Problem Formulation and Project Plan

10/8/13

Austin Chott, Saleh Alsadiq, Matt Beckham, Thomas Griffin, Chris Heine
Overview

• Introduction
• Need Statement
• Goal
• Objectives
• Timeline
• Quality Function Deployment
• House of Quality
• Conclusion
Introduction

• Client: U.S. Environmental Protection Agency (EPA)
 – P3: People, Prosperity, and the Planet Award
 – Research, design, and develop solutions to real world challenges involving the overall sustainability of human society
Need Statement

Current solar water heaters are too expensive and it takes a long period of use to make them financially sensible, therefore current solar water heater designs are financially impractical over a short period of use.
Project Goal

• Design a low cost solar water heater that is efficient enough to produce a quick financial return
OBJECTIVES

• Heats Water
• Weather Proof:
 – Systems typically outside
 – Withstands the elements to reduce cost
 • Average storms
 • Average exposure to elements
 • Water doesn’t freeze in the system
OBJECTIVES

• Low Initial Cost:
 – Current consumer SWH systems in the US $5000-$10,000
 – Focused on performance
OBJECTIVES

• Low Initial Cost:
 – Cost multipliers that will be considered:
 • Quality of materials used
 • Quantity of materials used
 • Complexity of the design
 • Difficulty of construction
 – More skill and tools required
OBJECTIVES

• Quick Financial Return:
 – Break-even Cost is met within reasonable time period (2 Years)
 – Minor sacrifices in performance in order to significantly reduce cost (%/USD)
OBJECTIVES

• Easily Implemented into Current Heating Systems
 – Works with gas and electric water heaters
 – Easily buildable and installable with do-it-yourself level knowledge of plumbing and construction
OBJECTIVES

• Low Maintenance Cost:
 – Simultaneously and easily maintained with the current water heating system
OBJECTIVES

• Safe operation:
 – Safe in home operations
 – Meets all governments safety requirements

• Suitable system size:
 – Reasonable system volume for implementation
Timeline

<table>
<thead>
<tr>
<th>Name</th>
<th>Begin date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>9/2/13</td>
<td>10/15/13</td>
</tr>
<tr>
<td>Problem Formulation and Project Plan</td>
<td>9/24/13</td>
<td>10/3/13</td>
</tr>
<tr>
<td>Problem Formulation/Project Plan Presentation</td>
<td>10/9/13</td>
<td>10/9/13</td>
</tr>
<tr>
<td>Identify Key Technologies and Approaches</td>
<td>10/10/13</td>
<td>11/15/13</td>
</tr>
<tr>
<td>Prepare Concept Generation and Selection</td>
<td>10/9/13</td>
<td>10/28/13</td>
</tr>
<tr>
<td>Concept Generation and Selection Presentation</td>
<td>10/29/13</td>
<td>10/29/13</td>
</tr>
<tr>
<td>Engineering Analysis</td>
<td>10/29/13</td>
<td>11/19/13</td>
</tr>
<tr>
<td>Engineering Analysis Presentation</td>
<td>11/20/13</td>
<td>11/20/13</td>
</tr>
<tr>
<td>Prepare Proposal</td>
<td>11/20/13</td>
<td>12/2/13</td>
</tr>
<tr>
<td>Submit Proposal</td>
<td>12/3/13</td>
<td>12/3/13</td>
</tr>
<tr>
<td>Build Components</td>
<td>12/3/13</td>
<td>2/3/14</td>
</tr>
<tr>
<td>Analyze Performance</td>
<td>12/3/13</td>
<td>2/17/14</td>
</tr>
<tr>
<td>Build Prototype</td>
<td>2/18/14</td>
<td>3/7/14</td>
</tr>
<tr>
<td>Prototype Analysis</td>
<td>3/10/14</td>
<td>4/17/14</td>
</tr>
<tr>
<td>Presentation at P3 Expo</td>
<td>4/18/14</td>
<td>4/18/14</td>
</tr>
</tbody>
</table>
Quality Function Deployment

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Weighted Importance</th>
<th>Volume</th>
<th>Material Strength</th>
<th>Temperature</th>
<th>Cost</th>
<th>Efficiency</th>
<th>Weight</th>
<th>Heat Transfer</th>
<th>Pressure</th>
<th>Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Heats Water</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Weather Proof</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Low Initial Cost</td>
<td>10</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Low Maintenance</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Quick Financial Return</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Implement Into Current Systems</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7. Safe Operation</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8. Sensible System Size</td>
<td>3</td>
<td>9</td>
<td></td>
<td>3</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Easy to Use</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Score</th>
<th>66</th>
<th>163</th>
<th>217</th>
<th>360</th>
<th>249</th>
<th>30</th>
<th>234</th>
<th>108</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Weight</td>
<td>0.18</td>
<td>0.45</td>
<td>0.60</td>
<td>1.00</td>
<td>0.59</td>
<td>0.08</td>
<td>0.65</td>
<td>0.30</td>
<td>0.16</td>
</tr>
<tr>
<td>Unit of Measure</td>
<td>m³</td>
<td>kPa</td>
<td>ºC</td>
<td></td>
<td>$</td>
<td>%</td>
<td>kg</td>
<td>W/(m²K)</td>
<td>Pa</td>
</tr>
<tr>
<td>Technical Target</td>
<td>< 27</td>
<td>> 38</td>
<td>< 300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><101325</td>
</tr>
</tbody>
</table>
House of Quality

- °C (water produced)
- σ (allowable stresses on collector)
- $ (maximum cost installed)
- Years (maintenance interval)
- $ (yearly maintenance cost)
- Years (break even time frame)
- m² (system size)
Conclusions

• Need: Better SWH
• Goal: Quick Financial Return
• Objectives
• Timeline
• QFD
• House of Quality
References