with y) = . B
_ _ ' = n. By Theorem 4.3, each
1rr_ec_lumhle characier of G is a constituent of x' for suitable integers ¢, Let ¢ be
minimai such that X has an irreducible constituent y of degree m. Thus
[x;fI, 1,{/] #£0 for some irreducible constituent ¢ of ¥~ . Now E(1) # 1 or alse
xc:" is lrrqduclblc forcing 24 =  which is not the case, Also §(1) # m by the
mmu_na]ny of . Thus £(1) = n,
Since [y4, ¥] = 0 for linear A, we conclude that [2, %] = 0 and y hag

N0 linear constituents, Thus

Wherc fit "JE [rr(G), ‘fl(l) = R,

where y,, i, € Irr(G), x1) = n and (1) = m. Thus n? =

L] b
Wi = Z'fr'f’ Z’?j‘
(=} il

[ nil}) = mand a = 1 since ¢ is o
C‘lornpanng degrees yields mn = an + bm and singe {tn, n) i 1, ;ech‘:tfvi:h; I‘fa
Since b = Qanda > 0, this yields a = mand b = 0 angd Wie Y, L. l
_Wc claim that each &, is of the form A, ¥ for some linear character‘ AL T
suffices to find a linear eonstituent of %41 Suppose (for some i) that & l;a::.no

- linear constituent. Then

W= Tt S
=1 k=]

rm + sm and L,!.g_

However, 0 # [yg, &1 = [¥. 2£,] and ¥ is one "
' L, b, of the ,. Thus ¢ = 1 apd
hence 5 = n. Since r = 0, this yields n* = nmand n = m,:a contradiction.

hence

i We now have & = 1,7 for linear 4; und thus 3y = Y& = 7Y 4 and

W )its) = mfg.

e —— —
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Since ker ¢ = 1, we have yi(x) # m for x # | gnd thus §(x) = 0 for ali
xe G = (1], Tt follows thal [F4., 15 # 0 and thus ' £ ker 7. Thus con-
irudiction completes the proof. 1

Another technique or studying character degrees is bascd on the follow-
ing lemma.

(12.17) rBMMA (Garrison) Let H = G and let Jelrr(H), Supposc lor .
every irrcducible constituent y of 8% that g, = 9, Then V() = . ;

Proof We have (%), is a multiple of 9 and so (3%, = |G: H|9. Let.
fte f with 3() # 0 and let § = {xe G|h*c H). By definition of 3% we have

(1/1H1) Y 8(h%) = 3°(h) = |G : 1| Hh).
FY

HMowever, since 3%h") = 99(A), it follows for x € § that (k™) = 9h). This *
yields |S[3() = |G| ) and sincc Hh) # 0, we have (5| = |Gl and § = G,
Thus # € H lor all g € G and W) = J(h) # 0. Thus G leaves the generating
sct for V() invariant under conjugation and the result follows. ||

(12.18) LEMMA Let y e Irr(G) and let ker y <= N =2 G. Then
ker y < N~ Vix).

Proof We may assume kery = 1, IT V() n N =1 then ¥ vanishes
on N — {1} and 5o [y, ly] # 0. This forees ¥ € ker y, a contradiction. |

In the following, F(G) denoles Lhe Fitting subgroup of G, the (unique)
largest normal nilpotent subgroup.

(12.19) THRORRM (Broline-Garrison) Lcty eIrr{G)and K = ker ¥, Either'
of the following conditions guarantecs the eXistence of e lrr{G) with
¥(1) = %(1) and ker ¢ < K:

(2} K& F&);
{b) K = F(G), G/K issolvable and K = G,

Progf’ Supposc H is a maximal subgroup of G and that KH = G. Then
xp = SeTer(H), I  is an irreducible constituent of 99 such that |y, » 9,
then gy reduces and (1) = K1) = ¥{1). Also, we cannot have (ker Y})H = G
or else fr; would be irreducible, The maximality of H thus yields ker = A

Thus Lhe result foliows in (his situation and we may suppose that whenever
KH = G for 4 maximal subgroup JJ = @, the charactcr § = yy satigfies the
hypotheses of Lemma 12.17, In particular, V(3) =2 G,

Charactar degraesa 019

Now we choose L <3 & as follows. [T K ¢ F(G), ke [ = K.If K = F(G),
ther we are in situation (b) and F(G) = K < G. Here, G/K is solvable and we
take L > K with L/K an clementary abelian chiel factor of G. Thus L
i not nilpotent and we choose a nonnormal Sylow subgroup P of L. Notc
that in the case K = F(Gjand L > K, wc must have L = K P, By the Frattini
argument, G = LNG(P) = KNg(P) and Ny(f) < G. Let H 2 NglP) be
maximal subgroup of G, Thus G = HK and we let § = 4. Then ¥Yihat
and thus Vi) A L <= .

Now K~ H = kerd & V(9 and so in the case K = 7, we have
f e K HS L V(3). In the ease that L/K is u chief factor of G, we have
(L ~ Hy/(ker 9)is a chieffactor of H apd thus L ~ H = V{4}by Lemma {2.18.
Thus in any case, P= L V(@ =G and P is Sylow in L n V{9), The
Frattini argument now yields G = (L ~ VO)N,(#) < H. This is a con-
tradiction and proves the theorem. 1
(12.20) coroLLARY Let g€ lrd(G). I either x(1) = max{e.d.(G)) or ker‘x
is minjmal among, kernels of irreducible characters of G then ker ¥ is nil-
potent.

(12.21) coroLLARY ({Garrison) Let G be solvable and let |ed{G) =n
Then there exist N, -2 G with

1=N0EN|E"‘EN'|=G

such that Ny /N is nilpotent for 0 < i < n. ,

Proof Let N, = F(G), the Fitting subgroup. Then cd(G/N ) = c.d.(G)
and if N, < G, then c.d {G/N () docs not contain the largest clement of ¢.d 1)
by Theorem 12.19. In this case, |e.d.(G/N,)| < n and the result foliows by
induction on | 7], |

Supposc A = G is abelian, By Problem 5.4 (or 29{b)), |G : A| is an upper
bound for ¢.d.(G). Conversely, suppose we know max{e.d.{(G)} Can we con-
clude that there exists an abelian subgroup with bounded index in G? We
can, although it is certainly not true that therc necessarily exists abelian
A S G with |G: A| = max(c.d{G)

We use the notation B(G) = max(cd(G)). Note that if N 5 G and
W & Yer(#), then  is o constituent of xy for some x & Ire(G), and thus

w1} £ x(1) 5 HG)
and hence KH) = BG).

(1222) LEMMA Lot H{G) = b, Then therc exists xeG — {1} such that
1G: Cglx)] < b,

b4
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irreducible. Pick yeM/K of order 2, Since i
. y e ker(det(3), it follows that
Y€ Z(8) = Z(G/K) = 1, a contrudiction, This completes cuse |, e

Case2 G/K it a Frobeniug group. Let N/K = (G/KY i
kernel, By L?mma 123, |G: N|ecd{G) und so/ {#H 1'(\’ I/s )b tlr;cb(lj:"):t;el:;;lzs
then appl_:catmn of the inductive hypothesis to & ylelds an abelian subgrou ,
A S N with |N : 4| 5 ([/2]") Since B{[B/2]1Y < (b!)* we are done. °

Suppose then, that (V) > b/2 and let W € Irr(N) with y(1) > /2. Then
WU)IG:N1¢ d(G) and by Theorem 124 it follows that y(1)* N : K|
and hence |G : K| < b°. Since b 2 3, we have ([h/2]1)%° £ (b1)? and we are
done in case 2 by applying the inductjve hypothesis to K,

Case 3 G/K is g p-group. Let 2/K = Z(G/K). By Lem (Z| =
ﬁ!l)‘. where f e Ir‘r(G)and £ ZMIn particu/lar}, le: Z| sm;‘.l ff %(L’g ;»ZIIJ/;
fpn:k "‘1" & Irr(Z) with y(1) > b/2. Then y = g, for some ye Irr(G). It f‘ollow.v:
rom heorem 12.7 or 6.16 that Bl (1) e c.d{G) and this is a contradiclion
pince ﬁ(l)\b{l} > b Thus b(Z) < b/2 and the result follows as in previous
cases since ([b/2)!)2b? £ (b1, The proof is ow complete, |

It is upparent in the above i
. proof that in cases 2 and 3, the incqualitics
ohbtamcd are far from being best possible, The limiting factor in thisqproof is
:hel nonsoivable case I, I'f onc assumes that G is solvabie it ix possible 10
. oblaina betrer pour!d. It is not known what the best possible bound js cither
in t,';f gencral situation or for solvable graups.
he following result provides a tool whi J
' wh can be used to find an abclian
subgroup in G of ingex < b(G)* when G has an abelian normal subgroup with

nilpolent ’ i
lz‘rl)g.) nL factor group. (Compare Theorem 12.24 with part {a) of Thearem

(12.24) THEOREM (Broline) Let

xcler(Grand let X = ker y and F/Kx =
FG/K). 8 i i i ) i
b;“(H ::'; .): K{Jpposc F is not f]llputcnt. Then there exists Y elrr(G) with

i Proof Let QeSyl(F) with Q@+ F and let H 2 Ni(Q) be a maximal
subgroup, Now QK =1 G since F/K is nilpotent and normal in G/K and
ham;g HK = o; by the Frattini arpument. Thus § = xu € Tre(H),

. Since ke(l'_'(ﬂ_] S H, we have ker(3% 2 K, Let ¥ be an jrreducible con-
mue:nt of 3 with K ¢ kery and et L = Ker . IfL < H then L & ker 3=
:f:f < K and we are done. Suppose then, that L ZHsothat LH= G
;“ kir:;ureducxb!e. Then ¥y =Sand LAl =ker §= K ™ H, Write

NowKAL<aGand K » KnLz2Kan H I follows that

(KLY < KIT = G
qnd'thus KnlzeH Therfore KnL=KAH = N

Proof Letk = |Lrr(G)] = 1. Then
|Gl = 1 =T d1)* < kb3,
where the sum roiis over nonprincipal y € Ire(G). Let
m = min{|G: Calx)||x £ G, x # L},

Then |G| = | = mk since each of the k nonidentity conjugacy classes has
gize =m. W& now have kb? = mk and the result follows, § ' '

(l2.232 THEOREM L&t 8(G) = b. Then ¢ has an abelian subgroup of index
<(h1)%, . . o
Progf Usc induction on b If b = 1, the result is trivial and if b = 2,
then ¢d{G) = |1,2} and we arc done by Corollary 12.9. Assume then,
that & > 3, ' : '

Let K < G be maximal such that G/K is nonabelian. It follows that,
BK} € b/2 since if & Irr(K} with (1) > b/2, theb necessarily ¥ = xx for,
some x € lr(G). By Corollary 6.17, we have By € lm{G) for §elr{G/K), .
Since G/K is nonabelian, we may choose g with B(1) z 2 and this yields
A1) > b, a contradiction. R

By Lemma 12,3, we have three main cases to consider namely; G/K'1s non!
solvable, G/K is a Frobenius group and G/K is  p-group.

Case | G/K is nonsolvable, Since b(G/K) < b, Lemma 12.22 Yields,,
x € G/K such that x # | and ;

[(G/K): Cyyulx)| = b7

Let €/K = Cgudx). If B(C) < b — 1, then there exists abelian 4 & € with,
JCeAl 2 ((b— 1)) and 50 |G A} =|G:C||C: Al < (b!)* and we are done. -
Asgsume that 5(C) = b and let € ler(C) with y{1) = b, Then cvery irres i
ducible constituent y of ¥® satisfies y(1) = b and thus y. = , It follows by
Lemma 12,17 that V{¥) = G and thus KV{) < G, If KV(§) = K, then.’
G/KV(y) is abclian and so £ § since KV(Y) € €, H Z/K = Z(C,
then Z =< G, Also, xe Z/K and so Z > K. It follows that G/Z is abeli
and G/K is solvablc, a contradiction, We conclude that Y(y) © K and hencg
IC:K| € ¢(1)* < h* by the remarks preceding Theorem 124. Thus
|GIK|£b‘. o T U
By the inductive hypothesis, K has an abelian subgroup of index
< {[h/21N% For b = 5, we have ([B/2])3h* < (b1)? and the result follows. ;
Assume then, that b = 4, If 2¢cd(G/K), then c.d(G/K) = {1, 3, 4} which ¢
contradicts the nonsolvability of G/K by Theorem 12.15, Thus we may.;
choose 3 ¢ Irr(G/K) with 3{1) = 2. We have G/ker 8 is nonabelian and henge
ker 9 = K, Let M/K = (G/K). Then M’ ¢ K = ker 3 and hence 9y i
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We have
|[F:FnH|=|G:H|=|L:N|=|KL:K|.

Since Q= FmH and QeSyl{F) it follows that g¥|KL/K|. Since
KQ/K = G/K, we ¢onclude that the commutator [KL/K, KO/K] = | and

thus [L, 3] < K. Sinec L1 G, we have [L.Q] = K n L = N and henee

L = N(NQ). However,
NOQ=MHnKQ=HAKQ=H .

singe KQ =@ G. Therefore, G = LA = N(NQ) und N@ =1 G. The Frattini

arpument yields G = NN((Q) = H, a contradiction. |

(12.25) LemMa Lel G* =1 and let m = |G :F(G)|. Then m = b(G) and :

B{F(G)} = b(G)/m.

Proof Let & Ire(G) be such that ker x is minimal. Since G is a relative -
M-proup with rcspect to G° which is abelian, there cxists H 2 G and

linear A& Trr(H) such that A% = y, Also, H 2 ker x. Sinee H = G, all irre-

ducible constituents of x, are linear and thus H/ker x is abelian, Thus' !
Hiker y & F(G/ker y) and hence A is nilpotent by Theorem 1224, In |
particular, H € FiGlandm < |G: H| = (1) < KG). o

Now lct Yelrr(F(GY) and let 4 be an irreducible constituent of 99,

Choose y e Irt(G) with minimal ker x & ker ¢ und let H be as above with

{G: H| < b(G), H/ker y abelianand H S F(G), We have A’ = ker ¥ = kery. "

and thus i, has linear constituents. Thus 9, has linear constitpents and
hence (1) < |F{G): H| = |G H|/m = B{G)/mand the proof is complote. |

{12.26) ‘tueorEM Suppose U =1 G Is abelian and G/U is nilpotent, Then
thete exists abelian A © G such that [G: A| 5 BGY*. ,

Proof Use induction on b = B{G). We may assume b > | and 30 G is
not abelian, First, suppose that every nilpotent factor group of G is abelian,

Then G’ = U, G" = | and Lemma 12.25 applies, Since G is not nilpotent,\"
F(G) < G and b(F(G)) < b/m < b, whete m = |G:F(G)| = b, By the in- .

ductive hypothesis, therc cxists abelian A < F(G) with |F(G): A{ S (b/m)*
and henee |G: d| £ b*/m® = b, ‘
Now suppose that G does have a nonabclian nilpotent factor group,

Choose K =2 G, maximal such that G/K is nonabelian and nilpotent, By,

Lemma 123, G/K is @ p-group and |G Z| = f2, where Z/K = Z(G/K)and

Z = Z(f for some fi e Trr(G) with (1) = f. By Corollary 12.8, we conclude -

that b(¥) < b/f"* « b. By the inductive hypothesis, there exists abelian
ACSZ, with |Z: 4} 5 b(Z)* 2 b4/ f% Thus |G 4l = |G Z|1Z:A] = b
and the proof is complete, |l

1Y
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Mext we discuss the “ p-structurc” of G, where p is a prir_ne which is in
some sense large when compared to HG). The objective hete is to show that
|G : ©,(G)]is not divisible by too large a power of p.z\Ve prave that if B(G) < p.
then p4|G: O,G)| and that if (G) < p*3, then p*41G : O4G)).

{(12.27) Lemma Let G act transitively on a set @ with |Q] > 1. Let H =G,
{or some x @ £2. Then the average size of the orbits of H on Q — la} is =b(G).

Proof Let 9 =(1y)°% the permutation character of G on £, Write
9= g + ¥ a,x where the sum runs over the nnnprmmpal_:rredumble
constituents of 9. The number of orbits ¢ of A on €1 — {} is given byt =

L .3"]—l=[3,9]—1wza’.
. "Now |t = {a}| =~ 1 = ia,z(l) < b}, o, where b = b{G). Thus
the average orbit size s is given by

s=CaWEe)sbLayZar=0 1
{(1228) coroLLary ' G has morc than one Sylow p-subgroup, then
there exist distinet I, Q € Syl (G) such that
B(G) > |N(P): Ng(P) m Ng(@)l 2 1P F n Q.

i jon acti Syl (G).
Proof Apply Lemma 12,27 to the conjugation action of G on
LetPe éryl J[G)and H = NglP). Then some orbit of H on Syl (G) = {P} must
have size =< b(G). Lat 0 be in such an arbit, Then bG) 2 | H N4 and we
have the first inequality. Also .

|H:NGQ) 2 [P NAQ)

- nd sinoe N,(Q) = P n Q, the result follows.

(1229) THEORIM Letp be a prime and let HG) < p. Then ¢ has a4 normal
abelian Sylow p-subgroup.
Proof Let PeSyl{G). If P~ G, then by Corollary 12.28, we can find

@ € Syl,(6) such that @ % P and [P1P A Q| £ BG) <7 This is a con-

' tradiction and shows P = G. , o
i That P is abelian follows since every £ € c.d(P)is a power of p satisfying

* f « p. The proof is complete. |
(1230) LEMMA (Burnside) Let P eSyl (G and ket X, ¥ = P be normal
subsets of P which are conjugate in G. Then X and Y are conjugate in Na(P).

[ )

Proof Suppose Y = X* so that F < N(Y) and PP = N(XY = N(X*)

= N(Y){‘By Sl;ﬁfw's theorem in N(Y), we have F™ = P far some 1 € N(Y)
and gu € N(P). However, X" = Y* = ¥ and the proof is complete.

(1231) LemMa Let H < G with |G H{ = p, a primc. Then O7{H) = G.

ot
)
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Proof Let K be the kernel of Lhe action of G on the right coscta qf H {act-
ing by right multiplication). Then K = H and K =2 G. Also IG‘: K| divides p!
‘and s0 |H: K] divides (p — )T and s prime to p. Thus O"(H) s K~ H
and s0 OF(H) = O (K} = G since K= G, |

(12.32) THEORem Suppose  HG) < p*? for some prime p, Then

PyIG: 04G)).

Proof We may assume that O, G} = 1. Let PeSyI,(G? and @ssume
|P| 2 p*. Let N = N(P). By Corollary 12.28, choose @ # P, with () ¢ Sy|,(G)
such that

P MG 2 ININM@H & [P P A QI

and set b = P Q Then [P:D} = p. Let M = Ng(D) 2 P. Now P & N(Q})

and so
NAQ) < PNADYE N n M,

It follaws that !
P = NN = pIN:N A M|

and [N :N A M| < p"2 Notc that M < G.

Woe consider the action (by right multiplication)of M on ) = {Mx|xe G}, -

Suppose r of the orbits of M on @ — {M] have size = p? and s have size = p?.
Let £ be the union of the r smaller orbits,
We claim

(*) If Mx &€y, thet DD* = D*D and xe MNM.,

Assuming {»), let us complete the proof. We have [£2 = {M}| = p®s 50 that

Lemma 12,27 yields
PR s BG) = 19 = MYAr + 8) = pPs/r + 8).

Thus >0 and p2<(r+s)ss1+r Now if MxeQ,, then
x € MNM because of (+) and hence the orbit of Mx under M contains an
element of the form Mn for ne ¥, The number of distnet Mn for neN is
IN:N M| < p" und thus at most p/* M-ocbits of £ contain an element
of the form Ma, These include the trivial orbit {M} bnd s0 we have
1 + r = p"2 This conlradicts # previous inequality. o

We now work (o establish (»), Let Mx e Q, so that x_ft Mand D D
If ¢ither of D or D* normalizes the other, then DO* = DD is 2 p-group props

erly containing D, Sincc |P:D{ = p it follows that DD e Syl (G) and

|PD*: D| = p so that D=3 DD and DD* < M. Since also P 5 M we ha

P = (DD*1" for sotne meM by Sylow's theorem. Now D", D*™ =2 P and

If s =0, then Mx€Q, for ewery x&G — M and hence DD* = DD fot all ‘
x & G by (+). Thus {D"|x £ G) is a p-group thatis normal in G, & contradiction.
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hence Lemma 12,30 yields O™
= M and x€ MNM as desired.

The remaining case is where D ¢ M* and D* ZT M Let W =Mm~M 50
that WD and WD* are groups. Since My e Qq, we have |M: M~ M*) = p?
and hence [DW:W|= |M:W|< p?oand [DW:W|=p Similarly
ID*W.W| = p. By Lemma 12,3), 07 (W) is normal in both WD and W~
Wrile K = O”(W) and L = NgKX).

Since [M: W[ < p?and (DWW : W| = p it follows that [M : DWW < pand
DW contains a full Sylow p-subgroup of M and hence of G. It follows that
DK/K and D'K/K are $ylow subgroups of L/K. Alsp, D°K # DK since
DK = M and D* 2 M. Thus [Syl(L/K)| = | and B(L/K) = p by Theo-
rem 12,29,

By Corollary 12.8, b(L) = ab(K) for some « with ¢ > KLIK) = p.
Thus p¥? = b{L) 2 p*?K(K) and b(K) < p. Thus K has a normal Sylow p-
subgroup U by Theorem 12.29. Now UD Syl (M)and UD < WD since U
is characteristic in K ~ WD. Thus [MINGUD) = M DW| < pand it
follows thal UD <2 M, Thus |Syl{M)| = 1 which is a conuradiction since
P, ( € Syl (M). This completes the proof. |

D*™ for some n e N. Thus xmnm ™" e N(D)

We close this chapter by considering the opposite of the stituation with
which we began. Supposs no /€ e(G) is divisible by the prime p. A sufficient
condition for this 10 happen is that G has s normal abelian Sylow p-subgroup.
(This follows by lto’s Theorem 6.15.) 1t is conjecturcd that this condition is
also necessary. The next result shows that to prave the conjecture, it would
suffice to check simple groups.

(1233) vHoOKEM  Suppose G does not have
subgroup and that no element of c.d4G)
abelian simple composition factor § of
element of ¢.d.(5) is divisible by p.

Proof IT N= G and ¥ e Ire(N), chovse xeTr{G) with [xy, 4] # 0,
"Then ¢(1)1x(1) and s0 phi(l). In particular, if N & 8yl (G), then N is neces-
sarily abeliun and thus G does ot have o normal Sylow p-subgroup, Also,
if G is simple, the resull is trivial and we assume G is not simple,

Let N be a maximal normai subgroup of G. Workin by induction on |G,
we may assume that N has a normal Sylow p-subgroup £, Then G/P does not
have a normal Sylaw p-subgroup and if £ > | we complete the proof by
applying the inductive hypothesis to G/P, Suppose then, that # = |.

" We must have p|{G: N| und since G/N is simple we can take
by: unless G/ is abelian, that js, 1G/N) = p,
'@ € SyL(G) so that [Q| = p.

a normal abetian Sylow p-
Is divisible by p, Then @ has a non.
order divisible by p such that no

8= G/N
We suppose this is the casc. Let
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Ify £ Ire(M), then % cannot be irredugible since p| (1), Thus [{(y) > N
and hence [y} = G and 15 invariant in G, Thus Q acts trivially on Irr(G),
1t follows by Brauer's Thearem 6.32 that Q acts trivially on the 2t of con-
jugacy classcs of N.

If ¥ i5 g class of N than Q permutcs X7, Sinéc pr|N|, we have pf|.¥| :

and thus ¢ fixes an cloment of ¥, It follows that € = C,(()) meets every
conjugacy class of N. Thus N = { J,.x € and this yields

INT= T s IN:NJOKIC] = D INLCI(IC = D= |N| = [N:C].
Thus [N:C| 2 1 and € = N. We conclude that ¢ =1 G, a contradiction, ||

(1234) coronLARY (ftg) Let G be solvable. Then ¢ has a normal
abelian Sylow p-subgrpup iff every element of ¢.d.(G) is relatively prime to p.

Problems

(12,1} The normal subgroups N, = G are a Sylow tower if
l=NgS N S EN=GC

and N, /N, is a Sylow subgroup of G/N, for each 1. 0 < i < k. Suppose for

every m, ri € c.d.(G), either m(n or n|m. Show that G has a Sylow tower.

(12.2) Suppose that every f ec.d{() is a power of the integer m. Assume
that m is not a prime power. Show that there exists abelian 4 © Gwith |G : 4|
= b((7) and that such an A is necessarily normal in G.

Hint This generalizes part of Thearem 12.5. Mimic the proofl of that
theorem.

(12.3) Suppose that G is solvablé and that for every m, nec.d(0) with
m # n, we have (m, n) = 1. Show thal |cd(G)] £ 3,

(12.4)  Let G besolvable with MG) = b > | and suppose thal G has no factor
group which is a nonabelian psgroup. Show (hat there exists L € G and an
integer » with 2 < r = b such that b{L) < b/r and |G L| < br.,

(12.5) Let G be solvable with H(G) = b. Show that G has an abelian sub-

group of index =kb"™a® for 4 suitable constant k independent of b.

(12.6) Let cdiG) = {L, p*}, where p ix a prime and e > 1. Il a Sylow p.
subgroup of G is nonabelian, show that G is nilpotent,

fint  Use the fact that abelian Frobenius complements are cyclie to
show that if G is not nilpotent, then there exists abelian H = G with |G H |
= p® and G/H cyclic. Now let G/K be as in Lemma 12.3{(a) and consider HK,

{1277)  Let G he solvable with b = &{G). Let p be a prime,
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(a) Show that there exists proper K -0 & and integer ¢ = O such that
PUABK) = band p*t A KIG K|,
\(b) Show that if P16 O{G)|, then p* = b*,

(128) Let G" = 1 and assume that all Sylow subgroups of G are abelian,
Show that 5{G) = |G : 4| for some abelian A <21 G,

(129) Let G be solvable and suppose that all Sylow subgroups of G are
abelian, Show that |G : F(G)| < MG,

Hints F(G) = C4(F(G)). Let 1e1eefF(GN be such that [G:lg(d) is

maximal. Let 7 = Jg(1) and s = |G: T|. Show that HT/F(G)) < b/s and
let F/RIGY = F(T/F(G)). Show MWF) % & Use Corollary 1132,

(12.10) Suppose that cvery f e cd.(G) divides p* where p is a prime. Show
that there exists abelian 4 =  with index dividing p**.

(12.11) Suppose felrr(G) with p(1) = f and that Z = Z{f) satisfies
|G:Z|= fA Ll Z s HEG,

{a) IFIG:H| > f show that B(H) < W)
{(by If|G:H|= fand y lrr{H) with x(1) = b(G), show that V(x) = Z.

(12.12) (a) Suppose A = G is abelian and |G Cg(4)] = MG). Show that
there exists A, © A such that [A: 4y] = MG)? and Cy(4,) = CglA).
(b) If G is a p-group, improve part (a) to read [A4: Ay| 5 HG). )

Hint Use Lethima 12,10,

(12.13) Show that there exists a funétion f'defined on positive integers such
that for any group G if b{(G) = b, then there exists H = G with |G . H| < b
and |H:Z{H)] = f(b).

Hint Use repeated applications of Problem 12.12.

(12.14) Let G be solvable and let p be a prime. Suppose pif f for all
S & ¢d(G). Show that cither Q{G) = 1 or a Sylow p-subgroup of G is abelian.

Hint In 8 minimal counterexample, Ict M be & minimal normal sub-
group, Show that | O(G/M)| = p. Now ghow that 0,(G/M) is a direct factor
of a Sylow subgroup of G/M. Produce the other factor by considering 4(4)
for suitable 4 & Trr{M),

(t215) Let N = G with G/N a p-group and p o 2. Let Selrr(N) be .
variant in G, Suppose that every irreducible constituent of 3¢ has degree
< p¥1), Show that HG/N) < p.

Hints Extend 3 to 3cIr(H) with N= H and |G:{[| = p. For |
@ € Irr(H/N) with (1) = p, consider (d)°. Conclude that there exists linear
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u e lrr{H/N) such that ¢ = @ulorx e G, with 4 independent of the choice of
. Use this and the hypothesis p # 3 to show that ¢ is invariant in G.

Note Ifp = 2, then Problem 12.15 is actually false,

(12.16) Let G be a p-group and supposc bG) = p*. I p # 2, show thﬁt
Miker xlx1) = p*) = 1.

Hint  Use Problem 12,15,

Note Passman has conjectured that if G is any p-group with B{Q) = p*
and e < p, then [{ker x|x() = p*} = 1. He has proved this when G has
class 2, .

13 Character correspondence

|
|
|
|
|
|

We have slready scen several examples of the following sitwation (for
instance, Theorems 6.11 and 6.16). We are given H, i subgroup or factor
group of G, Subsets & < Urr(H)and & < Irr{G) ure specificd and it is proved
that there exists a *natura) ™ pne-to-ong correspondence between 9 and 5,
Here, the word “natutal” is intended (o mean hat the ¢orrespondence is
uniquely desctibed by some general rule and thus mote is belng said than
merely thal || = |F|. We shall not altempt to give a precise detinition of
naturalness. Most of this chapter is devoted Lo the study of a particulur
character correspondence which was discovered by G, Glauberman.

We introduce some notation. Let 8 and G be groups such that S scts on G,
{That is, we are given a homomotphism § — Aut(G).] In this situation, we
can construct the semidirect product Tof G by Ssothat G== L S T,
GS =TI,G 5§ = 1and the given action of § on G is the action by conjuga-
tion in [, (In fact these properties charpcterize the semidireel produgt.)

If 2 15 u character of G and s € §, then as uswal we define the character
x' of G by x'(") = x(g). Then § permutes Irr(G). We write

Irrg(G) = {xelrt(G)y" = ¢ forall scSh

(13.1} THEOREM (Glanberman) For every pair of groups (G, §) such that
S is solvable and acts on G and (|G|, |5]) = 1, there exists a uniquely de-
fined one-to-one map n(G, §): IrrgG) — Irn(Cp(5)). These maps satisfy the
following propertics:

(a) If T=38and B = Ci(T), then n(G, T) maps Lrrg(G) onto hry(B).
(b} In the situation of (a), 7(G, §) = (G, T)n(B, S/T).

219
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{c} Suppose § is a p=group and € = Cx(S) Let y € lrrdG) and f =
{)(G. 8} Then W is the unique irreducible constitucnt of . such that
pd L, ¥l

In the situation of (a) in the thcorem, note that B is S-invariant since
T =2 8, Thus § acts on B and in fact §/T acts on B, Therelore n(H, §/T) is
defined on Iregp(B) = Trry(B) which is the image of IrrdG) under =(G, T).
Also, #(B, 8/T) maps to the irteducible characters of Cy(8/T) = CyS) =
C(5). Thus the cquation in (b) makes sense.

Also note that if 7 = § in {a), then B = C,48) and lreg(B) = Irr(B). Thus
this special case of (a) asserts that (G, 5) always maps IreG) onto TrCo($))

‘There is enough information in the statement of Theorem 13.1 to deter-
mine n uniquely. Thus suppose that m,(G, §) is defincd whenever (G, 5)
satisfies the hypotheses of 13.1 and that m, sausfies (a), (b), and (c), We claim
that my(G, 5) = =G, 5). By 13.](c), this is certainly the casc if S is a p-group 5o
we may work by induction on |5 and assume that § has compositc arder,
Let T-a § have prime index and et B = C4(T). Then m(B, 3/T) = ny(B, §/T)
and (GG, T) = my(G, T)and 13.1(b) yields n(G, §) = n,(G, 5)

The preceding urgument suggests how to construct the map n(G, §);
namely, prove that if § is a eyclie p-group and y & Tres(G), then yp does have a
unique irreducible constitucnt f such that [xe, 7] % 0 mod p, where C =

C(S), Define n(G, §) in this case by (x)n(G, 5) = fi. For general sulvable S,

dehine ={G, §) by working along a composition series for S, Thers are numer-
ous technical difficultics with this approach, not the least of which is to show
that the map construcied is independent of the eomposition series, The key
to overcoming these difliculties is to find a unifortn definition for (G, §) for
all eyclic §. Following Glauberman, this is what we shall do,

We cstablish some notation which will be used repeatedly.

(13.2) HyroTHEsIS Let S act on G and suppose (|G|, |S|) = L. Let C =

Cg(5) and let T be the semidireet product I' = G§,

(13.3) LEMMa  Assume the situation int 13.2 and let x ¢ Irrg{(G). Then there

gxists a vnique extension § of ¥ to T such that (o(f), [3]) = 1. Alsg, § is the
unique extension such that § = ker(det )

Proof The first statement is just Corollary 8,16, Since (%) divides both

|S| and o), we have o(f5) = ! and 8  ker(dct 9). If  is an extension of x .
with 5 < ker(det ¥}, then o(f) = o{det ) and divides|I": ker{det )| which .

is prime 10 | §|, Thus ¥ = # and the proof is compiete. ||

Wc call the character  of Lemma 13.3 Lhe canenical extension of .
Fatr positive integers n, we write &, = Q(r), where ¢ is a primitive nth
root of unity. If {m, n} = 1, it is well known from Galois theory that @, ~ @,
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= €}, Thus if @ €@, 1& invariant under the Galois group #(Q,./0,.), then
we (.
w, I M- H with |M| = mand |H: M| = n such that {m, n) = 1, we shall
‘use the notation #(H/M) 10 denote #(0,,./0,,). Note that {H/M) permutes
1rr(H) {by Problem 2.2 or Lemma 9.16). Suppose 8 € Irt{M} 18 extendible o
H. Since #(H/M) fixes 9, it permutes the set of extensions of 3 to H.

In the situation of 13.2, if x € Irry(G), and § is the canonical extension of
x to I, then for € F(I/G), () is an extension of ¥ and o(£") = a(§). Thus
#F = 2 and hence ¢ has valucs in Qg and £y has values in Qg n Qg = Q.
We have thus proved the following corollary.

(134) comoLLARY In the notation of Lemma 13.3, £5 is rational valued.
The following strengthens this,

(145 LEMMa Assume Hypothesis 132, Let y eTrrg(G) and let § be the
canonical extension of x to I'. Note that C5 = C x 3. For each irreducible
constituenl § of 2. there exists a (possibly reducible) character ¥, of § such
that ey = X5 {8 % ¥). This equation uniquely delermines the ¥,. Also,
the ¥, arc rational vatued,

Progf We have
Ir(CS) = {f = o|fel(C), ¢ e irnS)}
Write fes = Yo pelB % ©). Set ¥y = ¥, ug ¢ and observe that ¥y =0
unless {xc, #1 # 0. Thus fes = Y, (f % ), where the sum runs over those
# & 1er(C), which are constituents of xc. Also, this cquation uniquely deter-

mines the y,'s. )
Il & #%([/G) then ()" = f and f* = §. Thus

fox = (£) s = ;(b‘ % ().

Thus ¥, is invariant under ¥(["/G) and hence has values in Q). Since its
values also lie in @5, the result follows.

(13.6) THROREM Assume Hypothesis 13.2 and that § is cyclie. Then for
each y € Irrg((), there exist unique f e Irr(C) and £ = + 1 such that f(cs) =
eflle) for all ¢ € € and all generators s of 5, whete # is the canonical extension
of x to I, Also, f is & constituent of - and the map ¥ — f is gonc-to-one,

Proof Write fcg = 3 § % YpasinLemma 13.5 and fix a generator s of §.
Write 3(¢) = #(cs) for ce C, Then 3 = ), ¥,(s)f. In particular, 3 is a class
function on €. We claim that [, §] = 1,

Let T be a set of representatives for the rightcosgts of Cin G I 1y, 1,2 T
and x £(C5)'t ~ (C5)", then there exist ¢, ¢; & C with

o8l = (g8 mox = (eg5) = o
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We thus have two factorizations of x into products of“ commuting elegllcnté of
orders dividing |G| and | §]. By Lemma £.18, 5 =1.sl" and }t}u:s ity 'Et' (::
= Csince S = {s3. Thusi, = ;. Hence the sets ((:s) are‘dlsgomt for dis hm
teT and [, (Csf| = |TNIC] = |Gl = 1Gs!. Since s's G, we have
(Cs) = Gs and hence Gs = |}, (Cs) is a disjomt union.

We huve

1% 91 = X120 = T 126D

Zwlt xuls
for alt r & T. It follows that

|THCILs. 9] = }_:,;12(.::)12.

By Lemma 8.14(c), the latlcr sum equals |G| = | T||C| and thus [9,8] =1
as elaimed.
We now have

1= [9,9) =3 P
r]

However, ¥/4s) is a rational algebraiq integer by Lemma 13.5 a_nd S0 iels
in Z. Thus (s is nonzero for some unique pand for that B, yigls) = € == £
This yiclds #(cs) = efe) for c € €. This equation clearly determines z an

um{\lllfi:li‘ow show that fi is independent of the choice of the gencrator 5 of 8.
If § = {sp), then 5, = 3™ for some m with (m, 18]} = L. Thusihim cx;sls i?l
automorphism ¢ of the field Qs such that A°(s) = ).(s?’“ = A(sp) for el
Aelrr(S). Therefore O 4 Ys)" = fpls,) and hence raplacing s by 5, yie

the same f. _ '
Finally, Suppose x,. ¥z € Irrs(G) determingé the same character f§# so that

: and i = i ¢ x| JCs), it follows that £,(5)
) = g;MeyforeeCandi = 1 2. Since Gz = | J( _
&(L:,)nz 22{9.») for all g € G and thus by Lemma 8,14(b), it follows that

0=l = (F2)s = X2
and the map y— f§ is one-to-one. The proof is complete. |

(13.7) DEFINITION  Assumé Hypothesis 13.2 and that 5 is cyclic. Construct
maps WG, 5 Trrg(G) — Irr(C)and &(G, §): Irrs(G) — {— 1, 1} by (X6, 5) mhﬂ
and (y)e(G, §) = £ = £ 1 where 2les) = efc)for ce €, {85 = S,and gist e ;
canonicat extension of x to T ,

11 will turn out that the map n(G, $) of Theorem 13.1 equals G, §) when™

G, %) is defincd, that is, for cychic §, - .
: Th)e map (G, 8 brry{G) — 1re(C) of Definition 13.7 15 one-1o-one by 1 é.ﬁ.
It is also onto, One way 1o prove this is 1o show that [Lrrg(G) = {Ter(C)].
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Since § is cyclic, it [ollows from Brauer's Theorem 6,32 that {Hiry(G)| s equal
to the number of S-invariant conjugacy classes of G. 1l is true that each S-
invariant ¢lass of & intersects C nontrivially and, in fact, the interesction is a
single conjugacy class of C. It follows that the number of S-invariant classes of
G 18 equal te the toral number of conjugacy classes of C, and hence cquals
[Ire{C)|. Thus {{. §) maps onite,

The asseriion about S-invariant classes of G in the preceding paragraph
follows from the Schur- Zassenhaws theorem. We digress from the dis-
cussion of characters in order to give a proof.

(I13.8) LEMma (Glauberman) Let § act on ¢ with (|$1,1G]) = L. Assume
that one of § or G 1s solvable. Let § and & both act on a set £2 such that

fa) (x-g)-s=(a-5)g'forallacl) ge G, und 8.
(b} G is transitive on Q.

Then § fixes a point of £,

Proof Let T' = G5, the semidirect product. For gsel” and aef)
define a-(gs) = {a-g)-s. Condition (a) above guarantecs that this is an
action. Pick e Qand let H = I'_, Sinee |Qf = |G: G~ H| = |T": H| by (b),
it follows that |H:G n H{ = |§|. By the existence part of the Schur-
Zassenhaus theorem, let T be a complement for G H in H.

Then |T{ = |§| and T is a complement for G in I'. Now the conjugacy
part of the Schur-Zassenhaus theorem yields § == T for some x €. Thus
8 = H*and § fixes o~ x € ). The proof is complete.  §

(13.9) coroLLARY In the sitwation of Lemma 138, the set of S-fixed
points of £ is an orbit under the action of C(S),

FProof 1f aeilis fixed by § and ¢ € C.{%), then (x-c)s= (x-5)-¢" =
a-c and a.c is S-fixed. Now suppose o, ffeQ) are S-fixed. Lot X =
{geCla-g = f}. Then X is a left coset of G, and is S-invariant. Lot G, act
on X by right multiplication, Note that G, is S-invariant and is transitive
onX ForxeX,geGypand se S, wehave (x g} 5 = (xgfF = X'¢* = (x5) . 4*
and Lemma 3.8 applics to the actions of § on Gy and Sand Gyon X, Thus §
fixes a pount x€ X, Then x e Ci(S) and & x = . The proof is complete. i

(13.10) coroLLary Assumc Hypothesis 13.2 and that at leastone of G ot §
is solvable, Then A"+ 27~ C defines a bijection from the set of S-invariant
conjugacy classes of & onto the set of conjugacy classes of C.

Progf Let ¥ be an S-invariant class of G. The conjugation action of G
on A" is transitive. For ke ¥, g € G, and s & §, we have

h-g)s=(g kgl = (g 'Fk'g" = (k- 8)-¢"
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Y e

I e G I e - S O e
N ~ I .

e e F i o T

e Rin - Eigl . i ¥ H, d
B}f Lemma 13.8 we conclude that ¥ ~ € % @' and b}' 139' HNCisa i‘ Pl’(?qr We have |G|[3‘* &] ES(H)E(F}EI = &. Thus F“r”: ‘f] an

class of C,

Since the clusses of G arc digjoint, the map A+ ¥ ~ C is ohe-tovore,
Il e, then the Geclass of ¢ is Seinvariant, It follows that the map
X=X ~Cisonto, |l

(13.11) coroLLARY The map y(G. 8} of Definition 13.7 maps IrrdG) onto
[rr(C),

Assume Hypolhesis 13.2 and that § is solvable. Lot & be a compaosition
series [or § with

Fl=8,«af,«a...a5 =8
Let Cf = Cg(8,) 50 that
G=CyzC,2.-.2C, =C.

Also, S = NHC) for 0 i < k and we view §;,,/S; as acting on C,.
Since §,,./5, s cyclic, T

n=WC. 54,/5)
is defined for each i, 0 = i « k. We have
it ke, (€D — Trr(G +1)-

Each ¥, is one-to.one and maps onto Irr(C;..,) and so we can define
P Iy ) - Irr(C)).

(13.12) nervmIoN  Assume Hypolhesis 13.2 with § solvable, Let & be a
composition series for § and use the above notation, Put H(G, ) =
(IO 192z -~ Yy ™ € 1ee(G) und let n(G, #): (G, &) = Irr(C) be
given by #(G, &) = TaPy V-t

Thus Z(G, &) is the largest set on which the composite function ygy, » -
P~ 15 defined. Since cach y, is one-to-one, n(G, &) is one-lo=one and by
uonstruction of #(G, 77), we see thal ={, %) maps 2'(G, &) onto Irr(C). Our
objective now is Lo show that #(G, %) = trrg(G), that r{G, &) is independent
of the choice of & and that for cyclic §, 7(G, &) = WG, &). We obtain these
results by considering the case that § is a p-group.

(13.13) LEMMA Let Z = R < C, where R is a ring containing the values of
all £ € Irr(G), Let § bea generalized character of G with values in an ideal f of
R. Assume | n Z = pZ for some prime p not dividing |G|, Then p divides
[8 &1 for all & & Ter{G5).

~ the result follows since pt |Gl )
X {13.14) THEOWEM Assumc Hypothesis 13.2 and that § is u p-group. Lot

g € [rrs{ (7). Then there exists a unigue f e lrflO), with [z, f#] % 0 mod p.
Furthermore

{a) [xe.f] = %! modp;

{b) il §is cyclic, then } = (yYWG, 5) and ()G, 5) = {xc. f] mod p,

{c) 1 & is n composition series for &, then X(G, ¥) = lrrG) and
{n(G, &) = f. In particular, »(G. %} is independent of the choice of 5,

Proof First assume that § is cyclic and let ff = ()G, 5) and & =
({5, 5) 50 that fles} = gf{c) for ce S and ¥ = {55, where § i3 the canonical
extension of y o T,

Let R be the ring of algebraie integers in &) and let [ be a maximal ideal
of R with p ¢ I. In the notation of Theorem 8.20, we have (¢s),. = ¢ and 1hus
that theorem yields x(¢) = #(c) = #(cs) mod 1.

We therefore have yc) = afilc) mod § for all ¢ € C and thus yr — eff is a
generalized charucter of € with values in I, Since 1 ¢ T and pel, we have
I~ Z = pZ and since pt|C|, Lemma 13.13 yields [, — &f, {3 = O0mod p
lor all £ e 1er(C). Tt follows that [y, {]=0mod plor & # fand [y, fl =
& mod p. When S is cyclic, this proves everything but (c).

If |8) = p, thetn & ;12 5 and (G, &) = TIrrgdG) and n(G.'S) = ¥(G, 8).
In particular, part (c) of the theorem holds when [S] = p. ‘

Mow assume |5} > p and drop the assumption that § is ¢yclic. Work by
induction on |S|. Let,

#1=5=..a =1
and write T = 8, and
y‘:‘ =So"j"“‘qS,‘_| ='r..

Let B = Ci{T). Then =, &) = nlG, F)p(B, 5/T). Also, (G, 5 is 1he
inverse image in 3G, F) of Irrgr(B) = Trrg(B} under the map

(G, Ty E(C. F) = LeelB),

By the inductive hypothesis applied o T, we have y g lrrg(GY € Irr{(G)
= Z(G, F) and xp = pd £ & where § is u character of A or is zero and
& m ()n(G, 7). If s 8, we have [xp, £] = [(xVa. &) = [xg. &) 2nd thus
[xp, €] # 0 mod p. Thus § = ' and § € Irrg(R). In particular, x € #(G, &)

If f 2 rr(C), we have :

Lic, Bl = [(p9 £ Qs Al = £[4c. Bl mod p




224 Chapter 13

and since &£ & lrrg,(H) and §/T is cyelie, it follows from the first part of
the prool that there is a unique felrr(C) with [&-, ] 2 O med p,
namely f = (£)y(B, §/T). Thus f# = (a(G, &) is unique in Irr(C) such that
Lkc, #1 # 0 mod pand in fact [x;, f] = £[&, B = £ 1 mod p,

We already have Trrg(7) = (G, ). Now suppose

wed(G, ) g TG, T) = Trrg(),

Let p = (§)m(G, F) wo that yelergdB). Let 58 Then 0 # [yg, 1] =
[(¥9g, 7] = [¥"s. #] mod p. Since T =3 § and e Irr{G), it follows that
e lrrAG) = F(G, 3 Yand thus g = (Y"n(G, F)}since [(f")g, 1] 2 0 mod p,
Since n(G, ) is one-to-one, we have ¢ = " and thus o  Irr {G).

We have now shown that #(G, %) = lrrg(G) and have given a description
of the map n(G, &) which is independent of °, This completes the praof. 1

Assume Hypothesis [3.2 and that 8 is cyclic so that
WG, 8): Irrd G) — Irr{C)

15 delined. Suppose et T —~ Iy is an isomorphism and that o(G) = G,
and a(§} = §,. Then alC) = Cy = Cg (5)) and (G, 5.} Irrg {G) — Ter(Cy)
is defined. Because (G, SYis uniquely defined, independently of any arbitrary
choices, il is clear that if

(NG, §) = f,

then
(WG, 50 =Fu

where y, and f, correspond to y and f via the isomorphism, «, That is,
¥1lg”) = xlg) and f,(e) = Bile) for g & G and ¢ ¢ C. (Recall that the compu-
tation of (x)y(G, §) requires choosing a generator s of 8, but that (he result is

independent of Lthis chotce.)
An important special cise of this invariance under isomorphism of
WG, ¥) iz when s AulllD) and G" = G and 57 = §. In that case we have

("1, ) = (G, S)Y
(13.13) LemMa  Assume Hypolhesis 13.2 and let T -0 § with T cyclic and
A = Cg(T). Then y(G, T) maps Ireg(G) onto Irrg(B).

Proof  Since IrrgG) = Irr{G), WG, T) iz defined on IrrG). Let H =
GT=a I If se8, then & defines an automerphism of If with G* = @ and
T* = T. Therefore, by the above discussion, we have

(MG, T) = (MG, T

for all y € lrr(G). I is immediate that WG, T) maps Treg(G) into lre(B). Since
HG, T} maps onto Ire{B) and is one-to-one, the resuht follows. |
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{13.16) THEOREM Assumc Hypothesis 13.2 and that § is cyclic. Let p be a

prime and let T be the p-complement in S, Let B = C {T). Then wG. §) =
G, TH(B, 5/T)on Irrg(G). Wl T) W, 5)

Pmofl Ifpk|8|,then T =8, B = . and ¥(C, 1) is the identity map on
Irt{C) (as is clear from Definition 13.7), The result is thus trivial in this case
and we assume p{|S|. In particular, pt|G|.

Let y € Irr(G) = Trrg{G)and let & = (XWG, TyelrpH). Let § = o8
By Lemma 13.15, & e Irry(B) = Jtry{B). We must show hat -—{ (‘:)gfgg.( S/T)):

Let By = (E(B, $/T). Since S/T is a p-group, Theorem 13.14 yiclds
£ = pip + &y fy, where @ is a character (or is zwro)and &y = 41, Let K be
the ring of algebraic integers in Oy and let 1 be a maximal ideal containing p
We have l!‘lcn dc) = epflolc) mad I for re €. .

By definition of WG, T), we have A1) = efb), where T = iy, hel
8'=1di I and % is the canonical extension of y (o T, Applying this 1o ¢ E‘C' c B
le 5

Flet) = ed(r) = any f,le) mod /

for any generator, ¢ of T,
Nowlet S = ¢s>and letr = (5), in the notation of Theorem £.20. Then
<ty = Tand (cs), = et for c & C. Thus by 8.20, we have
Fes) = fed) mod !
and thus —

2(es) = ey fyle) mod 1,

By definition of (G, 5), we have §(cs) = dfffc)force Cwithd = + 1. Thus
,6(::) = decy fofc) mod £ for all ce (. By Lemma 13,13, [B — ey ft,,. s
divisible by p and thus § = £, as desired. |

I(:;at.l'i) COI}!OI.LARY Assume Hypothesis 13.2 and that § is cyclic with
= P4, where p and ¢ are primes, Let & be a composition scries for §
Then F(G, #) = lrdG) and 1(G, &) = 1(G, 5), o

Proof 1f p = g, the result is immediate from Theorem 13.14{by and (<),
Assume then thal p £ g. Write #: 1 = T =2 5. We may assume [T| = ¢.
Now Lemma 13.15 yields that #(G, &) = Irrg(G). Theorem 13.16 asserts that

MG, #) = WG, TH(B, §/T) = G, §)
where B = Cy(T), The proof is compicte, ||
(13.18) ‘ruEoREM  Assume Hypothesis 13.2 with § solvable, Lot & and &

be composition serics for 5. Then 4G, ) = & =
A { ) (G.7) and mG, &)

T O wm

M SN E W wE ws =m
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Proof  Use induction on the composition length & of S, If k = | then
& = F and there is nothing to prove 50 assume k > 1. Write
Fil=8,=. .18 =8,
Fil=Ty=- =T, =85
Let #* and F* be the composition series for 8, .| and T, -, rospectively,
obtaincd by deleting 8§ from 2" and &
Consider the case that §,-, = T,_,. Let B = Cg(¥,..,). Then lrrg(B) =
(Irr(CYW B, §/5,- 1) ' and so
(G, &) = (Irrg(B)n(G., #*) !
and
(G, ) = (lrrg BYmG, F*)~ 1.
By the inductive hypothesis, n{G, *) = i@, 5 *) and hence H(C, &) =
(G, ) Also
MG, &) = n(G, #*W(B, 5/S,_,) = 7(G, T*WB, S/T;-) = (G, T).

Assume now that §,_, # -, and let M = 5,., n T,_|. Lel # bea
compasition serics for M and extend .# 1o composition serics & and 77 for
$ which run through §,., and T, _ ,, respectively. By the preceding paragraph,

G, &) = TG, 5 and (G, &%) = nG, &),

We may thus replacc & by ¥ and similarly replace 7 by & °. We may now
ussume that 8, = T fori < k — 2 and that

.-#:lﬂso-—ﬂ-"ﬂSg_gﬂM»
Let
7l SE_I/M":'S/M,

und let D = Cg(M). It follows that
(G, ¥) = (F(D, P)niG, A"

Tl wa Ty /M = S/IM

and
(G, 9 = (@D, TG, 4)™",
Also
(G, ) = (G, #D, 7Y and
Therefore, it suffices to prove that
XD, P)=D.F) and nD F)maD T)
Wemay therefore assumethat M = land 0 = G.Thus§ = 5, x T,
is abelian of order py for primes p and g. If p = g, then '
F(G 7)Y = IrryG) = #(G, F) and  n(G, &) = n(G, T)

(G, ) = (G, 4D, T).
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by Theorem 13.14, If p # g, then G is eyelic and Corollary 13,17 yvields the
result. The proof is complete. |

Assume Hypothesis 13.2 with solvable § and choose a composition series
5 for S. By Theorem 13.18, #1(G, &) is independent of the particular com-
position sericy and so we can write (G, 3) = (G, %), Similarly, we can
write m(G, S} = (G, &), Then (G, S} and #(G, §) are unambiguously
defined. We have Z'(G, 5) = Irr{G) and 7(G. 5) is a bijection of F(C, S) onto
Ir{C).

As in the discussion preeeding Lemma 13,05, suppose o3 T — T, is an
tsomorphism and let G, = a(G), §, = o(S), and C, = o{C) = Cz (5,}. Then
7 induces bijections Irr(G) = Irr(G)) and Irr(C) — 1rr(C ), Since (G, 5) is
uniquely defined, we have (G, 5,) is the image of 4(G, 5) in Ir(G) and
B = (MG, 5) implies that f, = (x,)(G,, S,), where z,(g°) = xig) and
F1c™) = Plc). In particular, if o5 Aut(T) and G" = G aud §" = §, then ¢
leaves (G, §) setwise invariant and (x"n(G, §) = ((x)=(G, 5 for x € 3G, 8).

(13.19) corouLary  Assume Hypothesis 13.2, with § solvable, and let
(G, 5) and (G, S) be as above. Then X(G, S) = IrrdG). Also, if T =3
and B = Cg(T), then

(a) ™, T) maps IrrdG) onto IrrB);
(h) =G, 8) = (G, T)a(B, 5/T).

Proof 1f T=3 8 and B = C,(T), use a compasition series for S, which
runs through T in order to construet n(G, S). Then {b) is immediate and
(G, 5) = (T (B, §/TH(G. T)~ .
Thus (a) will follow once we prove the firgt statement.
We show that Z{0, 5) = IrrgdG) by induction on the composition length
k of §. H k=1 then (G, §) = (Irt{CYWG, §)7 ! = Trrg(G). Suppose then,
thutk > land et T Swithl <« T < S Let I = GT'=a T For 5685, we

have G = G and T" = T and hence by the discussion preceding the state-
ment of the corollary, we sce that

{(x (G, T) = (G, T)Y

for x e (G, T) = Irry{G). Since #{G, T) is a bijection from Trr{G) onto
Ire{B), where B = C (T, we see thal a{G, T) carries the S-invariant ¢har-
acters in Irr{(G) onta IregB). Sinee Itrs(G) € Ler{G), it (ollows that

ItrglG) = (Irrg(BIN(G, T)! = (B, §/TM(G, T)™' = &(G, §),
where the second equality is by the inductive hypothesis applicd to 5/T.

(13.20) permvimon Agsume Hypothesis 13.2 with § solvable. Then the
Glauberman map is the map m(G. 8): Irrg(G) — Ire(C) constructed above,
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We have now completed the prool of Theorem 13.1. The Glauberman
map satistics conditions (a) and {b) of 13.1 by Corollary 13.19. It satighes
condition (¢} by Theorem 13.14(c). Also, by Theorem 13.14(a), we have the
foHowing.

(13.21) coroLlary Let 2(G, 8) be the Glauberman map with § a p-group.
Let € = C4(8) and let y & Irrg(G) and f# = (m(G, 5). Then [x., ] = 1
mad p.

Thete is one further loose end.

(13.22) coroLary  Assume Hypothesis 13.2 with § eyclic. Then n(G. 5)
= AT, 5).

Proof Useinduction on|S|. Let p||5]. If §is a p-group, the result follows
from Theorem 13.14(b). Assume that 5 is not a p-group and let T be the p-
complement in ¥ and B = Cg(T). Then G, T) = WG, T) and n{B, 5/T) =
WB, §/T) by the inductive hypothesis. The result now follows from Carol-
lary 13.19(b) (or Theorem 13.1(b}) and Theorem 13.16, |

‘

Let § act on G, Then § permutes Irr{G) and § permutes the set Cl(G)
of conjugacy classes of (7. By Braver’s Theorem 6.32, the permutation
characters of § on lee(G) and CI(G) are equal and it is natural to ask if these
aclions are permutation isomorphic. That is, docs there exist a bijection
a: {rr{G) — CU((7) sueh that efx®) = a(x)* for all y € Irr(G)and 5 € 7 In general,
the answer is no, However, if (|G|, |8]) = 1 and § is solvable, it follows via
Glauberman's Theorem 13.1 thal the actions of § on Irt(G) and CHG) are
permutation isemorphic,

(13.23) LEMMma Lot the group § permuic two sets Q and A, Suppose that
forevery T = 8, the number of fixed points of T on Q equals the number on A.
Then € and A ar¢ permutation isomorphic,

Proof  We prove the cxistence of a bijection o £ — A such that a(w - 5) =
ofew) - 5 for all w e and 5 € § by induction on 2. (Note that taking T = 1
yiclds |G = |A)

Let T = 5 be maximal such (hat T has a fixed point on £ (Possibly
T =35) Let T fix wef) and A€ A. By the maximality of T, we havg §, =
T = §,. et @, be the orbit of @ and &, the orbit of A under 5. Write ) =
@, ul and A = @, » A; where the unions arc disjoint. Map ay: @, —+ @
by wylcs -5} = A5 and check that «, is well-defined, onc-10-one, onto and
that ag(v- 5} = aglv)-sforallve @ and s 5,

Since every H = § has equal numbers of fixed points on @, and @,
it follows that H has equal numbers of fixed points on 2, and A,. By the
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inductive hypothesis, there exists a perrutation isomotphism a,: Q, = A,
Now dcfine a on Q by combining o and a;. ||

(13.24) ‘rHEOREM Let § act on G with § solvable and (|G|, {5]) = 1. Then

(a) § fixes the same numbers of irreducihle ch: y ‘ -
classes of 6. aracters and conjugacy

(b) The actions of § on 1rr(G) and CN(G) are permutation isomorphic.

F_’roq_f It suffices (0 prove (a) since (b) follows via Lemma 13.23 by
application of (4) to all subgroups of §.

Since m(G, §) maps IrrgG) one-to-one and onto Irr(C), it follows that
[Treg(G)| = |Ire(C)| = |CKC)).

By Qorulinry 13.10, intersection defincs a bijection from the set of S-fixed
conjugacy classes of & onto CI(C), The result now follows, I

Theorem 13.24 becomes false if the h i8 ¢ i
ypothesis that (|G, |5} =1 is
dropped. (Sce Problem 13,16 for an example.} o ]

Suppose we continue to assume that (/6. 18 =1, but drop the as-
sumption that § is solvable. If § is nonsolvable, then 2|18] by the Feji-
Thompson theorem and thus 2¥1G|, Thus G is solvable, again by Feit-
Thompson. In this sitwation, where Hypothesis 132 js satisfied with ¢
solvable of odd order, it s possible to construct 4 natureal character ecorre-
spandence from 1rrd G onio Irr(C) by & method entirely different from Glau-
hern‘m_n's. {And thus Theorem 13.24 remains valid without the hypothesis
th.:;) Sis F'f’l ‘vubh;:. ) We s}mll descrihe the map IrrgG) = Ier(C) in this case but
without giving the proof since the ine
by Vev sep .le_v.s 1h¢l:;'ollgwin;. only known proofs are (oo long to 1m.h_.1dc:.

(13.25) THEOREM  Assume Hypothesis 13.2 and that G is solvable of odd
order. Let € < H < G. Suppose that there exist S-invariant normal sub-
groups, K and £, of G such that

(a) L < K and K/L is abelian:
(b} G=KC;
(€) H=LC

Thu11 fo_r cach ye lrr_.,{G)_, there exists a unique y ¢ lery(H) such that [y, ]
is odd, The map yi— ¢ is a bijection from Irr{G) ondw Lrrg(f4).

Progf Omitted, |
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To construct the correspondence between Lerg{G) and Trr(C) we construct
a chain of subgroups

G=Cyx»Cix >C=C

and apply Theorem 13.25 (o oblain maps Irrg(C,) — Ireg(Cya ) The com-
position of these maps is Lhe desired correspondencs.

Assume Hypothesis 13.2 and that G is solvable of odu order, We consider
the sct 7 of S-invariant subproups A with C = }f € G, For H ¢ A", dcfine

= [H, §TC. Singe [11, §] = HS it follows that [}, §] <=2 H§ and thug "
H*ex If H = C, then [M,8] > | and [H, 8] > [H, & by solvability, -

Singe [H*, 5] c [H, 5]\ it follows that H* < H. We now define the sub-

groups C e ¥ by C, = Gand €y, = ()" and we have the desired chain of

subgroups,
We must now check that the hypotheses of Theorem 13,25 are satisfied by
taking H = (*. Lt K = [G, 8] and L = {5, §7". Then K and L are normal

S-invariant subgroups of G and K/L is abelian, That G = KC lollows fairly

¢asily from Glauberman’s Lemma 13.8. Condition i¢) of Theorem 13.25 ig
automatic from the definition of G*,

11 has becn conjectured for every group 7 and prime p that f N = Ny(P)
for g 8yl{(7), then the numbers of irreducible characters of p'-degree of G
and of N arc cqual. (For simple groups 7, this conjecture is due 1o McKay.)
Using Glauberman's Theorem 13,1, we prove a result which includes the
special ease of Lhis conjecture when G has a normal p-complement.

(13.26) THEOREM Let G = KH with K = G, H solvable, and {|H|, |K|)
— LLaN= N(’(H) and put

= {g e IrG)|(| H], x(1)) = I}
and
% = {n el H]. (1)) = 1).
Then there exists a uniguely defined bijection of & onto ¥,
Proof Wehave N = (N ~ K)H and the sommutator
INRK,HgeHAK=1
sotht Nm Ko Ces C(H)und N = C x H. Tt follows that
= {f % Afeler(C), Aelre(H), A(1) = 1},

Now il y e &, let 9 be an irreducible constituent of yx. Then |G : (9]
divides both (1) and [G: K| = |H[. Thus /(%) = G and elrry{K). Lot
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3 be the canonical extension of 9 to G. Then y = & for some unique
& £ Irr(G/K) by Gallagher's theorem (Corollary 6.17), Since (x(1), |H]) = 1,
we must have &£(1) = 1. Also, y uniquely determines D by xo = % and thus
determines 8 and & We gan now map & to % by y — (n(K, H)) % &y, Since
restriction delines a bijection of 1re(G/K) onto 1rr(if) and since 3¢ e & for
every 9 & rey(K) and linear ¢ & lrriG/K), it [ollows that we have mapped
4 onto &, The map is one-to-one since the g e & are uniquely of the form

gxi §

Suppose § acts on & and thal ¥ =3 G is S-invariant. Also, assume that
(|G- NI, |5 = L. We consider a pair of "dual™ questions:

{a) Let yelrrdG). Does there exist 3 e IrrgN) with [xy, 3] # 0?7
(h) Let JeTrrg{N). Does there exist y € Irry{G) with [9°, y] # 07

Both questions can be answered ip the affirmative. By the Feit-"Thomgpson
theorem, at least one of § and G/N is solvable and we assume this. Also,
note that il'S is a p-group, hoth fucts can be proved relatively easily by count-
g arguments.

(13.27) ‘rHPOREM Let S act on G and leave N =2 G invariant. Azgume that
(1$).1G : NI} = 1 and that one of § or G/N is solvable. Let y & Irr (). Then
Zx has an S-invariant irreducible constituent,

‘

Proof Let §2 = {9€IriN)|[xy. ¥] # 0}. Then G/N permutes
transivively and since  is S-invariant, 5 permutes £, Also, the action of § on
G induces an action on G/N. Let $ef}, 56§, and g G. For xe N, we have

(F7(x") = 9%(x) = Hgxg~")
and
(P} m S ) = Haxo ™)
The hypotheses of Glauberman’s Lemma 13.8 are thus satisfied and the
result follows. I

The sitwation of question {b) is more dilficult and interesting. First we
consider the case where G/N i3 solvable.

(13.28) THeoREM Let S acton G and leave N = G invariant. Assute tha
(181, 1G:N|) = | and that G/N is solvable, Let $ e [re{N). Then 5% has an
S-invariant irreducible constituent,

Proof First assume that G/N is abelian, and et A be the group of linear
characters of G/N, Let Q = {yelrr(G)|[9% ] # 0} If e Rand 1 e 4, then
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xA € {Ysince (yA)y = yy. This defines an action of A on £. We claim that this
action is transitive, ' ‘

Let x, el Then O # [yy, ] = [lry)® &1 and @ is an irceducible -
constituent of (yu)® = (xn In)" = x(15)¢. However, (1,)° = ¥ ;.. 4 and thus
(tn)® = ¥ xA Since g4 € Iri(G) for cach A € A, it follows that ¥ = x4 for some
A and A is trangitive on £2 4s claimed,

Since § is S-invariant, it follows that § permutes £ and also § acts on the
group A since (Auf = A% If yeQ, A€ A, and s € 5, we clearly have

{(xdy = ()&
and the hypotheses of Glauberman’s Lemma 13,8 are satisfied since |A| =
|G N|and thus (|A4], |5]) = 1. The result follows in this case,

We now mssume that G/N is nonabelian and work by induction on
|G:N|. Let M/N ={(G/NY. Then M =2 G is S-invariant and M < ¢ singe
G/N is solvable, By the inductive hypothesis, 9% has an Seinvariant irre-
ducible constituent s and by the first part of the proaf, y© has an S-invariant
irreducible canstiluent, The resull now (ollows sinee 9% = (4™, § ;

To handlg the case thul G/N is nol solvable, we appeal to the Glauberman
correspondence, Theorem 13.1. We first restrict atlention (o the situation
where (|G, [S]) = 1.
(14.29) TRHEOREM Assume Hypothesis 13.2 and that § is solvable. Let
N=aTwithN S G. Let yelrrdG) and 8 & Treg(N). Write § = ()n(G, 8) and
@ = ($)n(N, S). Then [§% 1] # Oiff [¢%, §1 O,

Proof We lirst consider the case that § is & pogroup, Then [0, ] &
O mad p and every irreducible constituant of y. other than € occurs with
multiplicily divisible by p. Since yo,» = (%elc A n. il follows that '

n Lican: @) = [xes E10€c AN, o] mod p.

Now write gy = ¥ b, 8, where A runs over sums of orbils of the action
of S on Ire(N), If A = F & where ¢ i5 such an orbil, then [A; 4. @] =
|®|[Menn, @) for ne @ IF |@] = 1, then p||¢| and [Ag,x. ¢] %= 0 mod p.

Thus
Y Dtws M1 ans ] mod p.

nelrryiN)

However, for n & Irrg(N). we have [ng aw, ] = 0 mod punless o = (mn(N, S \
that is, unless n = 8. Thus

(2) I:anN‘ (P] = [xh" BJE'QCHN"P] mOd P

Since [xc, &1 2 0 # [c. . ¢], comparison of Equations (1) and (2)/
yields that [xy, 8 = O mod p iff [§can, ] = O mod p. Since N <2 G and :

[anN! CP] =
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pA G it follows that [xy, 91 = 0 mod p itf [y, 9] = 0. Similar] e nne
=0mod p il [£-,. v, @] = 0. The result thus fo]:llows ifSisa pygl;iil?)N v
_ To complete the proof, we use induction on |5]. We triity choose T =0 §
wu'h 8/T a nontrivial p-group. Let Ji = Cg(T). By Theorem 13,1, we have
r(G, 5) = (G, Tjﬂ(lﬂ, 5/T) and similarly, a(N, 8) = ®(N, T)=(8 ~ N, 5/,
MNow ];.9". 0 #0 0T [($)a(N, TH, (on(G, T)] # 0 by the inductive hy-
pothesis. The result now follows by the first part of the proof. ||

(13.30) COR_DLLA_HY Let §act un G with S solvable and (S IG]) = 1. Let
N =1 G be S-invariant. Let 3 € Irrg{N), Then 9€ has an $-invariant irreducible
conslituent,

l’r?of" Lgt C =Cy(8) und 9 = (Hn(N, 5) so that @clr(C ~ N), Let &
be an irreducible constituent of @€ and let x = (@)(G, 5)~*, Then % €lrrg(G)
and [9% ] « 0 by Theorem (3.29, The prool is complete., || )

To complete our anaslysis of question (b), we need 1o consider the case
whercS:s solvable and (15[, |G1) # 1. Of course, we continue to assume that
(ISI.!GINI) = 1. First, we obscrve that it is no loss (0 assume that 9 s
Invariant in G since if U = 14(9), then 8 leaves U invariant. Now, if we can
hnq an S-invariant irreducible constituent ¢ of 87, then ¥ e lrrydG) as
desired. We shall finish the proof by an appeal to the theory of prsjcctiw
rcp;esenlutions of Chapler I, The following proves slightly more thun we
need.

(13.31) THEOREM Let N & G =] with N T and (IF:GlIG:N[) =1,
Assum%lhal one of /G or G/N Ig solvable. Let 8 ¢ Irr(N) be invariant in T,
Then 3 has some M-invariant irreducible constiluent,

~Praﬂ'f By Theorem 11,28, we can find a character triple (T, N\, 4} and
an lmmorphism (r OkATV N, 8) = (T}, N, 8,) with 8,(]) = I. Lel G, =G
80 that the isomorphism ¢ T/N = ', /N, carrics G/N 10 G/N,. Suppose we
can find y, ¢ lre(G, (%} with ¥, Invariant in Ly Let weler(GlY) with
o‘,;(l{l) =, We cluim that y is invariant in T To see this, let x be an irre-
ducible constituent of ¥ 5o Lhat x€ler(l[8). Let ) = o {x). Then (x,)s
= ¢y, for some integer ¢ und it follows that ;. = ey Thus y is invariant as
desired.

The argument of the preceding paragraph shows that it is no loss to
assume that 9 is lincar, We muny thus fuctor § = iy where (0{A), |G:N|) = |
gmd (o) [T:G|) = t and 1 and yare powers of 3, Thus 4 and uare invariant
in I', By Corollary 6.27, 4 has a ynique extension, J & Irr(G) such that o)
= of1). Because of the unjqueness, it follows that 1 is invariant in T, Suppose
we can find a F-invariant irreducible constituent y of 4%, Then i e Ier(G)
s C-invariant and 3 = ud is a constituent of (y3),,.
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We may therelore assume that 3 = u, (hat is, that J is linear and
{o(0), |7 G]) = 1. Also, we may teplace I” by [/ker 9 and thus assume
that 3 is faithful. Thus |N]| = of) is telatively prime to |[T: G| and hence
(1G1, T G) = I. By the Schur-Zassenhaus thcorer, we ¢an find S =T
with SG o Tand S =~ G = 1. Thus § acts on G and leaves N and 9 invariant.
Also, one of S or G/N is solvable, Now Coarollary 13,30 or Theorem 13.28
yields an S-invariant irredueitle constituent of 3%, The result follows,

Ta closc the chapter, we obtain some Turther information in a special
case of Theorem 13.6.

(13.32) THEOREM Assume Hypothesis 13.2 and that § is cyclic. Also sup-
posg that C = Cgix) for all xe§ — [1}. Lot ye lrrdG) and £ = (¢)n(G, 5)
Let 2 be the canonical extension of y to . Then there exisls £ = +1 and
w e Lrr(8) with p® = 1, such that

(@) Hex) = epicip(x) forall xes — {1},

(bY  xe = |89 + off, where 3 is a character of C or is zero:
() (r(D) — efO1|S) = keZ,

(d) #s = kpy + (), where py 18 the regular character,
(&) p 9 1,78 is even and & is odd.

Proof If1 < T < §then (G, $) = n(G, T) = y(G, T) and henge fex)
= +fi{c)forall xe§ — {1} whete the sign is independent of ¢. It follows that
in the notation of Lemma 13.5, we have y,(x) = + 1 forallx # 1 and ¥ (x)
= 0forx % 1and f # @ elre(C).

Wrile t = . We work to express o in terms of Irr{S). Let 4, 4; € Irt(S)
and cormpute

[ — A y] = (1/I81) 3 2Aa(x) = Az(x)).

M epl

Since {4,{x} = A,(x)| < 2 for x € §, this yields
I3, = Ak ¢11 £ 218 - 1/]5] < 2.

Therefore, the multiplicities with which A, and A, occur in  differ by al most
1. 1t follows that ¢ = apy £ 4 where ae Z and p is a sum of distinct hnear
characlers ol 5 with u{1) <1572, Also, u(x) = 2ix) = 1 for | # xe§
and hcnce

a1y = Lo, 4] = (ISDGH + |5 = 1)

and p(1¥ — |S|p(1) + |S| — 1 = O 1t follows that u(l} = 1 and pelre(S).
Define » = ++1 by the equation ¥ = apy + gu. (Note that if S} = 2, then
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neither ¢ nor i 15 uniqucly defined.) Now flex) = S{chdx) = nfi(c)p(x} for
1 # x5 and (4) is proved. Also j(x) = £1 for x = 8 so that g* = 1{,,

Sinceally, forp # fvanishon$ — {1}, eachisa mulliple of pgand hence
(p % W) is a multiple of | S|4, Since (f « W e = a| S| + kf, stalement {h)
foliows and (¢) is immedinte from (b} Also {(d) now lollows.

We now prove &) Since i = 1y, il follows that g = 14| 5] s 0dd. Sup»
pose then, thal |S] is cven and let r€ Irr(S) with 12 = 1 bul 7 # Ig, {This
uniquely delines 1) Now det(pg) = [1aawnn A = 7. By (d) it follows that

lg = del{gy) = thu Y,

Since 2|51, we have 24'A()) and therefore i = 1% Statement (c) now follows
and the proof is complcte. |1

(13,3%) coroLLARY Let([, N, #) bea charactertripleand lsl N o G = T
Suppose [/ is cyclic and thal ['/N is a Frobenius group with kernel G/N.
Assume that ¥¢ = gy for yeIrr{G) (and thus ¢? = {G: N]|). Then |I': G|
divides ¢ — elor some e = + 1.

Proof We may replace (T, N, 4) by an isomorphic character triple and
assume K1) = 1. Wrile 3 = pd, where (o{dh |G: N1) = 1 and {afu), [T : G])
= 1 and A and y are pawers of 9 and thus invariant in T and 4 is extendible
to G by Corollary 6.27. Let v be an extension of 4. Then

HO = (TH)° = (wy 9 = v9% = elvy).

Since vy € Irr(G) we may replace # by u and assume (o(9), [T: G|} = 1. We
may alsa assume that ker $ = 1so that N = Z{T) and (|G [T G = L

Let § be 4 complement for G in I If 1 # x €S, then Cyyuix) = 1 and it
follows that N = Cg(x) and we are in the situation of Theorem 13.32, (Note
that x € Irrg(G) sinee g is the unique irreducible constituent of 9%,) The result
now follows from 13.32(c). |}

Problems

(13.1) Assume Hypothesis 13.2 with § solvable, Provc the following facts by
using the gtatement of Theorem 3.1, but do not appeal 1o any of the results
used in constructing the Glauberman map,

{(a) Tf x e lrre(G) then (YymG, S) is a constituent of ye.
(b} If f = (n(G, 5), then Q(y) = Q(f).
(© IfC =G, then MG, 8y [re(G) — Ire(G) is the identity map,

(132} In the sitvation of Theorem 13.1, let f = (xn(G, 5) for x & IrrgdG).
Show that x(1) divides |G : C|A(1).

Hint In the case that § is cyclic, consider w = w; as in Chapter 3,
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{13.3) In the siluation of Theorem 131, let N =3 G be S-invariant with
NC = G. Lel 3 Irrg(N). Show that

FANA(N.8) = 1N C

(13.4) Let Sacton G and leave N =3 G invariant. Assume that (| S[, |G : N|)
= 1 and that one of § or G/N is solvable. Suppose Cgin(5) = 1.1 x € lergG),
show that Lhere exists a unique ¢ € IrrgN) such that [y, ¢ # 0. Write
()¢ = . Show that & maps IrrdG) onto Irrgd N).

(13.5) Assumc Hypothesis 13.2 and that § is solvable. Let £ & N 2 G with
N=arl,

{a) Show that CyS) = 1.

{b) Let & Ireg{G) — Irry{N) be as in Problem (3.4, Show that § is one-

to-0one.
{¢} Show that dz(N, 8) = ®(G, 5

Hini  (For {a))

(13.6) In the sitwation of Theorem 13.1, assume that G is solvable. Let
e lrrg(Gyand i = ()G, 5). Show Lhat B(1) divides (1),

Hints Let N = @ be normal, S-invariant and maximal such. Then
either NC = Gor N = ¢, Usc Problem 13.3 or 13.3(¢) and induction on | &,

{137)
ane,

Use Glauberman’s Lemma 13.8.

In Problem 13.4, assume that G/N is salvable. Show that & is one-to-

Hint  Use induction on |G N|.

(13.8) Assume Hypothesis 13.2 and that G is nilpotent, Show that |Lrrg(G)|
= |Irr{C})|. Do not assume Theorem 13.25,

Him  Usc Problem 13.7.

(13.9) Assume Hypothesis 13.2 and thal G is solvable. Show that C = 1
iff [Irrg G| = 1. Do not assume Theorem 13.25. '

(13.10) Let N=a [ with N G=aT and ([T:G],[G:N|) = 1, Assume
that one of [7/G or G/N is solvable. Let K/N be a complement for G/N in |
[/N and assume Cgx(K/N) = L. Let 3 € [re{N) be invariant in K. Show that ;
there exisis a unique T-invariant y & Ire(G) with [95, 3] # 0. :

Hinis  Use the argument of Theorem 1331 to reduce to the case”
(G I G)) = 1. Use Problem 13.5(b) if T/G is solvable.

(13.11) Let § be solvable and let H be a group with (|5}, |H]|) = 1 L¢'t
G=H x Il »---x H where there are |$] factors and lel § act on G by

— e e
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permuting Lthe fuctors regularly. Let C = Cy(8) and note that
C={Uh....hell} = H.

Also, i yelrrdG), then y = 9 x & x = 8 for s
X y = | { e some Jelrr(H), I
(0In(G, §) = B, show that fijh, b, ..., )y = (R, “

§13.12) Let N = GE‘_"{d suppose 8 € Irr(N) is invariant in G, Suppose 9¢ = &
31' some & Ire{&). (Thus (G, N, 8) is a fully ramified characler tripte and
e = |G: N|) Assume that § s solvable, acts on G, leaves N and 8 invariam

and that (|G:N|,|S|) = I. Let C/N = Cgu(8 .o )
selr(Cland f? = |G:C]. ! am(S). Show that zo = f§ with

Hint  Use the technique of the proof of Theorem 13,31 1o reduce 1o the

case that (|G|, [$]} = 1 and 31) = 1 with ¥ faithful, In this case. ¢ — -
Use Theorem 13.1. . 15 case, C = C($),

{13.13) LetSacton ¢ *“_“! lcave N =1 G invariant, Assumethat (|5],|G: N])
[= 1 ;lJI‘Ii l(;laél.‘,‘ act;: trivially on G/N. Let ¢ Irr(N) and ¥ & Irf{G) with
TN - show thit & is S-invariant iff ¥ is S-invariant D 255

the Feil-Thompson theoram, HL o nel assume

Hint  Inshowing that 9 e Irr (N)implics ¥ € lrrd ). el v
that G/N is cyclic § Phucs x & Irrd &), it sutfices to assume

{13.14) In the situation of Theorem 13.1, let N < G be S-invariant with
NC = G. Let d¢ lirdN) amfl ¢ =NrNS). Lot = I (sothat I~ € =
{c(p) by Problem [3.3). 1f y is an irreducible constituent of ¥, show that
WG, §) = (Wil $))-.
(13.15) Let E be elementary abelian of order p® f
] or 2
dihedral of arder 2p, ¢ pr2and el S be

(@) Dc(?ne an action of § on E such that Irrd£) = {1} but C5) = 1,
(b) Define an action of § on E such that Ci(5) = | bur |l’rrS(E)] o
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Suppose y is a faithful character of G. In this chapter we are concerncd
with drawing conelusions aboul & when given information about y. For
instance, we already know that if x is irreducible, then Z{G) is cyclic and that
if all irreducible constituents of y are lincar, then G is abelian. Another, less
trivial example which we have seen is Theorem 3,13,

A Taithful F-representation of G with degree n is an ispmorphism of G
with a linear group of degroe nover F'; in other words, a subgroup of GL{n, F),
For our purposes, we will restrict attention to finite linear groups. (It should
be pointed ouf, however, that staling 1hat an infinite group is a linear group
imposcs a type of finiteness condition on it, that is, it guarantees that the
group is not “too badly ™ infinite.)

We shall also restrict atiention to complex linear groups. Thus from now
on, a “lincar group™ is a finite subgroup of GL{n, C) for some n, A group is
thus isomorphic to a linear group of degrec n iff it has a faithful character of
degree n, We say that 8 linear group is irreducible if the identily map is an
irreducible representation,

{14.1) TroReM  (Blichfeldt) Lel G be a linear group of degree n and let
# = {p|pis prime, p > n + 1}. Then G has an abelian Hall n-subgroup.

We need a lemma, Recall that a character y is porational (where p is prime)
if its values lie in @, for some r with ptr. (This is Delinition 6.29,)

{14.2) LemmMA Let p # ¢ be primes such (hat & has no clement of order pg.
Then cach y e [rt{G} is either p-rational or g-rational,
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Proof Let y elre(G) and suppose thal y is oeither p-rational nor g-
rational, Then in the notation of the discussion following Definition 6.29,
there exists o ¢ #{G)and t € 4,(G)with x* # x # ', Also, by Problem 2.2(b),
¥", " & (),

If g € G and pAodg), then xig)e @, where |G| = pPm and ptm. Thus by
definition of 9 (G), we have y{yY = y(g). Similarly, it gtoig) then xig)
= y(@)

Since G has no element of order pq, it follows for every g € G that either
pro(g) or glolg) and we conclude that

[~ 2™ G — 2"} =0
Since [y, '] = 0 = [¥, ¥). we obtain
0=+ Y=1+[x"x1z1
and this contradiction proves the result, 1

The following easy lemma is a special case of a morc general result duc to
Schur which we will prove later,

(14.3) 1emMa  Let y be a faithful p-rational character of G and assume that
p divides |G|, Then y(1) =2 p = 1,

Proof Since x is p-rational, it has values in €}, for some r with ptr. Let
P = Gwith |P| = p, Then y has values in @, » @, = @, Lat & = #(0,/Q).
Then # fixcs y, and thus permutes the linear constituents of . Since ¥ is
faithful, x, has a nonprincipal linear constituent 4 and A(x) # t, where
1 # x e P, Since # is transitive on the p =— 1 primitive pth roots of 1, it follows
that the images of A under % take on p — § different values at x and thus there
arc 4l least p ~ 1 different characters in the orbit of 4 under %, Since each iz a
constituent of y,, the resuit follows, |l

An observation that is often useful when working with linear groups is
thatif {K,} is a family of normal subgroups of G with [ | K, = i, then G can be
isomorphically embedded in the direct product

n(G/Ki‘) via g—{..gK;, ...

Proof of Theorem 14.]  Use induction on n and for groups with degree n,
induct on |G|, Let x be a faithful character of G with ¥(1) = n. Suppose that
is reducible and wrile x = ¥, + y3. Let K; = ker z; so that G/K| is isg-
morphic o a linear group of degree x{1) < n. By the inductive hypothesis,
G/K, has an abelian Hall m-subgroup where n, = {p|p > | + x{1)}. Since
n 5wy, it follows that G/K, has an abelian Hall z-subgroup H/K,. If H, < G,
then the inductive hypothesis yields an abelian Hall n-subgroup H of H,.
Since no prime in 7 divides |(G/K;): (H/K} = |G: H,|, it Tollows that H is a
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Hall m-subgroup of G and we are done il H, < G. We may thus assume that
H;= G and G/K, is an abelian n-group for { = 1, 2, However, K, m K; =
ker ¥, m Ker y3 = ker y = | and Lhus G is isomorphic to a subgroup of the
abelian m-group, (G/K ) x {G/K ;). The result follows in this case. We now
assume that ¥ is irreducible.

ITH £ Gis a m-subgroup, let ¥ be an irreducible constituent of y;. Then
H1) divides [ M and 50 a prime divisor p of %) satisfies n = p s H) =0
and this contradiction shows that %(1) == 1. Thus ¥y, is a sum of linear chat-
acters and since y is faithful, iv follows that H is abelian,

Suppose there exists M == G with |G M| = pen. Let H be a Hall n-
subgroup of M, which exists by the inductive hypothesis. 1l H = G, let
P e Syl (G). Then HPF is a Hall n-subgroup of G and we are done. Suppose
then, I - G and choose a Sylow subgroup @ of H with @ % G. Then @ is
Sylow in M and thus G = MN(Q) by the Frattini argument. Now H
i abelian and so M = N@) We have |G:Ng(Q) = |M: N Q)]
which divides M : H|. Thus |G N5(Q)] involves no primes from n. Sincs
Ng(Q) = G.it has a Hall n-subgroup which is one for G. We may thus assume
that no such M exists,

Next, suppose £ = Z(G)with | Z| = per.Then x, = 1) with o(d} = p.
Thus (det(y)), = A"V £ |, since (1) =< p. Therefore, plo(x} and it follows
that p|} G :ker(det x)|. This yields a normal subgroup of index p, a contra-
diction. {Note that we have reproved part of Theorem 5.6 here,) Thus no
such Z exists,

Now let H £ G be a m-subgroup of maximum possible order, Suppose H
is not ¢ Mall r-subgroup, Then there exists & # with ¢|( G 1 H|. In particular,
H 7 1 or else H < Qe8yl(GY which violates the maximality of H. Let
x & H have prime order pe mand let C = Cylx). Then € = G by the previous
paragraph and thus C has a Hall m-subgroup K by the inductive hypothesis.
Since M is abelian, we have I{ = C and thus | 1| = |K|. The maximality of

|H|yields|H| = [K|and H isa Hall n-subgroup ol C. In particular, g4 | C: H|
and it follows that 4||G; C|.

Letx € Fe Syl (G). Then Pisabelianand so € Cix) = Cand pt|G: C.
Thus p # 4. Since p can be any prime divisor of H |, we have ¢f | H|. There-
forc, 44| C| since H isa Hall #-suhproup of C. We conclude that x centralizes
no element of order g in G.

We claim that O containg oo element of order pg. Olherwise, there exist
cammuting ¥, z€ & with oly) = p and o(z) = ¢. However, i contains a full
Sylow p-subgroup of G sinee C does and H is a Hall z-subgroup of C. Thus
H conlains a conjugaie of y which we may suppose to be x. Since x centralizes
no clement of order g, this is a contradiction and proves the claim.

Lemma 4.2 now yields that g isr-rationalforr = porg, Thusg(l) = r = L
by Lemma 14,3 This is a contradiction since r € 7 and the proofis complete, |
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(144) coroLLARY  Suppose x(1) is prime f i
Then G oAk x(13 is prime for every x € Irr(G) with (1) = 1,

Proof The hypothesis is inherited by factor groups and by normal
su_bgroups and S0 we may assume that G is simple, Let € Ire(G) with
minimal ﬂl)sb 1. By Problem 3.3, y1) = P> Let ma {ylg is prime
4 = p+ L} Since GG issimple,  is fithful and T ields an ian
Hal mesuberoup A o o nd Lheorem 14.1 yields an abeliun

Letl 2 acd Then 4 = F‘,;,-(a) and the only prime divisors of |G ; Cila)|
are =p + 1 and hence =p If ¢ IefG) and ¥l ¢ {1, p), then

W1, |G Cota)]) = 1

and by Burnside's Theorem 3.8, we have Wla) =0 o L) Sine ;
simple, Z{y) = | and hence y(a) = 0. Now ra&Zly). Since G is

0=) M{@=t+p ¥ sla)

Lelrrif) AelriGy SN =p

dﬂd thCE l/p 5 an dlgt bld'": 10 (‘gE I 15 ¢ I 3
I. h 5 cont adl(_,tll‘ com S
n p!(:lcH ht

In the situation of Corollary 14.4, Problem 12.3 applies «; i
: [ 4, A applies since G is solvable,
I follows that [¢.d(G)] = 3 and thus 6 = | by Theorem 12,15,

Our next results concern finding normal subgroups of a linear group of

dt_:ﬁrcc n whose order is divisible by a prime which is large when compared
wiIth n.

(14.5) THEGREM (D. I, Winter) Let G be a solvable jrreducible linear
group of degree n, Su'pprase that a Sylow p-subgroup of G is not normal, Then
n is divisible by a prime power ¢ > lsuch that y = — 1,0, or | mod L.

Proof Let yelmr(G) be faithful with y(1) = n, Suppose G is a counter-
example (o the thcu]rem with minimum possible order. We argue first that
every proper normal subgroup of & has index divizible b g
Sylon popee o c by pand has 4 normal

_ Let M -1 G be proper and let 9, .., 3, be the distinet irreducible con-
stituents of x4 Latm l?e the common degrec of the 8. Then m [nand henee no
ane power g = | withg = =1,0, or 1 can divide m, Since |M| < 6], il
ollows that Mfkgr .:9, has a normal $ylow p-subgroup. Now Nker 8, = kc.-;- b
= 1 and thus M is isomorphic to a subgroup of ‘ ,

(M/ker 3,) = - x (M/ker 9,).




— e T e e o i

[rSevep i

- e

244 Chapter 14

Tt follows thal A has a normal Sylow p-subgroup which is necessarily normal
in ¢, Since G does not have a normal Sylow p-subgroup, we conclude that p
divides |G : M| as claimed.

Now let K be a maximal narmal subgroup of ¢ and let P e §y1,(K). Then
P =2 and |G: K] = p, Since 7 is not a p-group, we have P < K and we
choose L 2 P such that K/L i5 a chiel factor of G. Write | K : L) = a and lel
S e Syl (G).

Now LS < Gand ptiG: LE|. Thus LS <4 G. Since K(.5) = G, it follows
that Cy,(5) = K/L. However, Cy,;(5) = G/L and we conclude that Cyy, (5)
= 1. Sinco § is a p-group, it follows that a = | mod p.

We claim that y, reduces, Otherwise, x, . is irreducible and the minimality
ol G yields § <1 LS. Since pty(1) it follows that yy is a sum of lingar constitu-
ents and hence § is ubelian. Thus § = C(P) =1 G and hence pt|G: Cu(P)].
By the first part of the proof, we conclude that CglP) = G aud P € Z(G).
Therefore, L — P x N wherg N = O, (L) =2 G.8ince § =1 LSand S N = (,
itfollows that §  C,(N) <1 (Fand thus p4{ G : Cg(N)|. Therefore, C,(N) = G
and N € Z{G). Thus L = NP = Z(G) und since x, € Ter(l.), we have n = |
and G s abelian, This is a contradiction und proves that y;, reduces, as claimed.

Since por(l}, we have yy € Irr(K ) Since yy, ¢ Irr(L) there arc two possibil-
ities by Theorem 6.18. Either y; is 1 sum of | K : L} = a distinet irreducible
constituents or else y, = aifr, with e Trr(L), and e = @, In the first case,
¢ = 1 is a prime power dividing n and ¢ = | mod p, a contradiction, Tn the
second case, ¢ = 1 is a prime power dividing nand ¢* = a = 1 mod p. Thus
¢ & 41 mod p and the proof is complete, |

(14.6) cororLary (Ite} Let G be a solvable linear group of degree n and
let pz=n41 bea prime, Suppose that a Sylow p-subgroup of G is not
normal, Then @ is irreducible, p = n + 1, and n is a power of 2.

Proof If G ig irreducible, then by Winter's Theorem 14,5, there exists &
prime power g > ) that divides n such that g = =1, 0, or | mod p. Thus
p=lz=nzqzp=|und hence n = p = | is & prime power, We con«
cludc thal n is a power of 2 und the proof is complete in this case,

If G is reducible, write ¥ = ¥, + r3, where y is a faithful character of G of
degrec n. Let K, = ker y; so that K, » K3 = | and G is isomorphic to a
subgroup of (G/K ) % (G/K;). Bach G/K, ia isomorphic to a solvahle linear
group of degree x{1) < n. Working by induction on n, it follows that cach
/K, has a normal Sylow p=subgroup and hence so docs their direct produet,
Since G docs not have a normal Sylow subgroup we have a econtradiction and
the proof is complete, |

The hypothesis that & i solvable in Corollary 14,6 ¢can easily be relaxed
to the assumption that G is * p-solvable,” We say that (G is p-solvable if there
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exist subgroups N, =1 G with
l=NycsNg--sN =G
and such that cach factor N, /N, is either a p-group o¢ of order prims to p.

(14.7) COROLLARY Let G be a p-solvable linear group of degreen = p — _l
and suppose that a Sylow p-subgroup of G is not normal. Thenn = p — s
a power of 2 and G is irreducible.

Proof Assume either that G is reducible, n < p — 1 or that n is oot a
power of 2. Use induction on |G|, Let M be the next to last lerm in a p-
solvable series for G so that M < G, G/M is cither a p-group or a p'-group and
M is p-solvable. By the inductive hypothesis, M has a normal Sylow p-
subgroup P and thus we may assume that G/M is a p-group. ‘

Let Q/P e Syl,(M/P) for some prime g # p. The Fratuini argument y:eld;
MNG(Q) = G and thus [G:Ng(Q) = M NG(Q)l. Since P 5 Q = NylQ)
and P e Syl {M), we couciude that p¥|G: Na(Q)]. Let § e SyLIN@). Thus
S e Syl (G). _

Now 5@ is solvable and hence 5§ =3 §Q by Corollary 146, Since |G Q|
is not divisible by ¢, we conclude that qf |G : Ng($)|. Since |G MNa(5)] 18
independent of the choice of §eSyl(G) and g # p is arbitrary, the resull
follows, |

It is conjecturcd that Winter’s Theorem 14.5 holds for all p-solvable
groups. The conjecturc is known to hold forn < 2p + 1. Unlike the easc with
which Corollary 14.7 follows from Corollary 14.6, the facts for n = p scem
quite deep. Even the special case where G has a normal p-¢omplement is open
if n is significantly Jarger than 2p, The results which have been obtained all
geem to depend heavily on the Glanberman eorrespondence, and in partic-
ular on Theorcm 13.14, The proofs are too complicated to give here.

Now we drop all hypothescs of solvability or p-solvability. Supposc G is.a
linear group of degree n and a Sylow p-subgroup of G is not normal. How'l'ug
can p be? The first bound was cstablished by Blichfeldt and lhc‘ bast possible
bound, p < 2n + |, ws proved by Feit and Thompson. The Feit-Thompson
proof depends on a very deep result of Braver which pives the bound under
the additional assumption that p?t|G|. Here we shall prove p < (n + 1)?
and also show how the Feit~Thompson reduction to (he case p¥ |G| works,

We need some preliminary results,

(148) LeMMa Let H = G be abelian and let % be the sct of noa)principa!
irreducible constituents of (14)¢ Compute & = min{x(1)/[x (15)¥11x e ¥}
Then ¥(1) = « — 1 for every nonlinear ¥ € 1rx(G),

S i

A e e
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Proof  Let € Lre(G) with y(1) > 1. Write yof = 15 + 3. a, x; where the
sum runs over nonprincipal y € Irre(G). Since H is abelian, we have

V1) = (g ¥ul = Db, 1] = DI (1)%) = 1 + Y a [y (1,

Pt

However, [3, (1,051 = x(1)/2 for x € & and this yields
Yy =1 b (a) Y ax(l) = 1+ (/a)(p(1)* — 1)
Thus a((l) — 1) < yi1)* — 1 and since (1) > | we obtain a < y(l) + 1

as desired. )

(149) 1iMMA  LelN = Gandsupposcge G with N n Clg) = 1. Letybea
character of G such that {yy, 15] = 0. Then y(g) = 0,
Proof Let §=gNeGiN. Then Cgpig) = ColgdN/N and  hence
[CoM@) = | Cald)N/N | = |Cilg)|. Thus
PILTE) i

welee(F/NY
-Yiewing Irr(G/N) < Irr(G), we conclude that &g) = Q for & elrr(G) with
N & ker &, The result follows. ||
MNote that the above proof is cssentially a repetition of the proof of
Corollary 2.24, Also, il g and N arc as in the Lemma 14.9, then all elements of

the coset Ny are conjugate in G and thus the result follows from Problem
2.1k}

(14.10) THEOREM (Feir -Thompson) Let I = G be abelian with 5 ~ Z{G)
= |, Assume for every ge G — J{G) that Cslg) has nontrivial intersection
wilh 21 most onc conjugate of H in G, Let & Ire(G) with H & ker y, Then

{a) %1% = [H | 141>
Also, if ¢(1) > 1 and A is conlained in no proper normal subgroup of G, then

(b} (1 + 1))* = |HI.
Proof Let N = Ng(H)and
X ={xeG - ZG)Cx}~ H =1}, "

Note that H — {1} = X and that N = N(X). We claim that X is a T.L sué
and that N = MN(X). In particular, X < N. _ .
Let g€ G be such that X n X¢ 2 @, Choose x& X with x?¢ X, Then ¢
Cix)nH=1 and 30 C(x®)n HY = 1, Also, C(x*)~ #H = | and hence 7
H = H*by hypothesis. Thus y ¢ N and X = X7 and the claim is established. ..
We have -
Gl = GIx x) = 2 lda)l® = x(1)* + |G N X lxx)P

ge it ELE Y

Y @i

deler{G)

e — iy,
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and thus

() 2 1) < NI
. e X
© Now write yy = a + f, where [a,, 1,] = 0 : is i
- - A v 1yl =0 and 8, = (1)1, (This is
poasible since 11 =1 N\) Since M & ker y, we have o ;&'{) but Wc”zlll(ow the
possibility that ff = 0.
Write & = Z(G). Then Y,z |x(z)|* = |Z|x(1)* and since
we conclude from (1) that

(2) [Z]x(1)* + |N] =

EnX =0,

> lalx? =

XeXur

2 lodx) + fx)12,

seXus

By Lemma 14.9, we have afy) = 0 for yeN — (X o Z)and thus
3 2 lox) o+ B2 = |N|[a, a] + ZINI[ BT+ Y 18002 I

XeX

Since [, £ = 0 and [o, &) > 1, (2)and (3) yield o
[ ZIX( + N> INI+ T 1)

Because HZ = ¥ w 7, we obtain seXui

¢ 1Z10Y > 3 1)1

YeHE
Write x; = y(I)d. Then #; = A(1)4 and since fin = f
n = M1y, we have
ﬂ!h]z.j) = Bl)A(z) for he H and z € Z. Thus | fx)|? = BOY for x E”HZ and (4)
yields
‘ RO LHN 2] < Z] 1)
Thus 1(1)* = f(1)*|H|and since f(1) = [, 1], the proof of (1) is complete.
Now assume tha_t no proper normal subgroup of G contains H. Let &
be Lhe set of nonprincipal irreducible constituents of (1,,)% If y & &, then
H & ker r and (a) yields y(1)* > [, 1131 H | and

|HI" < & = min(@(1/[Y. (1,7 1y € &1
Lemma 14.8 then gives for x(1) > 1 that
' M+ zas |Hv2
and (b) follows. |

(14.11} THROREM (Feit—Thempson-Blichfeldr). Lct G be a linear group ol
degree n and tet p be a prime. Assume one of the following,

(@) Every subgroup of G of order not divisible by p? has a normal
Sylow p-subgroup and p = n + 1.
b p=irn+ 1P
Then G has a normal Sylow subgroup.
o
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Proaft Usc induction on |G|. We may thus suppose that every proper
subgroup of G has a normal Sylow p-subgroup. Let P e 5y1,(G) and assume
P =# G, Since P has a faithful character of degree n < pand this character can
have no nonlincar irreducible constituents, we conclude that P is abelian.

Il P~ Z{G) # t, then by Theorem 5.6, we cannot have P » 4G 5 G
and thus p||G:G'|. It follows that there exists N =1 G with [G:N|[=p.
Since N has a normal Sylow p-subgroup, we conclude that G is p-solvable,
Then G violates Corollary 14.7 since n < p ~ 1 and P =% G, We conclude
(hat P~ Z(G) = 1.

Now if | # y& P n P then P, P eS8yl (C(y) and this forces P = P¢
since C(y) < G, Thus Pis a T.1, set. Now suppose that xe G — Z(G), Then
C(x) has 4 unique Sylow p-subgroup § and if § == 1, then § is contained in a
unique conjugale of #, It follows (hat C(x) has nontrivial interscetion with
al mosl onc ¢conjugate of P,

IfF & M = GwithM < G, then PP = M und thus P =a G, u contradiction.
We have now shown that P satisfies the hypothescs of Theorem 14.10(b) and
thus | P| < {(¥(1) + 1)? for every noolinear v € Irr{(3).

Since (7 is nonabclian, the given [laithful character must have some
nonlinear irreducible constituent and we conclude that |P| < (n + )%
Thus p < {n + )%, contradicting hypothesis (b). We are therclore in the
situation of hypothesis (a) and in particular, p?||G|. Thus p? < || <
{n + 1)>and p < n + | which is our final coniradiction. 1

As wus mentioned before, Braucr proved that if G is a linear group of
degree noand plr|G| where p = 21 + 1, then a Sylow p-subgroup of G is
normal, 11 then follows from Theorem [4,11(8) that the hypothesis p2¢|Gj is
WUTINCCCSSATY.

There is 2 great deal of information known about linear groups of degree
n in which a Sylow p-subgroup is not normal and r < p < 2n + 1, Thig ali
requires deep results from Brauer's " modular character™ theory and we will
not discuss it further here,

Therc are many ways in which the structure of a group is limited in tarms
of its degrec as a linear group. For example, there exist integer valued
functions f; such that for lincar groups G of degree n we have:

(1) I G is solvable, then d.1(G) = f,(n).
(b) I G is p-solvable and p* divides |G O,(G)l, then e = fi(n),
(¢} Uf Gisa p-group and |G WG| = p, then e 5 f(m)

A much more general result of this type is Jordan's theorem,
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(14.12) rHeoreM  (C. Jordan) Let G be a linear group of degree n. Then
there exists abelian A = G such that

|G A| < (n)12rxims 0¥ D
where mik} denotes the number of primes g k.

In fact, the existence of the functions fi. f2. and f; mentioned above
follows easily from Jordan's theorem, although the hest known bounds for

f1+ 41, and fy are very much better than thosc which can be derived from the

inequality in Theorem 14.12 (or from any other known bound for Jordan's
theorem). There is no reason to supposc (hat the index of an abelian normal
subgroup of maximum possible order in a linear group of degree n can be
anywhere ncarly as large as (n)127"* D+ (For instance, if n = 2, the
“sorrect™ bound is 60 rather than 2 - 12°.) The good bounds for the functions

/, arc proved by methods independent of Jordan’s theorem.

We begin work now on a proof of Theorem 14.12 which is duc to Fro-
benius. As the reader will see, this proof has an unusual geometric flavor.

Recall that # squarc complex matrix U is said to be “unitary " if O =
U~ 1. Note thal the unitary n x n matrices form a subgroup of GLI(#, €). Also,
if U is unitary, then there exists unitary ¥ such that V=iV is diagonal,
(More generally, this holds for all normal matrices U, thal is, those which
satisly UU* = U*U, where U* = UT.) Also, the diagonal matrix v-uv
i$ unitary since both U and V are, Write V'~ 1y = diag(d,, ..., 4) 0 that
the A, are the cigenvalues of U. Sincc ¥~ 'UV is unitary, it follows that
4,71 = [ and this proves that the eigenvalues of a unitary matrix lie on the
unit gircle.

(14.13) 1imMMa Lot A and B be n x n complex unitary matrices. Assume
that the eigenvalues of B lie in the interior of some arc of length # on th? unit
circle. Suppose 1hat A commutes with A~ !B~ 'AB. Then 4 commutes with B,

Proof We may conjugate A and B by a unilary matrix so 4s to didgon-
alize B and hence we may assume that B = diag(hy, ..., b,). Since a per-
mutation matrix js unitary, we may rearrange the b, in any desired order by
conjugating both A and B by &n appropriale permuation matrix. We may
thus Wl"ite bj = Emi where \91_ = !91 o e X H‘,. < 31 + N . .

Write A = {g,,). We shall show that a,, = 0ifb, # b,. This immedintely
yields that AB = BA. Now write C = A7'B"'AB. We have A"l =AT
and B*' = Hsothat C = ATHAB. Also, since AC = CA wc have

ATBAB=C = ACA™' = B"'ABA™' = BABA’
Mow evaluate the diagonal entry, ¢, of C. We have

Z H.Ullﬁuaﬂmbnl = Com = L Em”mbva'mv
u w
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and thus -
Z |aum'25nbm = Z Ia_',,lzb,,b,,
M [

We compare imaginary parts and obtain
¥ ldyml* sin8, — 3,) = 3 Lt ? si0(3, — 5,).
I v

Thus for all m, 1 = m = n, we have
(*) 2 [ aml® + la,ml?) sing8, — 8,) = 0.

We now use (+) to prove that if 3, # .8, thenay, = 0. Suppose this is false
and choosc j minimal such that there exists k with 8, < 8, and either' ag # 0
or a;; # 0. Take m = j in (+). If v < j, then cither 3, = 3, in w'h:ch'case
sin(9, — 3)) = Oor 3, < 3;in whjch.case g,; = 0 = 4;, by the minimality of
J Thus (*} yields C o .
X Uapl? + la, ) sin(8, = 3) = 0.
LEN) . . '
Now for v > j we have 8; = 8, < 8, + = and thus sin(§, — ) = 0. Also,
lap|? + la,l* = 0. We conclude that for each value v > j, cither

lapl? + layl* =0

or sin(®, — 9)=0. Now 0 < 8, ~ 8§ < and hence-sin(d ~ %) > 0.
Therefore |a, |* + Jayl* = 0 and thus ay, = 0 = a,;. This is a contradiction
and completes the proof. | w

(14.14) LemMma  Let A and B he n x n complex unitary matrices and sup-
pose thal Lhe eigenvalues of A lie in an arc of length & < 7 on the unit circle,
Then the eigenvalues of A~ B~ ' AB lie on the unit circle between ~ o and o,

Proof Certainly A7'B™' AB is unitary and so its eigenvalues lie on the
unit circle. Let a be an arc of length & which contains the eigenvalues of A
and write C = B~ ' 4B. We need to find the eigenvatues of A~ 1.

Let 4 be an eigenvalue of A~ 'C and let the calumi vector x be a corre-
sponding eigenvector so that A7 'Cx = Axand thus Cx = ddx and ¥7Cx =
AETAx). Thus it suffices 1o show that arg(xTAx)ea and arg(¥"Cx)eq,
where arg(e) = a/|a| for 0 # aeC. Since both 4 and C are unitary with
eigchvalues in a it suffices to show that

arg(F Uy} ea

whenever y # 0and U is unitary with eigenvalues in a, Let U and p be such
and let V be unitary with ¥~'UV = D, a diagonal matrix. Letz = V" 'y go
that

¥ Uy=2VUVz = 5Dz
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since V' = ¥V~ Nowif D = diag(d,. ..., dyand z = col(z,, ..., z.), we have
2Dz =% |7|%d,.

Since the ¢ lic in a and |2,]* = 0, it follows that Y |z;124, lies in:the in-
finite wedge which is the union of ail rays [rom the origin through points of a.
Since o < 7 and some |z,|? is nonzero, it follows that S iz)%d, # 0 and
argl(}. |z|°d) e o as desired. |

(14.15) THEOREM (Frobenius) Let G be a lincar group, let A, Be G and
suppose that the gigenvalues of 4 and B lie in arcs of length & and # respec-
tively, on the unit circle. Then )

‘ (@) ff <z and A commutes with the commutator [ A4, B], then
A B =1,
(b} Na<zm/3and f < 7, then [4,B] =1,

Proof By Theorem 4.17 we can conjugate all of the elements of G by a
matrix such that the resulting matrices are all unitary. We may thus suppose
that 4 and B are unitary matrices, Now {a) 15 just a restatement of
Lemma 14.13,

To prove (b), conjugatc by a unitary matrix which diagonalizes 4, We may
thus assume that A is diugonal. Construct elements B e G by setting B, = H
and B, = [A, B,_,]Jfori =1, N

By Lemma 14.14, the eigenvalues of B; lie between —n/3 and /3 on the
unit circle for { 2 1 and thus for each i = 0, they lie in the interior of some
arc of fength 7. Thus by part {a) we see that if By, = lforany iz 0, then
B, = 1. It thus suffices to prove that B, = | for some .

If M is any camplex matrix, we define HM) = tr{MTM) so that if M =
(my,), we have 9(M) = T m,, |2, Thus SM)=0and M) =0T Mizsa
zerp matrix. If U is unitary, we have :

HUM) = t(MTTTUM) = w(l™ M) = $(M),
Now we compute
(* B(BH-I — 1) B(BJA(BHI - = Q(BIA(A_IE;_]ABt = 1)
= HAB — B A) = HAWB, = 1) — (B, — 1)A).
Now write B, — 1 = {bu). Since A is diagonal, we can write 4 =
diag(a,, 41, ..., a,), where all of the a; lie inside some arc of length 7/3. The

(4 ¥) eotry of A(B, — 1) — (B, = A is duby, ~ b a, = b, (1, — a,). Notc
that |4, — a,| < 1. Equation (s) now yiclds that

"}(Bi*l - 1) = E Ib,uulzla,u - aurz = z Ibuvlz = ‘Q(Bi - l)v

Y
where in fact the inequality is striet unless all b, =0




i
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If ne B, = 1, we thereflore have
BBy = 1) HB, — 1) HBy — )= -e.

Since & is a finite group, there are only finitely many B, and this is a contra-
diction. We conclude that B; = | for some i and the proof is complete, ||

Observe that we have used our standing assumption that the groups we
consider are Anile twice in the above proof. The first time was in the appeal to
Theorem 4.17 which is false {or infinite groups. This use of finiteness could
have been avoided by assuming that G was contained in the group of unitary
matriges, The second application of linitencss in the last puragraph of the
proof is morc fundamental. For instance, part (b) of the theorem is not valid
for the full unilary group.

{(14.16) TueOREM Let GG be a lincar group of degtee n. Then there cxists
abelian A =1 G such that
[H:Hm~A| =< 120

for every abelian subgroup Hf © G.

Proof Since G is a finile group, the eigenvalues of gvery element of G '

lie on the upit circle, Il g & G, let «ig) be the length of the shortest closed are

which contains the eigenvalues of g. Note that « is a class function on G, ¢

Put A = {ae Glala) = /3> Then A = G and A is abelian since the gener-
ators of A commute by Theorem 14.15(b).
Now let f = G with H abelian. By Maschke’s Theorem 1.9 we may

conjugale all of the matrices in G so as to assume that all ke H are diagonal

matrices.

Partition the unit circle into twelve half-open arcs, ay, a,, ..., 0,,, each

of length n/6, Each element b ¢ H determines a function f; from {i|1 < i = n}

into {j|1 = j = 12) by writing h = diag(e,, ..., a,) and sctting fi(i) = j il &
a, €4, Notc that there are at most 127 different functions f, that can be

obtaincd this way.
Suppose x, yvefl with f, = f. Wrile x = diaglz,,...,,) and y =

diag(fy, ..., B,). Then for each i, ¢, and §, lie in the same a, and hence a;f;

lies strictly between —n/6 and x/6 on the unit circle. Thus xy~'e A and it
follows that clements in distingt cosets of A m H in H determine different
funections. Thus |H: A ~ I = 12" and the proof is complete, |

(14.17) LEMMA Let P be a linear p-group of degree n. Then there exists
abelian 4 <@ P such that |P: 4| divides n!

Proof By Corollary 6.14, P is an M-g}oup and hence if y € Tee(P), then
there exists H = P with |P; H| = (1) and such thal ¥ has a linear con-
stituent. Choose such a subgroup H, for each y € Irr{/")

Lanear groupd a3

Let x be a faithful character of P of degree n and let Q be the set of all
right cosets of all H, for irreducible constituents Y of . Then (2] £ nand G
acts on £ by right multiplication. Let 4 be the kernel of this action. Thus
|P: Al divides n!

To show that A is abelian, it suffices to show that x4 is a sum of lincar
characters, However, for cach irreducible constituent v of y we have 4 < I,
and thus ¥, has a linear constituent, Since A = G, il follows that all irre-
ducible constituents of i , are lincar and the result follows. {]

Proof of Theorem [4.12 Let A =1 G be as in Theorem 14.16 so Lhat A 15
abelian and | H - H » Al < 12" fot every abelian subgroup H & G. We claim
that |G A] = (r)12*4 D+ 1Y Factor |G 1 4] into prime powers, For cach
prime plctr, = |G Al,.

By Blichfcldt’s Theorem 14.1, there exists an abelian Hall subgroup Hy c_ri'
G for th set of primes >n + 1. Wehave |G: 4} = |G HoA||[Hy A A]and it
follows that

[T ro=IHod: Al = {Hy: 1o 1 A] £ 127
pru+l

Forp=n+ 1, let PeSyl(G)and let I, = F be abelian with |F: H |
dividing n! (using Lemma 14,17). Then {P: H,| = (n!), and

rp= \PA Al = |PAtH A||[H At AL = |PIP o HyANTL  Hy o Al

£ \PIH 12" = (nh), 127

Thus )
l-[ rp = (r[ (H!}F)IZ"‘”'“ = (ﬂ!)lz"‘""’”,

pxa+1l
The result now follows. |
We cap also use Frobenius' Theorem 14.15 in a different way.

(14.18) tuporeM Let p = 7 and et G be an irreducible lincar group of
degree n < 2p withn # p. Ifthe Sylow p-subgroups of G are nonabelian, then
p* 416G 1 0,(G)|. Thus in any case, G/O,(G) has abelian Sylow p-subgroups.

Proof let PeSyl(G) be monabelian so that P'n ZiF) # 1. Let
Uc P Z(P)ywith |Uj=p.

Let 7 & Trr(G) be the character of the given faith{ul representation so that
%(1) = n.Since P is not abelian, y has some nonlinzar irreducible constituent
. We must have (1) = p. Since y(1) < 2p, we conclude that x, = ¥ + A,
where A is a sum of linear characters.

Since U < P, we have U < ker A and since U < Z(F). we also have
Wo = pu for some linear g € irr(U). Thus xy = pu + (n = p)ly. Since y is
faithful, we have u # 1.
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Now pick u e U, with plir) = ™%, and note that 2/p < 7/ sincep = 7.
Therefore, 1 has only two distinct eigenvalues, namely 1 and £2*?, ang these
licin an ar¢ of length < #/3 on Lthe unit circle. By Frobenius' Theorem 14.15(b)
it follows that u commutes wilh all of its conjugates in G and thus A =
{ufly € G = G is abelian,

Write 7, = & 3. | A;, where the 4; are distinct linear characters of 4 and
et = n. Since U = {u» = A, we conclude that e divides [y, 4] = p. Since
also e¢|n, we have e = landt = n. Now let K be the kernel of the permutation
action of GG on {4,). Then |G : K| divides n! and hence g2t |G : K|. If 315 any
irreducible constituent of y,. then 9, is the sum of an orbit of the action of
K on {4,}. By definition of K, it follows that (1} = 1, We conclude thal K is
abelian and so the Sylow p-subgroup of K is contained in O,(G). The result
follows. |

We now present the promised peneralization of Lemma 14.3.

(14.19)  mEokeMm  (Schur) Let G have a faithful p-réliunal character of
degree nand let P e Syl (G) with { ] = p*, Then

a5 i [nfip — '] < npi(p — 12,
i=h

The brackets above denole the greatest intcger function and thus the
“infinite™ sum has only finitcly many nonzero terms, If n =< p — | then all
terms in the sum are zerg and the result that ¢ = Qs Lemma 14.3.

Note that G is really irrelevant in Theorem 14.19; the result is really about
P. Also, a p-rational character of a p-group i5 necessarily rational valued
singe the values lic in @, ~ G, where ptr,

Suppose y € Irr(P)isfaithful und we wish 1o bound |P|. Obviously, knowl-
edge of 7(1) 15 not sufficient since cven if ¥(1) a 1, P could be an unboundedly
large cyclic group. However, | P| is bounded in terms of x(1) and the degree of
the field extension O(y) = @. Il zeZ(P} with o(z) = p, then yiz) = x(li,

where ¢ is a primitive pth root of 1. Thus s€ Q(x) and hence p — | divides

[Q(x): Q. Since |Q.:Q@| = (p ~ 1)p°~ ', it follows that if P s L, then
| G(x): ©f is of the form (p — 1)p' for some integer ¢ = 0.

(14.20) THEGREM Let|P| = p* where pis a prime and g = 0, Let y € Irr(F) -

be faithfut with x{1) = f and |Q(x): @| = (p — 1)p". Then
as(f = DAp =1} + (¢ + 1}).

Proof We use induction on /. If f' = 1, then P is cyelic and sinee y is
faithful, it follows that €(x) = Q.. and thus 1 = a — L. In this case, the
inequality is actually equality.
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Now suppose /= 1. Since P is an M-group, there exists  maximal
subgroup H and 9 ¢ Irr{H} with 37 = . Thus |P: H| = pand y,, = P
where the 9; are the distinct conjugates of & under P. Note that the fields
(3,3 are all equal and that sinee 9% @ y, we have O(x) = ().

Suppose Q) = Q(J). Let K; = ker 9. Thus (K, = 1 and ¥ is iso-
morphically contained in (H/K ) » - x (H/K,). The |H:K,| are all
egt:gl‘ say to p®, Thusa 5 pb + 1. Since %(1) = f/p. the inductive hypothesis

bsA(fip=Dip—H+0+Dfjp
and hence

ASph+lg(f=plp="D)+(+Df +1=(f—1Yp~1)+(+ 1)

Aas required,

The remaining case is where @(x) < Q(%). Consider the Galois group
¥ = F(O(3)/Q(y)) so that |4] = |Q(H): Q(x)|. In particular, ¥ < | is a p-
group. Since # fixes y, it permutes the irreducible constiluents 3ol xy.
Since the stabilizer of 3 in # is trivial, the orbit of § under @ has size %], It
follows that |%| = p and [Q(9): Qf = (p — p'* !, Also, the 8, arc #-con-
Jugate and hence ali ker 9; are equal. Since (Mker % = |, we conclude that
k(t:)r .f}= 1. We can now apply the inductive hypothesis to 3¢ Ire(ff) and
Optain

a~1={fip= Dp~ D+ +2fp=( - Wp~ 1D+ +1)flp
SU=Dp-D+@+0f-1
and the proof is complete. || oo

Wenote thatif p # 2, it is always possible 1o choose / in the above prool
s0 that Q(x) = Q(S). The incquality in Theorem 14.20 is best possible.

Proof of Thearem 14.1¢  Define the funclion a on positive integers by
g k) = 3 [k/p — 1)p'].
=0

lfim::: kAp — 1)p'] = k/ip — 1)p" and this inequality is strict for large i, we
ave '

afk) < (kf(p — 1))‘,‘;}“:;:1"" = kpflp — 11

and the second inequality in the statement of the theorem follows.

Since [x + p] = [x] + [v], we have afk + ) = ofk) + afl). We know
that y, is rational valued, where x is the given character of Gl yp = ¥, + X2s
whete the y, are rational valued, then working by induction on n we have
a < ofy{1)), where |P/ker x| = p™ By the usual argument, a < a, + a,
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and 5o
_ a = a{x (1) + aly(1) < aly (D + 25(1)) = {n)

as Jdesircd.

We may riow suppose that y,. is not the sum of two rational characters,
It follows that x, = 3., &, where the § €1rr(P) constitute an orbit under
the Galois group @ = %(0,./Q). Let 4 = £, Then ker & = ker £ for all {
and thus 1 = [ker ¢ = ker & and £ is faithful. The stabilizer in & of ¢ is
H QD ,./Q(E) and it follows that the orbit size r = [Qi€): O} = (p — 1)p' for
somet = 0, Let f = £(1) = {1} for all i so that n = {p — 1)p!f. Now

) =1 +p+p*+ oo+ pf
=(-We-D+[S+p + +pf
2(f=Dp-D+it+Df za

where the lust incquality is by Theorem (420, |1

As an application of Schur's Theorem 14,19, we prove the following,

(1421) THeoreM Lect G be g p-solvable linear group of degree n. Let
P & Sy1,(G) and |P: 0,(G)) = ", Then

as 30p = 1yl

The proof of Theorem 14.21 depends on some standard facts aboul p-
sojvable groups, The [irst iz ncarly trivial, namely that subgroups and lactor
groups of p-solvable groups are p-solvable. The second facl is a special case
of what is often called * lLemma 1.2,3" since that was the designation in the
paper of P, Hall and G, IMigman where it first appearcd.

(14.22) LEMMA (Hall-Aigman) Let G be p-solvable with DG) = 1,
Then Cg{0 (G € O,(G).

Proaf Let {f = Ou(G) and C = Cx0,(G)). Then C =G and C is
p-solvable, Let D = Q,{C) so that P <2 (F and thus D = H. 1T H 3 C, then
C/D is a nontrivial p-solvable group and O,(C/D) = 1,Thus O,(C/D) = 1 and
welet E/D = Q(C/DYand P8yl (E)sothat P > 1.

Now D & H © €(C) = N(P)and thus P = PD = E = G. It fallows that -

P =1 G, Since P > | and O4(G) = 1, this is a contradiction and the proof is
complete, ||

Proaf of Theorem 1421 Let U = 0,(G) and H/U = 0,(G/U), By the
Schur—Zassenthaus Theorem, U is complemented in A and we may choose a
complement K, Let N = N (K), Since ¢ permutes the set of complements for
7 in Fi and H is transitive on this set, it follows that G = NH = NU, Let
S eSyLIN)and put Gy = KS, We have Nn U = § = G and

IG:Ul,=IN:NnUl,=|Ge:N Ul
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We cluim that N = U = O4{G;) and thus it suffices to assume G = G,.
To prove the claim, note that N n U =<a N and so N A U =1 G, and thus
NAUSV=04G,) Since V=G, K=Gyand ¥V n K =1, we have
¥ & CK) and thus VU/U = CKU/U) = CH/U). Since OG/U) = 1,
Lemma (4.22 yields CIH/U) € H/U and hence VU/U < H/U and VU < I,
Since VU is u p-group and U e Syl,(H), we have VL = U and thus V = U,
Therefore, ¥ = N n U and the claim is established.

We muy now assume that G, = G so that K is a normal p-complement for
G. Let y be a faithful character of G with x(1) = n. For cach irreducible con-
gtituent 9 of yu, let § be the canonical extension of § to Tg(3 and let 3* =
()% e Irr(G). Note that any field automorphism of Qg which fixes 9 also
Fixes 9% and it fallows that 9* is p-rational,

Choose a sct & of representatives for the G-orbits of irreducible ¢on-
stiluents of y and define ¥ = ¥4, 5 9% Then

ne= Nz T HOG:I®] = 3 9%(1) = ).
e ¥ LY
Also i and i, have the same sets of irreducible constituents and so kery A K
= ker y n K = 1. Thus ker { is a p-group and ker ¢ € O,{G). Now appli-
cation of Schur's Theorem 14,19 to G/ker y yields the desired result.  §

Write a,(k}) = Y20 [kAp — 1)p'}. With further work onc can replace
the incquality a  a,m) in ‘Theorem 14.21 by a < afun), where it = §if
p=land p=ip=pifp=2 is not of the form 2 + 1, With these im-
provements, cquality ¢an be obtained for all . If G is solvable, this improve-
ment is duc 1o J, D. Dixon. The general p-solvable case was donc by 0. L.
Winler and depends on the results of Chapter 13,

Suppose G is & primitive linear group of degree . In other words, the
identity map is @ primitive representation in the sense of Chapter % By
Corollary 6,13, it follows that every abelian normal subgroup of G is central
and thus by Jordan’s Theorem 14.12 there arc only finitcly many possiblitics
for the group G/Z(G). Thesc have been explicitly enumerated for certain
small values of n, We give a sample of this type of result although this proof
is not typical,

(14.23) TheoREM Let G be a primitive linear group of degree 2. Then
|G ZUG)| = 12, 24, or 60,

Proof Write Z = Z(G) and let g€ Irr(G) be faithful with x(1) = 2. If
H & G is nonabelian, then xy € Irr(H) and it follows that Z(H) < Z(y} = Z.
Thus if ge G = Z, then C(g) is abelian.

s =
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Let & be: the set of maximal abelian subgroups of G. Then clearly G =
(J& and Z = (. If A, Be & with A ~ B = Z, then C(4 ~ B) is abelian
and contains both A and B. Therclore A = B and thus G is 4 disjoint union:

G=4u [J(d-2) !
Acy

For A& we have [y, x.] = 2 and [y, xz] = 4 Thus

2 xx)P =214 - 42| = 2|4 - Z| - 2|2

xeA=Z

This yields
IGl = ¥ |x0))* = Zzlx(xll’+ YT Il

ardi Acy xeA—-2F

= HZ|+2Y |4 - Z| - 2|¥)1Z)

Ac
42| + 1G] - [2]) - 25| Z]

where 5 = %], We thus oblain |G: Z| = 25 — 2. ) '
Now & is a unien of conjugacy classes of subgroups. If 4 € %, we want to

compute N = Ng(4), If 4 - N then N is nonabelian and yy € Irt{N). How-

ever, y, = 4 + pwith A ¢ . Lt follows that [N ; Ty(1}] = 2 and the restriction

of y to Ix{A) is reducible. Thus f,(2) is abelian and hence A = I{1), We 3

conclude that for all A €5, we have [N(A): 4] < 2, Also 4 = G. :
We now congider the group G/Z = G of order 25 — 2, Lot F =
{A/Z)Ae ¥} so that F partitions G and |F| = s Also, F iz a union of
conjugacy classes of subproups of G. Writc F = F, 0 Fyw - u .
where the 7, are the distingt conjugacy classes. Let a; be the commaon size of
the subgroups in & and let 1, = |97, _
It Bed,, then |G:N(BY = |G: B|/2 or |G:N(B)| = |G: B| and hence

(1) L={s— 1}a or f = s = 1ay.

We also have

2) rti=s

(3 Yt —D=2As— D1, ‘

and ally; = | and ¢; > 1. We may assume that @, < a; =< --. < a, and that
ifa, = a;, thent, =1, .

ta, >2 then ¥ tfg, = 1) = 25 1, = 25 which contradicts (3), Thus -

ay = 2and 1, = 5 1 or{s — |2 However, if t; = 5 — 1, then {3} yields
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f = 1, a contradiction, Thus {; = (s — 1)/2, If a; = 2, then fa = (5 — 1)2
forcing 13 = 1, which is impossible, Thus az = 3 If g, = 4, then

s —1)=1 =Zr,-(a,—l)a(s—l)/2+3ih

i=2
= (5= 12+ 3s — {s — 1)/2)
=2 — 1)+ 3,

a contradiction. Thus a, = 3 and 1, = (s — 1j/3 or 2s — Lya.
Suppose r; = 2(s — 1)/3. Then

32(.+r2=(s—l)/2+2(s—-l)/3=7(s—1)/6‘.=-5—1

and hence 5 = 7(s — 1)/6 which yields s = 7 and |G Z] = 12, We now sup-
pose that t, = (s — 1)/3, Since 1, + ty = 8 — 1)/6 < 5, we have r = 3,
Ifay z 6, Equation (3) yields

s~ 1) —1=Ftla,— D= fs— 12+ 2s = Y3+ 3 rdas — 1)
i3

= Mg — 16+ 5(s — 1, — Y
=T — i)}6 + Sz — 1)/6 + 5,
4 contradiction. Thus u, = 3, 4, or 5,
Ifay =3 =a,thenty < r,andsory = (v — 1)/3. This yields
SEh ALy =124 (5= 13+ (s — 1)3

and agains = 7(s — 1)/6and (G: 2| = 12, Supposeay, = 4.1fty = (s = 1)/2,
we have

SEE= D24 (5=~ )3+ (5= 12 dls— 13 > 5= 1

and thus 5 = 4. This yields |G| = 6, which is impossible since a3 must divide
|G| by Lagrange's thcorem, Thus 1, a (s — /4 which yields

SEGE D246 D3+ - 14 =13 = 1)1225— 1.

Thus 5 = IB(?- - 1)/12and s = 13 and |G: Z| = 24 iy this case.
The remaining case is a, = 5, Ifty = 2{x — 1)/5, this yiclds

SEl =245 — 13+ 2s— 1)5=37s — 1)/30 > 5 — 1.

since this has no integer sofution, we have I3 ={s = 1}/5 and
523 =130 5—1

and § = 31. This gives |G: Z| = 60 and the proof is complcte, |
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We mention that all three cases of Theorem 1423 can oceur If G =
SL2 3, we pet G/Z = 4, oforder 12106 = GLZ, 3 weget G/Z = E, of
order 24 and if G = 5142, 5), we get G/Z = A, of order 60, Tn facl, A,,
X,.4nd A, arc the only possibilities for G/Z,

Prohlems

(14.1) Let G be a lincar group of degree n, Show that there cxists another
lincar group G* af depree 2 such thal G/Z(G) = G*/Z(G*) and detfg™) =
for 9* € G*. Do this in such & way that G* is irreducible iff & is irreducible,

Hint  Let § be the n % n identily matrix and let § = {e/|aeC, o" =
det{g) for some g « G}, Consider G5 = GLin, C).

(14.2) let y e Ire(G) be p-rational and faithful and assume that
w) = kip— 1

for some k = p. Show (hat the Sylow p-subgroups of G are elementary
ahelian of order = p,

{14.3) Let G be an irreducible p-solvable linear group of depree p® = 1,
Let N = O,(G) and U/N = QG/N), Show that U is nonabelian.

(4.4} Let G bea linear group of degree n and suppose that n is nol divisible
by any prime power g = | such that g = 1,0, or —1 mod p where p is some
prime, Assurne Lthat G has a solvable irreducible normal subgroup. Show that
a Sylow p-subgroup of G js normai.

Hint Let £y e Syl 8) where § is normal, irreducible, and solvable
and consider € = C(Py)= G,

{14,5) Let G have a normal p-complement N and assumc thar a Sylow p-

subgroup of G is not normal. Suppose that G is a linear group of degreep — 1.
Show that NN ~ Z{G)} is a 2-group and thus N is nilpotent.

Hini  Let P €Syl (G), Show that Cy(P) € Z(N)

(14.6) Let G be a lingar group of degrec p — 1, where p is a prime. Suppose
there exists p-solvable M <1 G such thut M does notl have a normal Sylow
psubgroup. Show that G is solvahle.

{14.7) L&t G be an irreducible linear group of degree p 4 1 where p is an
odd prime. Let P e Syl,(G) and suppose P -4 G, Assume that G has a normal
p-complement, N. Show that p + 1 isa power of 2

Hints Let G be a minimal counterexample and let ¢ be an odd prime
divisor of | N : C.(P)|. Let @ € 8yl (N)and show that Ny({}) is abelian,
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(14.8)  Replace the hypotheyis that G has a normal p-complement in Prob-
lem 14.7 by the weaker condition that G is p-solvablg. Draw the same con.
clusion.

ity Let U = 0,(G) and MU = O (G/U). It iy 10 loss 1o assume
that G/M is a p-group and that O7(G) = G, Il U ¢ 2(G), let T = 142,
where A is a linear congtituent of y; and g is the given (aithful characier of G,
Show thut yp hus an irreducible constituent of degree pand that M ~ T2 M,

(14.9) Let G be a linear group which is generated by two ¢lements, x and y.
Suppose that each of x and y have only two distinet oigenvalues. Show that
the irreducible constituents of G {that is, of the given faithful representation)
have degree al most 2,

Hint 1T V¥ is a nonzero vectorspace over € and ¥, ¥,, ¥, and V, are
subspaves such that V' = ¥, 4 ¥, whenever i # j, then there exisls a subspace
U = Vsuch thatdim U = 2and U~ V, % 0 for all 1,

{(i4.10) Let G be a solvable linear group of degree n. Show that G has a
nilpotent normal subgroup of index gnat.

(14.11) Let p be a prime. Show that for cvery integer n = 0, there exists a
p-solvable linear group G of degree n with | P : O (G} = p*, where P e 8yl (G)
and

o = 'i [n/p1].
=1
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Some of the deepest and most powerful resylls in group representation
theory involve “medular” represcntalions, thal is, representations over
hields of prime characteristic, These ure important for al Jeast (wo rcasons,
First, if K, H =1 G, with K = H, and H/K is an elementary abelian p-group,
then H/K may be viewed as an FG-module, where F is the field of order p.
In this situation, the represcatalion theory can give direet structural ine
Tarmation aboul G, Perhaps an even more important way in which the chars
acteristic p representations of G are relevant is that they can give new in-
formation about the characteristic zero situation, This i5 especially the case
when |G| is divisible by p since then it is possible Lo oblain results which relate
the p-subgroups of G with the propertics of Irr{G).

Qur emphasis in this chapter will be on Lhe relationship between the
absolutely irreducible churacteristic p representations of & and Irr(G)
Following R, Brauer, who was the originator of this theory, we shall focus
our attention on charucters rather than on modules or representations. {In
fagt, we shall not even mention the indecomposable but not irredugible
modules which seem (o be crucial for many of the deeper results.)

The objective of this chapter is to familiarize the reader with the pringipal
definittons and the most basic results of the theary, We do not attempt to give
a comprehensive (reatment of the subject and wa shall nol prove cvery fact
that is mentioned,

We establish some notation which will remain fixed throughout this
chapter. Let R be the full ring ol algebraic integers in C and let p be a prime,
We construct a particular ficld F ol characteristic p by choosing 2 maximal
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ident M ;_pR of R anq scltinglF = R/M. (Note that therc is y certain amount
of arbitrariness here Since M 15 not uniquely determined,) Let s denote the
natural homomorphism R = £, Since pl* = p* =0, il follows thai char(F)
= p as claimed,

(15.1) LEMMA Let U = {eeCle™ = 1 for some me Z wi
and = be as abave, Then withpgml Let R, F

. (8) Uz R; '
b) maps U isomorphically onto 7%
() F is algebrajcally closed and algebraic over its prime field.

Proof Clearly U < Randso » is defined on U, ITa enai
, Pro c Aaell — {1}, then
primtive nth root of 1 forsomen > | with p¢n and hence W e

It x4t s Y x == r']:[l(-‘f — o).
. i=l :

Sctting x = 1, we conclude that | — adivides nin R. ITa* = 1, then (| —a)*
=0 ﬂnd~ thus n* = 0. Since p* = 0 and (p.m) = L, it follows that I* = ¢, a
confradiction. Thus « maps U isomarphicaily into F*, ‘

~ IfxeF thena = a* for some a e R and there exists monic f € Z[x], with
Jta) = 0. Let K = F be the prime subficld, Then 0# f*ekK[x] andj"n"{a:) =
fla)* =0 Thus £ is algebraic over X,

‘To c::mplele lh-:~ proof, let E be an algebraic extensjon of F, Then
U* S F" < E* and it sufices 1o show that E* = U* in order to conglude
tha% UY = F* and that F is algebraically closed, Let fie £4, Then f 15 alpe-
b;am over ¥ and hence Over K and thus g™ = 1, where m = | K{f)] ~ 1.
:cl)c;:epf:t':‘: .mld 80 U* contains m roots of x™ — |, Thus f e U®and the praof is

Continuing with the above nolation, let X be an F-representalion of a
group G iLct & be the set of p-regular elements of G, that is, elements of order
not divisible by p. We define a function @ % = C as follows, Let x g & and
‘let Enéay ... 8,8 F" be the eigenvalues of X(x), counting multiplicities.
(Thusf = deg Xand ¥ &, = (x) where Y is the F-character afforded by X.)
For each ;, thgre eXists 8 unique u; € U such that (ue)® = ¢, Let g(x) = E u;

The function ¥ ¥ = R & Cis called the Brauer character of € aﬂ'ordc::i
by X, Note that similar f-representations afford equal Braver characicrs and
that Brauer churacters are constant on conjupacy classes, Both of thesc
statements ru_llow from the fact that ¥(x) and P~ 'E(x)P have the same cigen-
values, Also, if x € 5, then @(x™') = (¥ since the eigenvalucs of X(x~!) are
the reciprocals of those of ¥(x) and for u € U we have (@ = (W™ ")* = oy,
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(152) LemMa Let X be an F-representation of G which affords the Brau::
character @ and the Fucharacter . For ge G, let x = g € . Then p(x)
= yig)-

Proof Wehave g = xy, where x, y € (g pkolx) and vly) is & power of p.
Replace X by 4 similar reptesentalion 5o a5 0 assume that ‘3:'(9) is in upper
trianpular form. Since X{g) = E(x)X(y) it lollows that the. eigenvalucs &, of
¥(g) can be factored, &; = gd;, where £,, ...,y arc the eigenvalues of ?(.1)
and (5, = 1. Since o{y) is a power of p, we have § = l and @ = &. Thus
¥lg) = W(x). That yi(x) = @(x)* is immediate from the definition af g, |

Lemma 15.2 provides one reason why we only botber to define Brauver
characters on peregular elements: this is sulficient Lo reconstruct the full
F.character afforded by X

Some words of caution are appropriate here. Given & group G and a
function, gt & — C, wherc & is the set of p-regular clements of G, it is rot
always meaningful to ask if ¢ is 4 Braucr character unless the ideal M < R is
specificd or some other additional information is given. Examples exisl where
¢ is 2 Braver character with respecl Lo some choice of M and is not one when
some other maximal ideal is chosen. Also, il ¢ is an automarphism of 1he
cumplex numbers and ¢ is « Brauer character of ¢, then ¢ need not alsobe a
Bryuer churacter where o7 is defincd by ¢*(x} = ()" for x e,

(15.3) Lemma Let ¢ be a Braver characler of G. Then &, the complex
conjugate function, is also a Braver characrer,

Proof Let X be an Fareprescntation affording ¢, where F = R/M, as
usual. For g e G, definc {g) = ¥y~ )T and observe that ¥ is ﬂnj;_ -represen
tation of G. I &,,..., &, are the cigenvalues of E(g), then g, oo 8y
are the cigenvalues of ¥(g)™' = X(g"') and hence of Pig). The resuit now
follows. 1

1

Let X,,.... %, be a sct ol represcntatives for the similarity classes of
irreducibie F-representations of G and let ¢, be the Brauer character aﬂ‘ordyd
by ¥,. We say (hat the ¢ arc irreducible _Br_aucr characters and we write
(Br(G) = {y}. When we use this notation, it s understood that a partiular
prime p and maximal ideal M have been fixed.

It is routinc to prove thal sums of Brauer characters are Brayer char-
acters and that every Brauer character is of the form ), #¢:, whgrc theme?Z
gre nonnegative and not all zero, To prove that the ¢, are linearly mdc?tr_\dent
we need the following faet from algebraic number theory, Although it is not
terribly deep, we omit the proof.
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{154) LeMMA Leta,, ..., &, be algebraic over @ and let § be a proper
ideal of R, the ring of algebraic integers. Suppose that not all &; = 0, Then
there exists f € € such that fu € R for all § but not all e e 1.

Proaf Omitted. |

{155) rueoREM The irrcducible Brauer characters ¢, are distingt and

lincarly indepcndent aver €. Also, if ¥ a,¢4x) = 0mod M for all x € & with
@ € R, then all o, = O mod M.

Proof We prove the second statement first, Singe the X, are absolutcly
irreducible, we have X(F[G]) = M, (F), where f; = deg X,. 1t follows that
we can choose b, e F[GT, with ¢,(b) = 1, where i, is the character afforded
by &,. Also, by Theorem 9.6, we may suppose that (b)) = Qif i # j,

We have Y apfx) = 0 mod M lor all x € 5 and thus Y a,*¥ () = O for
all g& G by Lemma 15.2. It follows that 3, a*(h ) = 0 for all j, and thus
&;* = 0 for all i, This proves Lthe assertion.

Now let E be the algebraic closure of @ in € and suppose that ¥ ay¢; = 0
with o, E. [f not all 2, = 0, we apply Lemma 154 and choose ff with all
B, € R but not all Bz, € M. Since ¥ {fz,)o; = 0, this contradicts the first .ar
of the proof. Thus all @, = 0 and the ¢, are linearly independent over E,
Since the o, have valucs in E, il follows by elementary linsar algebra that
they remain linearly independem over any exiension fiekd of £, |

.

The principal reason that Brauer characters are important is thal they
provide 4 link which connects 1rr{(7) with the chuaracleristic p representations
of G.

(15.6) THLORSM Let y be an ordinary charactcr of ¢ and ist # denotc the
restriction of ¥ to &, the set of p-regular elements of G, Then § is a Brauer
charaeter of G (for any choice of M),

In order to prove Theorem 13.6, we need to consider a somewhat larger
ring than R. As always, we assume that we have fixed a particular maximal
ideal, M = pR, Let R = {«/f|o, feR, B¢ M} = C and observe that B s
aringand R 2 R, Let M = {o/flac M, fc R — M}. Then M is an ideal of
R and every element of § — A/ has an inverse in K. Tt follows that ¥ is ibe
unique maximal ideal of B, We call R a ring of local fategers for the prime p.

We extend the homomorphism «; R — F to B by defining (x/f)* = a*/ff*.
Note that 4 is the kernel of this extension and M = M ~ R.

(15.7) LeMMA (Nakayama) Let R and A7 be as in the preceding and let ¥
be a finitely generated R-module, Suppose v = VM + U for some sub-
module [/ = V, Then [ = ¥,
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Proof Since V is finitely generated, wecan choose vy, #g, ..., 1, € Vsuch
that ¥ = ¥ v, M + U. Do this with the minimal possible n. If n = 0, then
U = ¥V and we are done. Suppose n = 1 and write

B, = et o,
[=1

where m e M and we U, Thus
n—1
vl ~ moe ¥ oM+ U
i=1
Sincem, € M,wehave | — m_ e R — &7 and thus 1 — m, isinvertible in & and
Ve Y70 oM + U. Tt follows that ¥ = Y72} o, 4 + U and this contradicts
the minimality of n and completes the proof. |

Suppase X is a C-representation of G with the property that all entries in
the matrices X(g) for g € G lie in K. We ¢can construct an F-representation X*
of G by setting X*{y) = Xig)*, that is, we apply » to every'entry of X(g).

The following includes Theorem 15.6. '

(158) ‘rusorem  Let X be a Corepresentation of G, Then there exists a C-
representation {} similar to ¥ such that all entries in P(y) lie in R far all
g€ G. 1f ¥ is any such representation, then the F-representation Y)* affords
the Brauer character § where y is the ordinary character afforded by X (and
by ).

Proof  Let £ be the algebraic ¢closure of (4 in €, By the results of Chapter
9, every C-representation of & is similar to one of the form 3% for some E-
representation 3. It therefore sullices Lo assume that X is an E-representation
and to produce a similar E-representation 9 with entries in K.

Let V¥ be an E(Gl-module corresponding to X and let »y, ..., ¢, be an
E-basis for V. Let W be the R-span of the finite set {v,g|1 =i < n,geG}so
that W is a finitely generated B-module which is G-invariant, Let

n W W/WK

be the natural homomorphism and view W/WAF as an F-vector space
via {(wr)a* = (wajz for ac B Let {w;t} bc an F-basis for W/WM so that
(3w, Ry = W/Wh and W = WAL + Y w;R. By Nakayama's Lemma
157, we have W = ¥ w; K and thus the w; span V' over E since W contains
an E-basis for V, -

We claim that the w; arc linearly independent over E. Suppose that
2‘ wya; = 0 with aye E and not all &) = 0. By Lemma 15.4, we can multiply
by a suituble f € £ and assume that sit a,e R = R but that not all &,* = 0,
Now 0 = (Y wa)r = T {w;t)a* and this contradicts the linear independ-
ence of the w;t and proves the claim. .
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Now let 9 be the E-representation of G corresponding to V' wi ;
to the basis {w;} 50 that Yig) = (¢11;), when w,g = zl:jwjau.'gHowe::r:Irl.l-l\rvr;:;hepBl::/l
= Y w;R and 50 all @& R. ‘This completes the proof of the first ass;rtion‘
. Now for p-regular g€ G, we niced o compute the eigenvalues of
?? (g} = D(@*. Let f be the characterisiic polynomial of P(g) so that
t (J;:) = dfl:l(xl = ‘llfliq)}. Ther‘: feRx] and f* £ F[x] is the characteristic
]pin: %n(;méak of T;)(g) ,\:/me J(x) =[x ~ 4)and note that the eigenvilues 4,
i <R hen /*(x) = f](x — 4;*) and hence the cipenvalues of ()
:are the 2%, Thus j(g) = ¥ A is the valuc of the Brayer character afforded by
D* at the clement g. The proof is complcte,

In t'he foregoing proof, it is not the case that the character x vniquely
determines the F-representation Y)* up to similurity, It is possible that xis
afforded tfy :?nnther C-representation 73 with entrics in & such that H* and 3;
are not similar over £, Of course, ¥ does uniguely determine the Brauer
characlc'r £ and we may write 7 = ¥ n,@ where @ runs over IBr(¢;) and
.0 = n e Z. The cocfficients Rty are uniquely determined because of the lincar
Inda._:pendencc of 1Br((7) and since 7, 1% the multiplicity of a particular irre-
ducible F-rcprehf.cntalion as a constituent of P*, it follows that P* and 3*
have the same irreducible constituents with the same multiplicitics. Since

D* und 3* need not be compietol : -
\ - cly reducible, it . )
sitnilar, pletely » it does not follow thut they are

(13.9) DEFINITION Let ye Irr(G) and Jet # be the restrict;
€ rest -
regular elements of G, Write ! restnetion ofx (o the p

2= 3 duw

@ 1Brii#)

The uniq f.‘.'ly d e nn i i
gatl [+ IIIIEHCF. dre he oY) Sifi i
L. iﬂ‘i d. no [+ v 5 dl"ﬂ t e mpesdon ”u“lbf’ ¥

\‘.Vc view the decomposition numbers ag forming a |Irr(G)| = |IBe(G)|
matrix, called lhc.: decomposition matrix, Although the decomposition numbers
are nol even delined until the maxima) idea) M js chosen ii is @ fact (whose
proofl we omit) that the decomposition matrix of € for the ;jrimc Jis uni uc‘l
determined up to permutations of the rows and columns, e

(l‘.?.lD) THEOREM Tl"n: decomposition matrix (d,,) has linearty independent
columns. Also, IBe(G} is a basis for the space of C-valued functions defined on
pregular clements of G and constant on conjugacy classes,

Progf Let V be the space of p-regular class functi
s functions and let W < |V he
the span of I1Br{G), Let U be the span of the columny of (dy) 50r that

dim U < IBHG)| = dim W = dim ¥,
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where the equalily follows from Theorem 15,5, The theorem will follow when
we show that dim V = dim U. Tt thereforc suffices to find a one-to-onc linear
map from the dual space ¥ of V into U. The clements of U arc columns
indexed by y ¢ Irr(G), For we P, define u = c?l(a(z))‘. To show that ue U,
observe that a(f) = a(Y, d,¢) = Y, d o al). Yhus u is a lincar combination
of the col(d,,) for ¢ ¢ 1Br(G). We map P=Uby m—rr.:ol(u(z}).‘ ,
I «(f) = 0 for all xeTrr(G), we ¢laim that & = 0, To sec this, lot ¥¢
and cxtend 910 B class function 9, of G. Write 8, = 3 a,xsothat § = ¥ a, 4
and a(3) = 0 as desired. The result now follows. |

(15.11) coroLLaRy The number of conjugacy classes. of pu-_regular ele-
ments of G is equal to L1Br(GY]. This is also the nunﬂ?cr o{snmllamy classcs of
irrcducible K-represcentations of G for every splitling Held K of character.
istic p.

Pronf The first assertion is immediate from Theorem 15.10, To prove
the second statement, we may feplace K by its algebraic plosurv.': by Caro‘lu
lury 9.8. Assuming that K is algebraicaliy closed, it contains an |F:Dmurphlc
copy of F which is an algebraic closurs for Z,. By Corollary 9.8 again, we may
agsumne thut F = K. The result now follows from the faet that nonsimilar
irreducible Ferepresentations afford distingt Braver characters. [

{(15.12) comrovLLary If g e IBr(G), then there exists x € Irn(G) with d,, # 0.

Note that for each y & Trr{), it is rivial that there exists ¢ € IBr{G) with
d #05incc0;¢x(l)=?:d o{l1). N o
”The interesling case o thil:lhmry is when p|[G1. The reason for this is
given by the following,

(1513 rHEORFM Suppose pb ||, Then IBH(G) = Irr(G)

' i i cible and
Procf  In thiy case, the group algebra' F[!:J} is complctely reduci
thus by Corollary 1.17 we have |G| = dim F[G] = }, ('dcg I.)_’, where the
X, arc a set of reprasentatives for the similarity classes of irreducible F-repre-
sentutions. If X, affords ¢, e IBr(G), then deg X; = (1) and hence

2
Y elr=|Gl= T x(i)’=£(>;d,.,wm)

wclBril) P T ] x
= T oD Tdyd,.
@, j = THOG) 4

If g # p, then T, dyydy, = Oand if ¢ = p, then §, d,,d,, = 1 by Corollary
15.12. It follows that these incqualitics are all cqualities, _ _

We now have 3, (d,,)* = | and hence for each ¢, there is @ unique ¥
such that d,, # 0, and in fact dy, = 1. Since Y, d,d,, =0 if @ # p, it
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fallows that for cuch x & Irr(G), there is a unique ¢ with d,, # 0. We conclude
that y = § = ¢ and the result follows. |

A necessary condition that a fusction % &  C be a Brauer character ig
that for cach subgroup H = G with A |H1, the restriction 8, is & Brauer
character and hence is an ordinary character of 17, This is something which
can be checked.

It is triviat that every g e 1Br(G) is a C-linear combination of the Braner
characters § for y € G. This may be scen by extending ¢ to a class function of G.

(15.14) THEOREM Let ¢ € TBK(G), Then w i& a Z-linear combination of
{21x € Ire(G)}.

Proof Extend ¢ (o a class function ¥ of G by sctting Hg) = ¢lg,). It
sulfices to show that § is 4 gencralized character of G. We appeil to Brauer's
Theorem §.4(a).

Let E g G he elementary and writc E = P x Q, where P ig a p-group and
PYIQ|. I g e E, writc g = xywith xe Pund ye Q. Then My = @{y) and s0
By =1, x wq. By Theorem 15.13, ®q i8 a character of @ and bence §, is a
character of E. It follows that 9 is a peneralized character and the proof is
complete,

We digress to show another way in which Theorem 1513 gan be used.

(15.15) LEMMA Let E be an algebraically closed field of characteristic not
dividing | M|, where ¥ isa group. Let [ act on N and suppose thar Cyfn) = 1
foralll £ neN.Letfibca nonprincipal irreducible E.representation of N
and writc DXn") = B(n) for ne N and he If, Then the represeniations Y°
arc pairwise nonsimilar for e H,

Proof Let K be the algebraic elosure in £ of the prime sublield of E.
Then D = 3 for some irreducible K-representution 3 of N1t suffices to
show that the 3" are pairwise nonsimilar by Corollary 9.7 and hence we may
assume that K = £,

If char(E) = 0, then (up ta isomorphism) E <  and the representations
(PP are pairwise nonsimilar by Theorem 6.34 and Problem 7.1 which proves
this case,

Suppose char(E) = p. Choosc 1 maximal ideal, M 2 pR of R and tet
F = R/M as usual, Then F = E and we may assume F = E. Let 9 afford
@ € IBr(N) = Ire(N). By Theorem 6.34, the characters ¢* for he H are all
distingt and the result follows, |

The following result is often quite useful.
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(15.16) THEOREM Lt (i be g Frobenius group with kernel N.and let K bea
ficld with characterigtic not dividing | N|. Let V be a K[G]-module and sup-
posc that Cp{N) = . Let J7 be a Frobenius complement for G, Then ¥ has a
basis which is permuted by 1 with orbils of size |H|, Also, if H, = H, then
dim Cy(Hg) = |H : H,| dim C,(H).

Proof The sccond statement follows from the first since if b 15 a basis
permuted by H, then dim C(H ;) is cqual to the number of opbits of the action
of Hy on b, Since each orbit of Hy on b has size | Hy|, the assertion follows,

To prove the first statement we argue that it suffices 10 assume that X is
algebraically closed. Let X be a K-representation of & corresponding to V
and let £ = K, The condition that C(N) = 0 is equivalent to the restriction
X, having no principal constituent and this property is inherited by (¥F),
by Thcorem 9.6. The conclusion of the theorem is equivalent 1o X, being
similar to a represeniation *}) in block disgonal form with each block being
the regular representation of A. If we can prove that (X,) and DF are similar,
then X, and ) are similar by Problem 9.5, It follows that we may replace K
by any extension field and thus we assume that K is algebraically closed,

Now let .# be 4 representative sct of irreducible K{N]-modutes. Since H
acts on the sct of similarity classes of K-representations of N, we can define a
corrcsponding action of H on 4. Let .#, © .# be a set of representatives for
the H-orbits of nonprincipa)l K[N]-modules in . In the notation of
Definition L.12,let

W= Y MV¥cV.
My Ny
We claim that V = 3 ..., Wh, This will suffice to prove the result since
we obtain a basis for ¥ by choosing any basis for W and taking all /1 -lrans-
lates. To prove the claim, observe thil A = [ )y, (#o)* v (U], where Uisa
principal module, By Lemma 15.15, this union is disjoint. Since ¥y has no
principal constituent, Lernma 1,13 yields

VEZ,M( ¥ M(V)).

M (M)

The result now follows from Lemma 6.4,

We now resume consideration of the general case where pecan divide | G).
We introduce the concept of “blocks™ which is at the heart of Brauer’s

theory.

as in Chapter 3. The lunction e, is determined by its values on the conjugacy

Forcach y € lrr{G), we have the algebra homomorphism w,: ZIC[G]) - €
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class’ sums K, which form a basis for Z{C[F]). Furthermore, the valyes
ru,(!\,-) lie in R, qu Y elrm(G), write ¥ ~ o if WK = w, (K )* for all i,
This clearly establishes an equivalence relation on Irr(G).

(13.17) * puFmrnon. A p-block of G is a subset B < Irr(G) w [Br() such that

" @) B~ Ir(G) is an equivalence class under the relation ~ defined
above,

(t) BnIBKG) = {pe 1Br(G)|d,, # O for some ye B Irr(G}.

From its dcﬁnitipn, it appears that the equivalence relation ~ on Irr{G)
depends on the choice of the maximal idea] M. In fact, this is not truc,

SISJS) THEURELf 'Lc:l_ Y. ¢ e lrn(G). Then y and y lie in the same p-block
i w,(K) — w,(K) lies in every maximal ideal of R which contains pR for
cvery class sum K,

Il;roaf The “if" statement is clear, Assume ¥~ ¢ and tix K, Let ¢ =
(1 - 4 # i
viv f](] ﬁi“o ;ul,,,(l\}. We shall show that o  pR for some Integer n and the result
Let % = W{QJ,”/Q). the Galois group, and let 6 € 9. Lot £ be a primitive
iG!lh rool of unily so that ¢" = £” for some m, with {m, IGly=1.Letge G
bs in the class with sum equal 10 K and Ict £ be the sum of the class containing
? : We have x(g)a = dg"). Also |Clg)| = |Cly™| sinee (gD = (4™ I
0.. ows that w(K)* = w,(L) and similarly wy(K)" = my(L). It follows thay
o =@, (L) — w{Lye M since y ~ W,
Let f(x) = ﬂ“? (x — o"ye{Q N R)[x] = Z[x]. Since a"e M for all
o € %, all of the coeflicients of fexcept for the leading one liein M - Z = %4
Thus 0 = f(x) = a” mod pR, where 1 = |1. The proof is now complete. |

Although it is clear fromn the definition that every y € Irr(G) lies in a unique
p-block, trge analogous statement about 1Br(G), though truc, is not so abvioys
To prove it, we relate the p-blecks of G to the F-algebra, Z(F[G]). .

We cxtend the map »: R ~ F to a ring homomorphism s: R[G) - F[G]
by setling g* = g for g £ G. (Here, R[G] is simply the R-span of the group
f‘.-lcmems in C{G1.) Sinee the ¢lass sums K ; form a basis for Z{C[G]) and their
images K,* e F[G] form a basis for Z{F[GY]), it follows that Z(RIG]) =
R[G] n Z(C[GT) maps onto ZIFLG) viy ».

J‘\Inw suppase y € Ir(G). Then w, maps Z(R[G]) 10 R and we can define
@ " ZF[G]) = F by setting w,(z*) = w(z)* for ze Z(RIG]). This is well
f]eﬁ_ncd sinceif 2y, z; € ZR[GY), with z,* = zz% thenz, — z, has coeﬂ’ll:icnts
m M and thus (wy(z, ~ z,)/* = 0.t is trivial to check that oM I(F[Gl) = F
15 an algebra homomorphism and thar if * e Irr(G), thc:ia wM = o i
X~ ithatis, iff y and ¢ lie in the same p-black, ! *
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Let BG) be \he sat of p-blocks of G, I Be BUG), et 1y = w,* for
¥ € B~ Jer(G). Thus B w 1, is a8 one-lo-one map from BY{{) inlo the set of
algebea homomorphisms Z(F[G)) — F.

{1519) Turopem Let @ € IBr(G). Then ¢ lies in a unigue p-block . 1Y is
an irreducible Ferepresentation which affords o, then Diuy = 20 fov all
ue ZIFLGIL

Pronf By Corollary 15.12, J,, # 0 for some y € hrr{G). Let B e BIG),
with y € B, Then @ € B. Let ) ufford , We will be dont when we show thay
M) = Agli)f for all w e Z{F{G]) since this equalmn uniquely determines 2,
and thus uniguely determines 8,

Lel X bo u C-representation which aﬂ'ords ¥ and which has entries in &
(Theorem 158), Thus X% affords (he Brauer chavacter § and by the lincar
independence of IBr(G), it follows that 9 has multiplicity d,, > 0 as a
constituentof X* Now Ity € Z(F{G))and writeu = z* lorsome z € ZIR[G1).
Then

) = Xiz)* = (2 = o3 *(upf = Azl
Since ¥) {s a constituent of X7, the result lollows. |

We defing a graph with [rr{{7) as its vertex set by linkiog 7, @ € 1rr(G) iff
therc exists ¢ ¢ 1Br(G) such that d,, and 4, are both nonzero. This is called
the Braver graph, 1f x and ¢ arc linked by, it follows that 3 and % lie in the
same p-block, namely the unique one which contains . This proves the
following.

(15.20) coroLLaRY Let B bea pblock of G, Then B ~ 1rr(G}is & union c.f
connecled components of the Brauer graph.

We shall sce (hat in fact # n Lrr(G) is o single connected component.
One ol the principal benefits of ¢ongidering blocks in various applications
of the theory is (hat in eertain cirgumstances we ¢an replace cquations like
Y Haxy) =0

rulertriy
{which arisc from the second orthogonality relation) by equations like
E I{N)Z(_y) = 0.
releeltiys B
where B is a p-block. In particulur, this holds whenever x, and y, are not
conjugate in 6. We shall prove a wenk form of this " block orthogonality.”
For each ¢ e 1Br(G) we define

th, = Z P
TEIrr(G)
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The ©'s are called pmjecrlve characters of (. {There is ho connection with
projective representations in the sense of Chapler 11, hut thete is a connection
with prajective modulcs in ring thoory, The @'y are also called  pringipal
indecomposable characters” in the lileralurc)

(15.21) weMma  Lel o = Lrr{(G) be a union of connected corponents of
the Braucr graph and let @ = {¢ € 1Br(C)| 4, # O Tor some xe o}, Lot
%, ye G with ppe(z). Then

¥ ) = }: @(xYB [y,

reaof
Proof For x e of, we have
) = ¥ d, plx)
pod
since d,, = Oforall ueIB{G) — X Also, if ¢ c @, then
¢ = Y da0)
youf
since d,, = (O for all £ € Ire((G) —
Now

Z X(»’C)x(_y) = E dm‘P("}X(_J’J = E ‘P(xm

rea el ped EY
and the proof is complete. ||

(1522} corowLaRy For each ¢ eIBr(G) we have @ (y) =0 il play).
Futthermore, | P| divides &,(1) where P & Syi,(G).

Progf Let x e G be p-regular and let p|o(y). By the second orthogonality
relation we have

Y ) =

yeler()
By Lemma 1521 with & = Itr(G) and @ = JBr((), we conclude that
z Px)b,ly) = 0
»alBr{Q)

Since this holds for all p-regular x ¢ G, the linear independence of TBr(G)
yields @_(v) = 0 for all o,
The seecond statement follows since | PI[(®,)p, 1] = @,(1). |

(1523} coroLLARY (Weak Block Orthagonality) Lelx, y e G with pfa(x)
and p|o(y). Let B be a prblogk of G, Then

Y =0

= By
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Proof Apply Lemma 15.21 with & = Irre(G) ~ B and % = 1Br{G) ~ B.
Since @_{y) = Ofor all ¢, the result is immediate. || .

Before going on to develop more of the theary of blocks we digress to give
an application of what we have already done. .

(15.24) THEOREM ({Brawer} Let G be a simple group of order p°g°r where
P, 4, r are distinel primes. Let 8 e SyL(G). Then § = Cy{5).

The p-block containing 1,; is called the principal block.

(15.25) Lemma Let G be simple and let B be the i)rincipal p-b]oék of G,
Suppose x & B ~ frr(G) and x(1) is a power of p. Then x = 154,

Proaf  Let g e G and let K € CLG] be the sum of the elements in Cl(g),
the conjugacy class containing g. Then @, (K) = |Cl(g)| and since y and 14
li¢ in the saume p-block, we have

() W = wK)} = |Clig)] mod M.

Nowlet P e Syl,(G). If P = |, thensinee y(1) divides |G|, we have x(1) = 1
and by simplicity y = |;. Assume then, that P = | and take g € Z(P) — {1}.
Then pFiCHg)| and so [Clg)] #£0 mod M since M ~Z = pZ. Thus (»)
yields y{g) # 0. However (¥(1), IClig)|) = | and Burngide's Theorem 3.8
yiclds that g e Z(y). Sincc g # | and § is simple, it follows thay x = 1;. 1

Proof of Thearem 15.24 Suppose €g(8) = 8. Then there exists x€ G
of order pr or gr, Say o{x}) = pr and let B be the principal p-block of G. By
Corollary 15.23, we have '

—~1= 'Y dmm+ LT

re ¥y P Yt
wlzthy I#fu;i!rﬂh

We claim that the second sum i3 zero. If ye B m Ier{G) and x # 1; and
g4 x(l), then ripl) by Lemima 1525, Since r|o(x), we have x(x) = 0 by
Theorem 8.17 and 1he claim follows, We conrclude that — 1/q 15 an algebraic
integer and Lhis contradiction completes the proof. ||

For y e lriG), let e, € ZWCLG]) be the idempotent corresponding to .

By Theotem 2.12 we have
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Note that in general, ¢, ¢ B[G] (where R isa ring of lacal integers for p) and
s0 we cannot find idempotents in F[G] simply by applying « to .. Since
€yly = Oif ¥ # 4, sums of the various e,'s are also idempotents and fve shall
consider when such a sum lies in R[G]. Note that if & < Ire(G), then the set
# can berccovered froms = ¥, e, sinceo = {y¢ Irr(G)|se, # 0).

(1326} THROREM (Osima) Lctof bey connecled component of the Braver
graphand lelf =3, e, Writef = ¥ a,g. Then

(@) a, = (/|G Y, . v x()i(@);
{t) a,eﬁfurangzécf; Ko
(€) a, = 0if pleig).

Proof  Statement (a) is immediate from the formula for ¢, in Theorem
2;.12‘ Iféy((l;;:mmn 15.21; we have u, = (1/1G1) ¥, w 0(1¥6,{g), where @ =
¢ eIBril)|d,, # O for some y e ). If plofg), then . (g) = O by C
15.22 and (c) follows. o) = O by Corollary
Now assume that pfo(g). Lemma 1521 then yields

a; = (1/1G1} 3, ®y(1)iply).
wel
However, | P| divides @,(1) where P e Syl (G) and thus O (1)/(G|e B Si
. E: R. &
@lg) € R, it follows that ;‘, e R and (b) is priwed. [ ] «el e

(15.27) THEOREM The connected components of the Brauer graph are
exactly the sets Irr(G) ~ B for p-blocks B. Furthermore, every sel o = Ier{G)
suchthat } . , ¢, € R[G] is a union of sets of the form Irr(G) ~ B,

Proof We prove the second statement first. If x €Irr{G} is afforded by
X, then ¥(e ) is the identity matrix and Xley) = 01l # x. Thus w (e )= 1
and ayfe,) = Ofor y # . Writef = 3, ¢,.Itfollows thaty € «/iffes( /) = |
and otherwise e (f) = 0. Thus ye .o iff w (f)* # 0. Now iffeR[xG] then
all w,(f)* are equal as ¥ runs over Irr(G) m B for a block B, The ass«;rtion
follows, .

Now let o be a connected component of the Brauer graph. By Theorem
15.26, Y ¢, € RG] and thus o is a union of sets of the form Irr(G) ~ B.
Since gach Irr{G) m B is a union of connected components of the Brauer
graph, the resuil follows. ||

We_ now have three diflerent characterizations of the sets B Irr(G).
In addition to their definition as cquivalence classes under =, they are also
the connected components of the Beaver graph and they are the minirmnal
nonempty subscts & = Irr(G) such that ¥, , e, € R[G].

The following is a strengthening of Theorem 15.14.
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(15.28) LeMma Lel Bhea block ol G and let e [Br{(G) » B. Then ¢ is a
Z-linear combination of Braver characicrs of the form § for y € Ire(G) = 8,

Proof By Theorem 15,14, there exist b, £ Z such that 9 = Y 0 qey 1, 0

Thus ¢ = 9y + 4, whetse
S= ¥ bi und = F hi
goir(iin P yelrGy— R

Now we express 8, and 9y in terms of 1Br(G) using Lhe decomposition
numbers d,, for g e 1Br(G). Il y ¢ B, then 4, = 0 when g ¢ B and hence 3y
is a lincar combination of g & B. Similarly, if y ¢ B, then 4,, = 0 when pe B
and henee 9, is a lincar combination of j ¢ B. The equation = 8, + 34 and
the linear independence of 1Br(G) now yicld ¢ = 85 and the proof is com-
plete.

(1529 THCOREM  Let 7 be a peblock of G. Then
1B~ Ird(G)] 2 | B o TBHG)L,
Let y € B v Tir(G). Then the following are equivalent.

(a) |8~ Ire{®)] = | B~ IB{G)].

b} prUGI/()D-
(€ Hn G = {2}

Also in this casc, B ~ 1BKG) = {§}.

Proof Let D ={(d,,) be the decomposition matrix and let Dp be the
submatrix corresponding o the rows and columns indexed by elements of 3,
For each ¢ & B, the part of the corresponding cotumn of D outside of Dy
consists of zeros. Since the columns of D arc linearly independent by Theorem
15.10, it follows that the coluting of Dy are lincarly independent and thus
Dy has at lcast as many rows a8 ¢olumns.

Now assume (a), Then Dy is a square nonsingufar matrix snd we let
Dyt = (a,,) For fixed y € Ier(G) n B, we have

z an;m- = Z ( ): "ﬁwaa:)': =X
@pcH el A hriti)

oa B

and 56 y is 4 linear combination of the @, and hence vinishes on elements of
order divisible by p (Corollary 15.22), |[ P & Syl,(G), then | Pl(xp. 1¢] = 2(1)
and {b) follows.
Assuming (b) we have
e, = VIGD L 2y « RG]
Wed

and 50 B n Ir{@) = {y} by Theorem 15,27,
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Finally assume {c). Then
Q< |IBr(Gy B 5 |IrG)n B| = |

and (a) follows. Also, if 1BHG) » B = {¢p]. then ¢ = by for some be 2 by
Lemma 1528, Thus 2 = d, o0 = d,,bg and d, b = |. It follows thaid,, =
and the proof is complete. |

Note that Theorem 15.29 provides an allernate praof of Theorem 8,17,
Also observe that if pf| G|, then each peblock containg a uniguc irredueible
charagter,

We use Theorem 15,26 1o obtain further connections hetween the p-blocks
of G and Z(F[G]). For cach B € BIG), write fy = ¥, g ireiay €, This Osima
idempotent lics m ZIR[G]) and we let ¢, = f,* € Z{F[G]).

(15.30) THEOREM We have (he following,

(a) Apleq) = L and Ag(eg) = 0 for blocks B # B

(h) The e, are idempotents and eygeg = 0 for B = B

{€) epis an F-lincar combination of class sums of p-regular classes.
) Yes=1

(8) Ifiglz) = 0 for alt Bc BKG) then 2 is nilpotent.

(f) The Ag are all of the algebra homomorphisms Z(F[G]) — F.
{g} Every idempotent of Z{F[G) is a sum of some of the ¢,.

Proof (a) For yelrdG), we have w,(fz) = 1 if y B and otherwise
wlfy) = 0.1y e B, then w,* = ip and (a) follows. '

(b) Since fz fp = dga-fz we have ggep = pp ey, Since Lplea) = 1, we
have ey # 0.

(¢) Immediate from Osima's Theorem 13.26(c),

(d) an= Zf‘l - | and thusZe, - 1* =1,

(¢) Let ) be any irreducible F-representation of & and let P alford
@€ [Br{G) n B, Then P2) = Agz)] = O by Theorem 15,19, Thus z is in the
Jacobson radical, JIF[G]) and hence is nilpotcat (Problem 1,4).

(1) Let & Z{F[G]) = F be an algebra homomorphism, Then ker 4 has
codimension | and 50 Z(F[G]) = ker 1+ F. 1 and i is detcrmined by its
kernel. If 4 # A, then ker Az & ker A and we can choose 7€ ker 4, with
Mzp) # 0. Assuming A¢ {ds}, let 2 = [] zs. Then dgiz) = 0 for all B and
hence z is nilpatent by (e). However, A(2) = [] A(zy) # 0. This is a con-
tradiction.

(8) Let e e Z(FIG]) be an idempotent, Then e = e 3 ¢y = 3. eey and
it suffices to show that sither eey = 0 or ¢¢y m ey, Suppose eeg # 0. Then
since geg is not nilpotent and Az(eey) = 0 for B’ % B, we have Ag(eey) # 0
and thus Agleey) = 1 = Agleg). Thus Agfepl = ¢)) = O for all B’ ¢ BG) and
sinceeg{l — &) = (¢l = £))*, wehaveeg(] ~ ¢) m Oand the result follows. |




278 Chapter 18

We now discuss some of the connections between block theory and the
cellection of p-subgroups of G. We work in the situation of Thearem 13.30.
If " iz a conjugacy class of G we consider the Sylow p-subgroups of Csix)
for x & ¥, These are galled the p-defect groups for X, They constitute a
conjugacy class of p-subgroups of G. The colleclion of p-defect groups for %"
is denoted 34,

We use the notation X for the sum in F[G] of the elements of the
class 2" so that the ¥ form a basis for Z{F[G]). If B < BNG), writc 5 =
Y adA)H" so that gy is & uniquely determined function from the set of
classes of G into F, In fact, ay ) = (1/1G1) 2 yerency mp X{(Dxlg))* for g e
by Theorem 15.26(a). By 15.30(c) we have a,(X") = 0 if % does hot consist
of p-regular clements.

Since 1 = Agley) = ¥ ag(A V54,1 follows that for each B e BI(G), there
exists at least one class ¥ such that ag{¥) 5 0and A5() 5 0. Wecall sucha
class a defect class for B,

(1531} THEOREM (Min-Mux) Let X" be a defect class for B € Bl(G) and
let I} € 3{4"). Lot & be any class of G,

(38) M uds) # 0, then P contains a defect group for 2.
(b} 1fA,($) # 0, then O is contained in a defect group for &,

Fo prove the min. max theorem, we define the Brauer homomorphism g,
Let = G be a p-subgroup. Let N = Ng(P) and C = Cg(P). Wc map
Be: ZFLG) — ZFINT) by

BelX)= ¥ x,

xcd
and extend by linearity. Since X~ C is a union of classes of N, we do have
BrX ) e ZAF[N]).
(15.32) 1uMMa  The map fip £(F{G]) — Z(F[~N]) is an algebra homomor-
phism,

Frogf Ifsuffices (o check that Rl K £y = Bl Wl 2) for classcs X, 2.
ForceC, let of = {(x,y)|xeX,ye &, xy=c}and

W=l MxeX nCyed mCxy=ch

Then |o |* is the coefficient of ¢ in PelH &) and |y |* is the coefficient of ¢
in ﬂp(f)ﬁ,-(.‘f’). it thus suffices (o check that .o/ | = |, | mod p.

Since P = Cie), it follows that P acts on & by (x, p)* = {x*, ¥) forue P,
Then o, is exactly the set of fixed points of & under the action of P. The
result follows. |l
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(15.33) LimMa  Let P beca p-subgroup of G and let Bz be the correspoading
Brauer homomorphism. Let 2 = ¥ 4, & . Then f,(z) # 0 iff P is contained
in some D e 5(") with g, = 0.

Proof The sets " ~ C(F) are disjoint for distinet classes ¥ and thus
the nonzero elements of the form £,(#") are lincarly independent. It follows
that fipfz) # O iff Bu(F) % 0 for some F with ay # 0.

Now f{H7) # 0 if X"~ C(P) # & and this happens iff £ < C(x) for
some x € ¥, Singe P < Cix) iff P is contained in some Sylow p-subgroup of
C(x), the result follows, [

(15.34) LemMa  Let Be Bi(G)and let & be a class of G with g5(%) # 0. Let
Ped(#Fyand N = N;(P). Then there exists b € BI{N) such that

Ag = fply Z(F[G]) = LFIN])— F.

Proof By Lemma 1533, fey) # 0. Since flu is 2 homomorphism,
¢ = fipleg) is a nonzero idempotent in Z( F{N]) and so is not niipotent. Thug
there exists b BI(N) with 4,(¢) # 0, Let 4 = fn4,. Then Heg) = Afe) £ 0
and u is an algebra homomorphism Z(F[G]} — F. Since u(ep) # 0, we have
s = 4y and the proof is complcte, ||

Proof of Theorem 1531 If ag(#) # 0, let Ped(#). Then A, = fipd,
for some b € BI(N(P)) by Lemuna 15.34. Since ¥ is a defect class, we have
0 % AdA7) = ABp(F)) and so Fp(#) # 0. Thus P is contained in some
defect group of #” by Lemma 15,33, Now (a) follows.

Now apply Lemma §5.34 to . Since ag(#") # 0 we have 4, = fi 4, for
some b€ BIN(DY)). Supposc A5) # 0, Then f(5%) # 0 and henge D is
contained in a defect group of 27,

(15.35) peFnurrion  Let B be a p-block of G. Then the p-defect groups of the
defect classes of B are called defect groups of B. The set of these is denoted
3(B).

(15.36) coroLLaRY Let B e BAG). Then §(B) is a single conju gacy class of
subgroups.

Froof Lel X", and X3 be defect classes for G, Tt suffices to show that
HA")) = HA ,). Let D g §(o,). By Theorem 15.31, each of the D, contains &
conjugate of the other, The result follows, ||

Which p-subgroups of G can be defect groups for blocks? It is a fact (which
we shall not prove) that a defect group for a block is necessarily of the form
P Q for some P, Qe Syl (G). We prove the weaker asserlion thal 0,(G)
is contained in every defect group of a block.
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{(15.37) temma  Let P = OG) Then F < ker 9 for every irreducible
F-representation ) of G.

Proof Sincc P has a unique p-tegular class, the principal representation
of P i its upique irreducible Ferepresentation by Corotlary 1511, 1IF %) is an
itreducible F-representation of G, then the restriction 9, is completely
reducible by Corollary 6.6, The result follows from these two facts. ||

(15.38) rHeorem  Let X be a class of G and assume that # ~ C(0,(G)
= {3. ‘Then ¥ s nilpotent,

Proof Let P = O,(G)act on ¥ by conjugation and let @ e an orbit of
this action, Then |@| > | and so p||¢]. Let x€ @, If ye@®, then y = x* =
x[x, 1] for some we P, Since P =2 G, we have [x, u]< P and 50 & < xP,

Now let 9 be an irreducible F-representation of G so that P < ker 9) by
Lemma 1537 and thus 9) has the constant value Y(x) on the vosel x . There-
fore z,n«. DY) = [¢1D(x) = 0 since p||@]. We thus have MA) = 0 for all
irreducible P and hence & & J(F[G]), the Jasobson radical. Tt follows that
A is nilpotent, |

{(15.39) cororLary Every defect group for 2 p-black of G contains Q{G).

Proof Let Be BIG) and let 2 be a defect class for B. Then A4 # 0
and hence ¥ is not nilpotent, Thus ¥ n C(O(G)) # &F and it follows that
0,(G) < Dforevery Ded(x’). |

{1540) corotrary Let G be psolvable with O{G) = 1. Then G has a
unigque p-block,

Progf Let B, B' e BIG). We claim that A{ey) = ag({1}). Since this is
independent of B, the result will follow. W have Agles) = ¥ ap)A4P),
where the sum runs over classes X", Singe 1g(1) = 1, it suffices to show thatif
X # {1}, theneither ap(X¥) = 0 or A,(F) = 0,

Let P = O(G). 7 1,(F) # 0, then o" n C(P) # . However, the Hall-
Higman “Lemma 1.2.3" yields C(P) = P and thus ' < P. Since X" # (1},
the elements of A" are not p-regular and thus a,(X) = 0. The prosf is com-

plete. ||

If B ¢ BY(G), let I be a defect group for B and write | D] = p", We call d the
defect of B and write d = d(B). (This is well defined by Corollary 15.36,) We
show how to compute d(8) from a knowledge of B ~ Irr(G) or B m IB(().

We mention that if m, n e Z with ppn, then m/n e R, Thus if p|m, we have
mnepR < M,

- (15.41) THRorREm Let |G| = pm with ptm and let B e BI{) with d(B) = d,
Then p*~* s the largest power of p which divides all x(1)for ¥ e Tri{¢) ~ B,
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Proof Let o be a defect class for B and let geX’. Then || =
|GI/1C(g)| and so p*=* is the p-part of {.¥ | since | D} =  for D e Syl(Clgh.
Let x € B n Irr(G). We have

0 % () = (0 (A = (xlg)| H'|/2(1))".

Since y(g)e R and yig)| | /xi1)e B — A, we conclude (hat (| /1) ¢ A
and hence the p-part of | #" | cannol exceed that of 1% Thus p*~ # divides »(1).
The cocflicient of g in the Osima idempatent £ is given hy
aG=(/IG) T g

redaipim

a, ={1/IG]) ¥ ®lilg
w3 B G
by Lemma 1521 (since g is p-regular).

We have 0 # aglX) = a,* and ¢, ¢ &, However, p*| @, (1) by Corollary
15.22 and thus @ (1)/|G1e FE for all ¢ € 1BA(G), We conclude that pig)¢ M
for some @ ¢ IBr(G) ~ B.

Now ¢{g) is a Z-linear combination of x(g) for 2 €IrriG) m B by Lemma
15.28 and thus ¥{g) ¢ & for some y € Ire(G) ~ B. Now 1@ H /1) =aeR
and x{g) = ax(1)/|#'|. 1t follows that x(1)/|#"| ¢ M und so the p-part of y{1)
cannot cxceed p”~¢. The proof is complete, ||

and thys

(1542} coroLLaRY In the situation of Theorem 15.41, po=4 is the largest
power of p which divides all ¢(1) for ¢ e [He(G) n B.

FProof In fact {x{1)|z € )1r(G) ~ B} and {p(1)|p & IBHG) A B} have the
same greatest commaon divisor, This follows since each x(1) is a Z-lincar
combination of the @(1) using decomposition numbers and each (i) is a
Z-linear combination of the x(1) by Lemma 1528, |

. In connection with Corollary 15.42, we mention that o(1) need not divide
|G| for ¢ € IBI(G),

Tn the situation of Theorem 15.41,if x € B ~ Irr(¢?), then the p~part of x(1)
€an be written in the form p*~***, where b = 0, The integer h iz called the
helght of y, Brauer has conjectured that all x € [rr(G) ~ B have height zero iff
8 defect group of B is abelian. Note that if d(B) = | and y € B has positive
height, then p° divides x(1} and thus 8 n Ir(G) = {x} by Theorem 15.29.
This forees d(B) = 0, a contradiction. Thug if d(B) = 1, (hen all characters in
B have height zero,

Suppose H o G and beBI(H), Let 4 = i Z(F[H]) = F be the corre-
sponding ¢entral homomorphism, We constroicta linear map A% Z(F[G]) — F

|
¥
§
i
H
B
B

P
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by selting

1P = 1( ) \.)
xex nil
I may be thal 19 is an algebra homomaorphism, in which case A% = 15 for
some unique B & BI(G). When this happens we say that & is defined and we
write b% = B The block b% is called the induced block.

(1543) uimma  Let be Bl for H € G and supposc b9 is defined, Then
every defett group for b is contained in a defect group for b°,

Proof Let X be a defect cluss Tor b% and let Dedib). We have
0 # (A)%H) = AL 2). where & runs aver the classes of H contained in X7,
In particular, ¥ 1 [ # & and there exists 4 = o A Hsuch that Z,(5) # 0.
By the Min-Mux Theorem 1531, there exisis Fed(Z2F) with B = P. Now
P e Syl {Cylx)i Tor some xe 2 & ¥ and thus there exists 5 e Syl (Cg(x))
with S 2 P. Thus D = S<d(x) = 5%, | :

The Brauer homomarphisin can be used (0 give a suflicient condition lor
induced blocks 1o be defined,

(15.44) LEmMA Let P = G be a p-subgroup and let C(P) = H = N(P).
Then % is defined for all h € BiH), I & € B{H} and B € BI(G), then 5% = B
iff A4 = fpd,, where fp is the Braver homomaorphism,

Proof Theimage of B ZIF| G]) = ZAF[N(P)]) actually lies in Z(F[H)).
Let & Z{F[H]) — F be an algehra homomorphism and lel

pow fipd: ZF[G]) = Z{F[H]) - F

so that y is an algebra homomorphism, We claim that g = 4%,

Let C = C(P) & Hand let ¥ beaclass of G. Write Yo pn % = 4 + 1
whereu = ¥ . op X. Then A5(F) = Au + ) and p( A7) = Afa(8) = A(u).
We must therefore show that 2wy — 0, Now v is a sum of ¢lements of the
form £, where £ is a class of H such that # ~ C=(3, Singe P <2 H we have
ClO, (D) = C and il foilows that 2 is nilpolent by Theorem 15.38. Thus
M) = 0 and hence A{p) = 0 and A% = 44 as claimed.

If 4 = 4, then A% = f. is an ulpebra homomorphism and % = B is
defined, where 8 is the unique block such that Ay = fe4. |

Brauer's firgt and second “main theorems™ concern induced blocks.

(1545) THEOREM (First Muain) Lat DS G be s p-subgroup and et
N 2 N(D). Then b= h% js 1 bijection of

{b € BI(N)| 12 & (I} onto

{B e BI(G)| D ¢ &B)}.

T R —_
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{1546} Limma Lot P be a p-subgroup of . Let € = C(P)and N = N{#).
Then X — ¥ n Cis a bijection of the sct of clssses of G with p-defect group
P onto the set of cluasses of N with p-defect group #.

Proof Suppose Ped(X) and x, ye ¥ n C. Then P e Syl (C(x)) und
P eSyl,(Cly)). Write y = ¥*, Then P, P& Syl (C(y)) und hence F = P* for
someccCly) Thengee Nand y = x* I [ollowsthal & = ¥ n Clyn ¢luss
of N_Clzarly P ed() and the map ¥ 1— X ~ € is one-to-one.

If 2 is a cluss of N with 2 e §(&°), let % be the unique class of G which
containg & Now £ < C since ¥ C % & and C=a N, If x€.9, let
P o Nebyl(Cglx). If §> £, then P < Ngif) = 5 n N = Cyix). Since
5~ N isa p-group, this contradicts P & 3(.%). We conclude that P = 8§ ¢ 5{7)
and A"+ 2, The prool s complete. ||

Proof of Theorem 1545 Writc # = {b c BIIN)|Dedib)}. 1T be &, then
h? is delined by Lemma 1544, Let b% = B e BIG). Since D e §(h), we have
D = Plor some £ §(B) by Lemima 1543, We elainy that D = P.

Let & he a defect elass of b and let 7 2 % be a class of G, Then ¥ ~ C
= % and D e §{X) by Lemuma 15,46, By Lemima 15,44 we have

Ad AN = QB ) = 2P) # 0,

By the Min-Mux Theorem 15,31, it follows that £ contains some defect group
of B. Thus PY < [ = P for some g € G and hence D = I* ¢ 5(B) as desired.
Thus block induction maps 4 into {8 € BI(G)|D e &B)).

Now let BeBI(G) with D ed(R), Let ¥ be a defect cluss for B. Then
ag(#’) # Ound D e §H#"). Thus 15 = f,4, for some b € BI(N) by Lemma 15,34
and hence % = B by Lemma 15.44. We must show that b€ %, Let P e (b)
st Lthat D = P by Corollary 15,39 since ) <o N, By Lemma 15,42, F is con-
tained in some defect group for B and we have D © P = D? for some yeG.
Thus D = Pedib)and be @, ‘

Finally, let b, by c 8 with b,% w B = b,% Let # be u cluss of N with
D= Ped(#). Il D> P, then by the min-max theorem, A,,(#)=0=
A Z) IT 0 = P then by Lemma 1546, # = C ~ X for some class o of G,
Then 1, (P} = 4, Bp()) = A{#)for i = {, 2 and hence the Ay, agree on all
2 for classes 2 with defeet group contained in D. By the min-max theotem,
it follows that 4, (e, ) = A, (ey) = 1 and thus b, = b, |

v

Ta state Brauer's “second main theorem” we need 1o introduce “ gener»
alized decomposition numbers.”
{(15.47) LEMMa Lot e G with o(n) = p* and let € = Cyim). For yeIrt(()
and @ & IBr(C), there exist unique d, € R n Q,, such that
xmy = Y o7 0(x)

welBr(C)
for all p-regular x & €,
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Proof Write ¢ = 3 a,¥ with a, € Z and § e Irr(C). We have ygo =
(1, Tor some linear py € Ire{Z(C)). Then Y(xr) = Yix)(n) and therefore
yixm) = ¥ ay 270 ()

welrriCh @& 1Hr(C)
and so we take dly = Ty.ime ty Mo(midye. Uniqueness follows from the
linear independence of IBr{(C). |}

The algebraic integers d, are called generalized decomposition numbers,
Note thatif # = 1, then € = G and d}, = d,,. Also, if g € G is arbitrary, we
can take © = g, and x = g, and thus express x{p) in terms of gencralized
decomposition numbers and Brauer characters,

Note that if b is 1 block of C = C(n) for a p-clement = then 49 is delined
by Lemma 15.44,

(15.48) THEOREM (Second Main) lLet gelrr(G) and e 1Br(C), where
C = Cgin) for some p-clement nc G, Let ye Be BIG) and @ebe BIC),
Then df, = 0ifb® # B,

Proof Omitted, ||

Theorem 1548 is extremely powerful and useful. We pive a few con-
sejuences,

{i549) corouLLARY Let yelre(G) and g € G. Suppose g, i$ not contained
in any defect group for the p-block containing x. Then yig) = 0.

Proof Lel = g, and write g = zx, where x & C{n) ia p-regular. Then
gt = L d7,(x). ITd%, # 0 then @ € b & BI{C(x)) and x & b Let Q e (b,
Then 7€ Q(C(n)) = ¢ by Corollary 1539, Also, Lemmu 1543 yiclds
P e 8(b¥) with Q@ = P and thus 7 ¢ P, a contradiction, Thus ali d}, = 0 and
the result follows, |

Note that Corollary 15.49 generalizes Thcorem §.17 singe if y has p-defect
zero, then the subgroup 1 is the unique defeet group for the p-block con-
taining x.

If 9 is a class function of G and A € BIG), write 95 = 3 c1rqy ~ 0 [9, XX
so that 9 = ¥ p. s -

(15.50) +tueoREM Let 9 be s class function of Gand let n € G be a p-clement.
Suppose Y(nx) = 0 for all p-regular x & Cix), Then J4{nx) = O for all such x
and all B ¢ BUG).

Proof We have
0=%m)= 3 [%ylxinx)= >

yeleriG) FRIrr{G) g TR

L3 x:ld;m p(x)

Prablems =

for all p-regular x e Clw) = C. The linear independence of IBr(C) yiewls
¥ zewmey [3 10d%, = 0 for each ¢ e IBH{C), Tf ¢ ¢ IBHC) n b with b e BI(C),
Theorcm 15.48 yields a7, = 0 for x ¢ b% and thus ¥, gy pe L X5, = 0.

Now let o = | J{b ~ IBH(C)|h € BI(C), b% = AY. Then for each g € of we
have ¥, .8 [% 1Jd}e = (tand thus

Ylrx)= ¥ 9215000 =0. B
FreBigeat
{15.51) corouLARY (Block Orthogonality) Let g, he G be such that g,
and h,, are not conjugate in G. Then

—

1g)xihy =0

ielmGyn B
for every p-block B.

Proof Write 8 = ¥4 1ne XXN)Z and let 7 = g,. If x ¢ C(n) is p-regular,
then # = (mx), is not conjugate Lo b, in G and henee Hinx) = 0 by the second
orthgonality relation, Thus 0 = $4lg) = ¥.,. » x(g)x(h) by Thearem 15.50. I

Problems

{(15.1) LcuD be the decomposition matrix for G, The matrix D' = Cisthe
Curtun matrix. (The rows and columns of C are indexed by IBHG).) For g,
I 1Br(G), let y,9 = (1/|G) 3 pe o @(%)P(x), where & is the ser of p-regular
clements of G. Define the matrix [ = (y,5). Show that T = €71,

Hint Let X, be the part of the character table corresponding to the
p-regular classes and let Y be the Brauer characler tuble, Then X, = DY.

(152} (a) Let g, 3 IBr(G) lie in different p-blocks. Show that
Y o(x)8x) = 0.

xa
(b) Let . ¢ eIre(G) lie in diffetent p-blocks. Show that Y ., xxW{(x}
= (),
(15.3) Let|G| = p*m with pkm and let y & Iri{G) w IBr(G), Define the clags
function, Z, by By(x) = p"¥(x) il pto(x) and Z(x) = 0 if ple(x). Show that
3, is a generalized character of G, Conclude that det(C) is a power of p,
where C is the Cartan matrix as in Problem 15.1,

(154) (2) Show that {® |pcIBr{(G)} is a basis for the space of class
functions on G which vanish on G = %, -
(b} 1f p, p & IBHG), show that (1/| G|} ¥, » @ x)lx) = 8.

(155} (a) Show that the product of two Brauer characters s a Brauver
character,
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fh} If € IBR(G), define = on G by E(x) = d,(x)u(x) for p-regular x;
Z(x) = 0 when p|o(x). Show that Z iz a nonnegalive integer linear com-
bination of {&,|v € 1Br{G)}.

(c) W ¢, ueclBr(G), show that © @, is a nonnegative integer com-
hination of {d,|v € 1Br(G)}.

{15.6) Let % be the collection of classes of G which are defect classes for
blocks of defect d. Show thal {{B e BHG)|d(B) = d}| = |€].

Hint Let A & Z(F[G]) be the span of the o' for ¥ €%. Then the re-
strictions of the algebra homomorphisms A5 to 4 are linearly independent
for those & with defect 4,

(157) Let N = Q,{G). Show that if y, ¢ € lrr(G) lie in the same p-block,
then gy and iy hive the same irreducible constityents. If a denotes the num-
ber of classes of & contained in N, conelude that |BI(G)] = n.

(158) Let e 8yl {G). Show that the number of p-blocks of G with defect
group P is equal Lo the number of p-regular classes of N(P) contained in C{P),

Hint  Usc Problems 15,6 and 15,7,

{15.9) Let N be a normal p-complement for G and let & be the set of orbiis
of the action of G on Irr(N), For each BeBNG), let O(B) denote
{9 e Irn(NY [xy. 3] # 0 for some g c B n Irr(G)}), Show that B @(H) is a
bijection of BHG) onto 7,

{(15.10} lo the situation and notation of Problem 159, show that 8(B) =
Us: L S)'IFUG('Q))-

Hints If yelre(G), Yelre(N), and [xy, 9] # 0, then @ {K) = wy(K),
where K 15 any conjugacy class sum of & for a class contained in N Il ¥ isa
defect class for B and P & Syl (f:(9) for some J & ¢(B), show that P fixes one
of the classes of N contained in ¥ and conclude that P is contained in a
defeet group for B,

Appendix
Some character tables

In the following tables, each conjugacy class is denoted by the order of js
clements, If there are more than one class of elements of a given order, they
will be distinguished by subscripts.

|G| = 24 =2 x 3

Class: 1 2, 2; 3 4
ICg)l: 24 4§ 3 4
IClg)l: 1 6 3 8 6
YTt | | 1 1
¥ =1 l 1 -1
iy 2 0 2 - 0
Ya. 3 1 —1 0 =1
¥ 3 —1 —1 1] 1

Note Class 2, is the class of transpositions,
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2 G=5uUL3) 4 G=PpSLZT=GLE3D
[(Gl=24=2"x13 1G] = 168 =28 x 3% 7
Class: | 2 4 3, 3, 6 6 Classs 1 2 4 3 T T
ICy): 24 24 4 6 6 6 6 |C@): 168 8 4 37 7
[Cig)l: 1 1 & 4 4 4 4 ICll: 1 21 42 56 24 24
o1 1 ! ! 1t 1 |  THR l 1 l ] 1
K ! 1 1 w w® @ o Xat 4] P 0 0 —1 -1
a1 1 1 w? w oat W X T -1 =1 1 0 0
Xa: 3 3 o-1 0 0 0 0 oo 8 o 0 -1 i i
8 2 -2 0 —1 —1 1 1 e 3 =1 I 0 a
st 2 —2 0 —w ~o! w o Yo I - 1 0 -4 o
X 2 -2 0 —(J!)2 =1k mz W oxit?

Irrationa] Entries o =(—1+ iﬁ)ﬂ =g+ e+t wheree=¢

Irrational Entries = ™",

5 G =A; & PSLY)

¢ IGGT Ay = PSLC. 9 2 51,4 |Gl = 360 & 2* % 32 x 5
» )

Classg; 1 2 3, 3y 5 5y

4

Class: 1 2 3 5§ 5 ICigll: 0 8 4 9 9 5 5
IC@)l: 60 4 3 5 5 |Cg)f: 1 45 9% 40 40 T2 T2
ICig: t 15 20 12 12 '
PR 1 1 1 1 1 1

X 1 1 1 1 o 5 1 -1 2 -l o 0
2204 0 1 -1 =1 ¥ 5 1 =1 -1 2 0 0
w5 1 -1 0 0 w 9 t 1 0 o -1 -1
Xer 3 =1 0 % 1 10 =2 9 1 1 o 0
Xs 3 1 1] 1 ¥} o, Y £1 ] 0 0 =1 -1 oy . li:
v 8 0 0 -1 -1 4, ty

Irvational Entries @, = (1 + SN2l 44 ctanda, = (1 — ﬁ)/z

=145+ ¢, wherc e = /%, Irrational Entries a, = (1 + f)f?. =1+t+c*ande; = (1 - ﬁ)/l

= | +¢* + ¢ wheree = 2%,
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6. G=SL(28) 8. Gm=mM, :
|G| = 504 = 2% x 32 x 7 |G = 7920 = 2* % 3% % 5 x 1]
Class: 1 2 3 9, 9, 9, T T: T ‘ Class: | 2 4 8 8, 3 6 5 11, 11
{Cg): 504 & 9 9 9 9 7 7 1 ! [Clg)l: 7920 48 8 % 8 18 6 5 1 Il
|Clig)|: 1 63 356 356 56 56 72 72 0T ol [Clig)|: 1 165 990 990 990 440 1320 {584 720 720
o 11 1 ! 1111 =11 11 1 ! 1 U
2 8 0 =1 =1 -1 -1 1 1 1 I @ 102 2 0 0 1 =] 0 =1 -1
y: 7 =1 =2 1 1 1 o0 0 0O b w1l 3 =t =1 =1 2 0 | o. 0
ya 7 <l 1 B 8, M 0 0 0 ‘ 2 W0 -2 0 « 4 l 1 0 -1 =1
Yo 7 =l ] : B f 0 0 O ¥ W0 -2 0 & o I I 0 -1 =1
% T =1 1 g5 £ H 0 0 0 : ! 16 0 0 0 0 =2 0 | g f
r 9 ] 0 0 0 0 o oy a : 2t 16 0 0 0 Q0 =2 0 1 i i
w9 1 ¢ 0 0 0 w wy a g 44 4 0 0 0 -1 1 -1 0 0
w9 1 o o0 0 0 & a , Yoo 45 -3 e 0 0 0 ! !
‘ e 535 =1 —t 1 | 1 -1 0 0 0
Trrational Entries o, = 8 + 1% o; = ¢ + &% and g3 = &° + 6%, where
g=o fl = =64+ 5Y), B = —(8% + 87), und Sy = —{6* + %), where Irrational Entries o = :\/5. fe=(—1+ i\/fT]fZ =e+ e+t
§ = 2", : + £ where g = g?"11,

7. G=PSL2 1)
|G| = 660 = 2% x 3 % § ® 11

Class; l 2 k! 6 5y 5, 11y 11, }
IC{g)): 660 12 6 6 5 5 it 1 X
IClig)l: . 1 55 110 110 132 |32 60 o0

IR { 1 1 1 1 | 1 i
¥ 162 1 -t 0 ¢ -1 =1
e 10 =2 1 1 0 L 1
e =1 =1 =1 1 1 0 o 4
o 12 ¢ 0 0 & s | 1 :
w12 0 0 0 2 ay 1 |
X 3 1 -] 1 0 0 g [
Yoo 3 1 =1 1 0 0 g i

Irrational Entries o, =(—1 + \/5)/2 =Lp it ay = (= - ﬁ)/z =
82 + &%, where € =25, = (—1+ /T2 =8+ & + & + 5° + 5
where § = ¢#"i'!, '+




Bibliographic notes

There exist several excellent bibliographics in group theoty and character
theory (for instance in the books by Huppert [26], Dernhoff DSJ’. and
Curtis und Reiner [12]) and so, instcad of giving a comprehensive }m of
publications, we shall only mention some of the ilems which are directly
relevant to the various chapters of this book.

General Some other books on characlers and representations are
Dornhoff [15], Feit [16], and Curtis and Reiner [12], Bach of these has a
point of view somewhat different from the others and from this book. Asa
reference on group theory we mention Huppert [26]) whmp also has an
cxlensive chapter on characters, Finally, we come 1o Burnside [IOJuNThls
clagsic, although somewhat difficult for the modern reader, conlains a
wealth of material.

Chapter | Further relcvant information on rings and algebras can be
found in Curtis and Reiner [12] and Herstein [25].

Chapter 2 Other methods exist for obtaining the basic resy\ls about
characters such as the orthogonality relations. For instance, instcad of
using the central idempotents of CLGF), Feit [16] and Dornhoff [15] use a
matrix approach which results in additional information, namely the Schur
relations which appear here as Problem 2.20.

" Chaprer 3 There is, of course, a large literature in algebraic number
theory. A reference for those parts of the subject most relevant 1o group
theory is the appropriate chapter in Curtis and Reiner [12]. The proof of

282

{

Y

Bibliographic notes 283

Theorem 3. 12 given here was discovered (independently) by G, Glauberman
and the author. For anather proof, see (4.2) of [16]. Whitcomb's result on
isomorphism of integer group rings occurs in Whitcomb [37)].

Chapter 4 The Braver-Fowler proof [8] of Theorem 4.11(a) does not
depend on characters. They obtain a slightly better bound which is of the
same order of magnitude.

Chapter 5 There is a great deal more 1o be said about the relationship
belween permutation groups and rcpresentation theory, For instance, see
Chapter V of Wiclandt [38] and Scctions V.20 and V.21 of Huppert [26].

Chapter 6 Clifford's results appear in Ref, [11]. This paper includes
sipnificuntly more than Theorem 6,3 it also has part of Theorem 6.11 and
bears heavily on Chapter |1, The * going down ™" Theorem 6.18 and its dual
Problem 6.12 wppeurs in Isnacs [28), however Corollary 6.19 goes back to
Burnside’s book [10]. A result on relative M-groups which is more general
than Theorem 6.22 occurs in Price [35]. Theorems 6,22 and 6,23 give
sufficient conditions for a group to be an M-group which generalize a result
of Muppert {Satz V.18.4 of Huppert {26]). Thc conncetions between the
extendibility of § and deud) are due 10 Gallagher [19]. A proof of a version
of Talc"s Theorem 6.3 1 wilhout characlers appears as $u(z 1V .4.7 of Huppert
{26] and Thompson's proof (including Prohlem 6.20) is found in Ref. [36]).

Chapter 7 A proof of Theorem 7.8 for the case that | P| = 8 that does
not depend on “modular characters™ has recently been discovered by
Glauberman [22], For w proof of Theorem 7.10 without churacters, sec
Bender [2] A large fraction of the known applications of character theory
to “pure' group theory are either direcily or indirectly related to the
content of this chapter, We mention as examples Sections 28 and 32 of
Feit [16].

Chupter 8 Braver’s Theorem 8.4 oceurs in Brauer and Tate [9] and in
some of Brauer's earlier papers. Banaschewski's Lemma 8.5 uppears (in a
samewhat more complicated form) in Ref, [1]. Dade’s Theorem B.24 and its
consequenee Theorem 8,26 appears in more general form in Ref. [13].

Chapier 9 An alternate source for much of this material is Curtiy and
Reiner [12].

Chapter 10 The morce standard version of Theorem 10,7 1s duc to Brauer
and Wit (Theorem 70.28 of [12] or Yumada's notes [417). Theorem 10.12
appears in Goldschmidt and Isaacs [24]. What amounts to a special case of
Theorem 10,16 ocgurs in Burnside {107 as Exercise § on page 319, That cvery
integer can occur as a Schur ndex was proved by Brauer [5] using groups
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similar to those of Theorem 10.16. A great deal of further information ¢an be
found in Yamada [41].

Chapter 11 Much of the theory relating projective representations with
the properties of a character triple was originated by Clifford [11]. Our
more charagter theorctic setting of Clifford's work occurs in Isaaes [31].
Berger's Theorem 11.33 appears in more general form in Ref, [3].

Chapter 12 Much of this material is the work of Passman and the
author and appears in lsaacs and Passman [33, 34), and Tzaacs [29]. Also
rclevant are Isaacs [32], Berger [4], and Garrison [20].

Chapeer 13 This chupter is taken almosl entirely from Glauberman’s
paper [21]. Parts of Theorems 13.6 and 13.14 also appear in Isaacs [27].
A proof of Theorem 13.25 can be found tn Isaacs [31].

Chapter 14 The literature on lincar groups is very extensive and we
mention just a sample. Dixon’s book [14] is a good reference. For informa-
tion on solvable and p-solvable lincur groups, see Winter [39, 40] and
Isaacs [30]. We also mention the lecture notes by Feit and Sibiey [18] for
resulls without salvability hypotheses,

Chapter 15 Brauer's papers [6] and [7] are good sources for further
treading on blocks und Brauver characters. There 15 also a chapter on the
subject in Curtis and Reiner [12]. The material is treated from a different
point of view in Part B of Dornhoff [15] and in Feits notes [17).
Goldschmidt's notes [23] provide a development of the subjeet along lines
similar to those used here, :
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Abelian group, 16, 30, 182-183
exlension of characters, 63
Abelian subgroup
and character degree, 30, 84, 190, 209-212
216217
of linear group, 240, 249
Absolutely irteducible representation, 145-
146 ;
character of, 149-156
Action of group
on cluztes and characters, $1-94, 230-21]
number of orixits, 68
P-EFOUP ON g-group, 97
Algebra, |
Algebra hemomorphism, 3
Algebraic integer, 3340, 44, 135, 265
Alperin, J,, 52
Antisymmetric part of tensor square, 50, 56
Aclin, E., 72
Augmentation map, 43
Automorphism of fiald, se¢ Figld
Automorphism, Galois group,
Galois conjugate characters
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Banashewski, B,, 128
Berger, T., 191, 206

Blichfleldt, H, F., 240, 247
Block, 271-286
defect of, 280
defect group of, 279
pumber of with maximal defect, 286
numbers of characters in, 276
Rlock orthogonality, 273, 285
Bottom constituent, 146-147
Brauer character
and ¢haracter over F, 264
defipition, 263
linear independence, 265
from ordinary characicr, 266-267
Brauer-Fowler theorem, 54—55
Brauer graph, 272, 275
Brauer homomaorphism, 278-279, 282
Brauer, R, 46, 49, 122
characterization of characters, 127
first main theotem, 282
secomd main theorem, 284
theonein on actions on classes and
charactars, 93
theorem on groups of arder p*q*r, 274
thearem on induced characters, 127
theorem on splitting fields, 161
theorem yialding proper subgroups, 70
Brauer-Speiser theorem, 171
Brauer-Suzyki thearem,
on coherence, |12
giving normal z-complement, 137
on quulernion Sylow subgroups, 102
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Brauer-Suzuki - Wall theorem, 76
Brauer-Witt thcorem, 162
Broline, D, 208, 211
Burnside~Brauver thearem, 49
Burnside, W, 36, 40, 46, 213
pog® theorem, 37
transfer theorem, 138

C

Canonical extensian, 220
Cartan tatrix, 2835
Center
of character, 26-28, 75
of group, 27, 29, 63
of group wlpebra, 9, 13, 45 .46, 277, see
afso Homoemorphism, Multiplication
COnStants
Central extension, 179182, 184 186, 195
Centealizer ring
of module, 34, 8
of representalion, 26, 145 157-154
Churacter, 14, see also Tereducible character
afTorded over subfield of €, 22, 29-30, 58,
74, see also Schur index
and field amemorphism, se¢ Galois group
Characler qorrespondence, se¢
Correspondence of characters
Character degree, see Degree of churacter,
Set of irreducible character degrees
Characier table, 17, 21, 45, 48, 287-291
construction for 4., 64-65
of fuctor group, 24
fields gencrated by rows and columns,
96-97
imformation from, 22-25, 27, 36, 45,
134136, 141-142
and isomorphism of groups, 24
row sum, 75
Character triple, 186 189, 195-197,237
Character value, 20, 35, 44, 46, 122
constant on G — {1}, 44
equals zero, 28-20, 36, 40, 133, 246, 234
equals zero off subgroup, 28, 31, 95, see
wfso Vanishing-off subgrowp
cxecpliomal character, 113, 123
rational, 31
reuf, 31
symitnetric groups, 17 18, 35

Index

Characterizgation of characters, 127
Chicf factor, £3, 87, 96
Class function, 16, 126
of direct product, 59
of form ™, 50, 60
induced, 62
Clifford, A. H., 79-80
Coboundary, 178
Cocyele, 178
Coherence, 107-125
Collineation group, 39
Commutator, 45
Commutator subgroup, 35, 63, 75, 96,
204-205
Completely reducible module, 4-7, 12, 80,
146
Completely reducible representation, 17,
154, 157-158
Comnplex linear group, 280-261, se¢ also
Faithful chuaracter
p-solvable, 245, 256, 260-261
solvable, 243244, 260-261
Compaosition series, 146
Conmjugacy class
in faclor group, 24
number of, t6, 44
number of p-regular, 268
prime power size, 37
in simple group, 37
in symmetric group, 17
Conjugacy clags sum
in C[G], see Center of group algebra,
Homomaorphism, Multiplication
constants
in Z[G], 4144
Conjugate
¢lass funection, 78-79
module and representation, 79-80
Constituent
of character, 17
of representation, 146-147
Control of transfer, 93
Correspondence of characters
and coprime action, 219-239
and inertia group, 82
und products, 8485

Cyclic center and faithful character, 29, 32

Cyclic subgroups and induced characters,
72,76
Cyclatomic polynomial, 72

Index

. D
Dade, E, C., 97, 138, 142
Decomposition mateix, 267, 285
Decomposition number, 267
Defect cluss for block, 278
Defect proup
of a block, 279
of a class, 278
Defeet of a block, 280
Defect zero churacter, 134, 143, 276, 284
Dregree of character, 14, 37-3%, see alse Set
of irreducible character degrees
and abelian subgroup, 30, §4, 190
and center, 28, 31, 38, 44
and derived series, 67
in group of order 27, 25
in M-group, 67
it nilpotent group, 28
in p-block, 274, 280-2%1
prime power, 39, 44, 274
il‘l EJ. l6
whenh p? ¥IG|, 122
Dcgree of projective representation, 174
Degree of representation, 9
Derived serics, 67, 202, 206
Determinant of character, 29, 59, 75, 8%
and extendihility, B%-90, 132 133
Determinantal order, 88 90, 133, 198
Difference of characters, 50, 60, W see also
Generalized characier
Dihedral group, 30, 53, 105
Direct product, 59-60, 172
Dirichlet, P. G, L., 169
Divisible abelian group, 42
Division algebra, 4, 144
maximal subfield of, 170
Dornhotf, L., 96
Duouble centralizer theorem, &
Double transitivity, 69, 76-77, 111

E

Elementary group, 127

End( ¥}, t

Equivaient factor sets and projective
TERrCsentations, 178

Even order group, 34-55

Exceptional character, 107, 113, 1222125

Expanent of group, 151, 161, 167
Extendible churacter, 63, 84-86, #8-91,

WT-98, 132133, 140, 178, 186, 190404 . '

F
Ftriple, 162-163
Fugtor group

centealizer in, 26
characters of, 24, 51, 76, 84-85
representation of, 14
Faelor set, 174, 176-180, 183, 194-195
Faithful character, 28-30, 32, 77, 83, 123,
see alvo Complex linear group
of direct product, 60
of p=power degree, 39, 44
Fein, B, 170-172
Feit-Sibley theorem, 120
Feit-Thompson theorem
on abelian T.1. subgroup, 246
on edd arder groups, 111, 231
Feit-f hompson-Rlichfeldt theorem, 247
Feit, W., 52, 10K, 123, 125
Field sutomorphism, 29, 151, see alse
Galais group, Galois conjugate
characters
Ficld extension
and representations, 144-159
and Schur index, 161, {70
Field generaied by character values, 151
and cortesponding representation, !5(,
153, 159
and order of p-group, 254
Ficld restriction and modules, 152-154,
156-157

Fitting subgroup, 208-20%, 211, 217

Focal subgroup theorem, 142

Fong, P, 168

Frattini subgroup, §0, 173

Frobetius complement, 99, 107, 127

Frobenius group, 99-101, 121, 200, 237

representations of, 94, 269-270

Frobenius kernel, 100-101, 111, 114

Frobenius reciprocity, 62

Frobenius-Schur theorem, 5052, 58

Frabenius theorem

on existence of kernel, 100-101
on linear groups, 251
Fully ramified character, 95. 96, 1946, 237,
i
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“allagher, P. X., 83, 132, 191,196
Jalois conjugate characters, 152, 154,
a—  161-162,173
Galois group, 31, 36, 46, 90-91, 165, 221,
see alse Field automorphism
. Farrison, $,, 39, 206, 208209 |
e 3enieral linear group, 13
Generalized character, 102, 107, 141, 143,
' see ulse Difference of characters
over & ring, 126, 13%
—Tieneralized decomposition numbsrs,
283-254
Clenernlized orthogonality relatious, 19
Generalized quatetnion group, 53, 102
—GLin, Fy, 13,174
Glanberman, G, 41, 219
Glauberthan mup, 219, 1298
Glauberman’s lemma, 223
Going down theorem, 85
Gioldschmidi-[saacs theorem, 167
Group algebra, 2
Group ring over Z, 41, 43

——

H

Hall-Higman lenuna, 256
— Hall subgroup, 111, 240
character degrees of, 206
' and extendibility of characters, 90, 133
generalized character of, 143
— and M-group, 96
nornal complement for, 136-137
Height of a characier, 28]
Higman, D. G., 12
. Higman, G, 136
Homogeneous character, B3
Homogencous part of madule, &
Homomorptnstn
of algebras, 3
of genter of group algebra, 33-36, 59,
271.272, 211
of modulgs, 3
of 1ensor product, 61

v

_ 1HK(0), 264
Tdeal, 2, 75, 127,135, 224

1dempotents, 16, 19,274 277
Imprimitivity decomposition, 65-66
Induced block, 282
Induced charagler, 6377
cenler of, 75
and cyclic subgroups, 72, 76
explicit computation, 64
from inertis group, 82
kernel of, 67
module interpretation, 65
and right ideal of group algebra, 73
Induced clasa function, 62, 7374
Induced module, 66, 74
{nduction and resirigtion, 62
Lnertia group, 82, 95
Inner product, 20-21
Inicgtal group basis, 41-44
Intertwining matriz, 11
Invariant charagter, 84-83, 21, 138-139, 175,
178, 233236, see alse Exendible
character, Character riplk
Involution,
centralizer in simple group. 54, 105
as fized point free automorphism, 114
number of, 51-34
Lt1(G), 15
Irreducible Braver character, 264
number of, 268
Irreducible character, 15
over arbitrary field, 149-156
nutmber of, 16, 232
Irreducible constituent, see Constituent
Irreducible linear group, 240
Irredugible module, 4
Trreducible projective representation, 177
Trreduwibie representation, 1)
of eyclic group, 159
of group, 13
structure over arhilrary field, 154
Isometry, 107-110, 113, 115,121
lsomorphism of charagier triptes, 187-189,
192, 196
Isomorphism of integer group rings, 4]
lto, M., 84, 190, 216, 244

J

Tacopson radical, 11-12, 97, 137
Jardan-Hélder thearetn, 146
Jordan's theorem, 24%

Kernel
of character, 23-24, 15, 77, §1, 208-20%,
211 "
of induced character, 67
K rutl-Schmidt thearem, 156

1

Lifting n projective representation, 181-182
Linear charaater, 14
nnd abelian growp, 16, 30
action of grovp of, 53
and ¢ommutator sabgroup, 25
sxtendibality, B9
Lincar group, fee Complex lincar group,
General linear group
Linear isometry, se¢ Isometry
Local integers, 265

M

M-group, §7, #6-87, 95-96
solvability and derived length, 67
sufficient condition for, 83, 47

McKay, I.. 232

Mackey, G. W., 74

Maschke's thearem, 4

Mathigu group My, , 70

Maximal subgroup, 75, 191

Min-max theorem, 278

Module, 3
and vorresponding represcntation, 10
finitely gencrated over Z, 34
and normal subgroup, 79-80

Monomial charagter, 67, 74, 86, 96

Mulliplication gonstants, 2
of center of group algebra, 15,45

N

Nauksyuma's lemma, 265

Nilpotent group, 27, 83, 111, 171, 212
charagter degree in, 28

Nilpotent ideal, 11

Norm map, 163

Mormal mateis, 57, 249
Mormal subgroup, 78 94
from character table, 23
in linear group, 243-245, 249, 160
prime index, 86
restriction of characier o, 79
Mormal r-complement, 137138

0

Odd order group, 46, 231

Order of charactar, see IDeterminanial order
Orthogonafity relations, 18-22, 273, 283
Orthonormality of Ir(G), 21

Osima {dempoient, 277

Osima, M., 275

p-block, see Block
p-defect group, see Defect group
p-defect zera, 134, 143, 276, 284
p-clementary group, 127, 131, {38, 140
p-group, 29, 60, Y1, 96-98, 165, 218
p-auasi-clementary group, 129, 131
p-rational charscter, M), 98, 191, 240-241,
254, 260 ‘
p-regular element, 263
psolvabhie group, 244-245 256, 260), 280
Partitioned group, 30
Pagsman, D, §., 77, 218
Perfect proup, 46
Permulation character, 68, 93, 101
necessary conditions for, 69, 75
ting of, 76, 128
Permutation group, 68, 76-77, 101, 111
Permutation isomorphism, 230
Permutation module, 68
PG'—-(H. F.l' 174
Primitive character, 66, 33, 191 .
Primitive linear group, 257
Primitive module, 65
Prineipul hlock, 274
Principul character, 14
Principal indeeomposable character, see
Projective character
Product of sharagters, 30, 47-49, 59-61,
84-83, 202, 285-286
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Projective character, 273, 285
Projective peneral lingar group, 174
Projective lifting property, 18(-[82, 193
Projective represenigtion, 174-197

Q

Quasi-clementary group, 129-130, 142

Quasi=primitive character, 83, 96, 191

Quaternion algebra, 1435

Quaternivn group, 3, 145, 159, 168, 171,
sed also Cieneralized gquitenuon group

Quatienl group, see Faclor group

R-generalized cliaracter, 126, 135
Radical., see Jacobson radical
Ramification, 174
Runk of permutation group, 6%
Rational churacter, 31, 72-73, 76, see also
perational charaeter
Ralionat integer, 34
Reul character, 46, 50, 54-58, 96
Reul element, 31, 54, Y6
Real representulion, 3, 56 58
Regulur eharacter, |8
Regular “odule, 3
Regular representation, 18, 147
Relative M.character, 86, 96
Relalive M.group, 86, 96
Representation, 9, see ubve Irrgducible
represenlation
and corresponding madule, 10
af group, 13
aver R, 3, 36- 54
Rapressnlation group, s#¢ Sclhur
representition group
Representalive set of modules, 8
Restriction, 26
connectipn with induction, 62
1o normal subgroup, 79
Ricflel, M., 8
Roots of unity, 20, 44, 46, 90 91, 220221,
20}
and spliting field, 161, 165 168

Roquette, P, 168

Index

&chuor, I,
theorem on laithful p-rational character,
254

theorem on Lifting projectives, 181, |84

Schur index, 160-17]

And abeliun Sytow subgroup, 163, 173
and direct products, [72

and exponent of group, 161, 167- 168
and field exlengion, 161, 170

Schur multiplier, 1B1-186, 197
Echur relatinng, 32
Schur representution group, 182, 185-186,

197

Schur's lemma, 4

Sehur—Zassenhaus theorem, 99, 223
Schwarz inequality, 53
Second orthogonality relation, 21
Section of grouy, 162
Seiwz, G., 206
Semidihedral group, 53
Semidirect product, 219
Semiprimitive character, 171
Semisimple ulgebra, 4, 7- 9, 12
Set of irreducible character deprees, 81,
198-21%, 243
and ubelian subgroup, 209-212, 216-217
cardinality thres, 206
curdinality two, 201-205, 216
and derived length, 202, 206
divisible by p, 199
and Filling length, 209
maximum, 74, 98, 203, 209-214, 216-218
minimum nonlinear, 75
and pestiucture, 213-217
power of p, 81, 84
prime to p, 215-216
Sibley, 1., 116, 120, 123
Siegel, C L., 46
Similar projective represgilalions, 177
Similar representations, 9. 144, 147, 157
characters of, 14, 17
Simple algebra, 8
Simple group
and centralizer of involutian, 54
charagtars of, 23, 44
conjugacy classes of, 37
order p*g’r, 274
arder 360, 70

e InTMmMoOom»
L T ey

Index

SL(2, g), 76

Socle, 77

Solomoiy, L., 75, 129, 164

Solvable group, 24, 95, 142, 189, 209, 2132,

216-217, see also M-group

fharacter correspandence in, 231
complix lingar, 243-244
and exiendible ghiracters, 88, ), 98

quasi-primitive chyraciers of, 96, 191, 194

sufficient conditions for, 37, 67, 206, 243
Special clement, 195-194
Sphitting fekl, 146, 148199, 154, 159, 16l
Stundard mup, 142

Strong isomorphism of characler triples, 196

Subnormal gubgroup, 190
Supersalvable proup, 87, 206
Suzuki group, 125
Suzuki, M., 102, 112, 124
Sylow subgroup, 77, 114, 116, 122, 138, 142
all abelian, 87, 217
and character dogrees, 213-213
and extendible character, 89, 190-191
of Galois group, 98, 167-168
in lincar group, 39, d4, 243-245, 247, 283,
260)
and Schur multiplier, 186
strongly selfcentralizing, 61, 76
Sylow tower, 216
SymméLric group, 71§, 35, 69
Symineryic part of 1ensar square, 50, 56

T.L ser, 101-102, 107, 111, 246

T.LF.N. subgroup, 111-123

Taketu, K., 67

Tamely imbedded subgroup, 111

Tate, J., 92, 128

Tauseky, O., 53

Tenkor power, 60

Tensor produet, 47-48, 50, 55, 61, 156
and induced moduyle, 66

Thompson, J. (., 46, 52, 93, 97-98, 108, 111,

169
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Top constituent, 146- 147

Trace of maltrix, 14 s
Transfer, 63, 92, 136, 134, 142
Transilivity of induction, 73
Transversal, 62

Triviul intersection set, se¢ T.1, sel
Twisted group algebru, 176 177, 194 {95

u

Unitary malrix, 57, 249. 250

v

Vulues of characters, se¢ Character value

Vandermonde determinant, 49

Vanishing-off subgroup, see afsy character
value, 200}, 204

w

Weak block orthogonulity, 273
Wedderburn, J. H, M.
thearetn on fitile division rings, 149
theorem on semisimple algebras, 7
Whitcomb, A., 41
Wielundt, H., 121
Winter, I, L., 243, 257

Yamuda, T., 171
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Zusgenhavs group, 111, 123, 125
Zeton of characters, see Charagter value,
Vunishing-off subgroup
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