
Project 1: 3-bit Adder

CS 200 • 20 Points Total

Due Friday, February 3, 2017

Objectives

 Design a 3-bit adder using only AND, OR, and NOT gates.

 Implement your designs using the Logisim software.

 Practice Boolean Algebra, truth tables, Karnaugh Maps, and logic diagrams.

Overview

In this project we will design a hardware circuit to accomplish a specific task. After determining a

general approach, we'll start with a truth table that reflects the desired behavior, obtain a minimized

Boolean Function that describes that functionality, and finally build and simulate the circuit using the

Logisim digital logic simulator.

Logisim

Download Logisim from here: http://ozark.hendrix.edu/~burch/logisim/

It's very easy to learn just by playing around with it. So play around with it! Here's some tips:

 Wires are considered to be just a single (1-bit) wire by default. You can gather a bunch of 1-bit
wires into a multi-bit bundle by placing a "backwards" splitter, or separate a bundle into 1-bit
wires again with a splitter facing the other way. Note that the "Bit Width In" on the splitter
refers to the bundle size in bits regardless of whether wires are being bundled or unbundled.
Some parts (like the Decoder) only work with a bundled input.

 Your inputs to a circuit can be "pins" or "constants". Input pins can have their value changed by
poking at them with the Poke tool, whereas constants have to be changed via their attributes
menu. Both pins and constants can be single-bit or multi-bit. Pins can be set as input or output
pins, or you can just use the predefined icons on the top toolbar.

 You can add multiple circuits to your project. Double-click on each circuit to view and edit it. You
can then use that circuit as an abstract block or subcircuit by viewing the circuit you wish to
place the subcircuit into, single-clicking on another circuit, moving the cursor into the drawing
window, and clicking to stamp the circuit block down. When you do this, each Input Pin shows
up as a blue dot on the left side and each Output Pin shows up as a blue dot on the right side.
Using this technique you could - for example - easily define a 1-bit full-adder and chain three of
them together as blocks to make a 3-bit full adder,

http://ozark.hendrix.edu/~burch/logisim/

Requirements

The task we want to accomplish is to create a circuit that can add two 3-bit numbers together.

We'll refer to the first number as "X" and the second number as "Y". Since each is composed of

3 bits, we can also refer to X2, X1, and X0 as the bits of X, with X0 being the least significant bit

of X.

Rather than try and design a circuit with 64 combinations of 6 inputs and 4 outputs, we can

create a 1-bit "full" adder that takes three bits of input (an X bit, a Y bit, and a Carry-in bit) and

produces two bits of output (a Sum bit and a Carry-out bit). Then, chain together three of these

full adders by hooking the Carry-out of an earlier stage into the Carry-in of the next stage. Each

adder would get a different pair of bits from X and Y. You would need two Boolean functions

describing each of the output bits for a single adder. The functions would come from a truth table

of 8 rows (3 inputs = 23 rows).

Do the following:

 Draw a truth table showing all your combinations of inputs (X,Y,Cin = 8 combinations)

and having columns for the desired outputs (Sum,Cout)

 Create a non-minimized Boolean function for each output column in your truth table, e.g.

Cout(X,Y,Cin) = XY + XCin + ...

 Use the Karnaugh Map technique to minimize each of your functions. Clearly show both

the K-Map process and your resulting, minimized functions. Use only AND, OR, and

NOT functionality (You are not allowed to use exclusive-or, NAND, etc.).

 In Logisim, wire together the gates corresponding to each of your functions. Test your

circuit to be sure it adds two bits and a carry bit correctly.

 Create three copies of the bit adder and show how each stage feeds into the next. Have

the four outputs (the three sum bits and the final carry out) go to LED lights that

represent the binary sum of your two numbers. Try different input values and make sure

the outputs are correct.

 You may use gates with any number of inputs.

Project Report

The final step of this assignment is to create a report consisting of a cover page, an overview of

the project, sample output, and the source code. See Assignment Policies on either the class

website or Bb Learn.

Since this is your first project, here are some hints for the sections of the report:

 For the overview, restate the purpose (don’t just copy my overview) and then the approach

section can consist of the steps you took to solve the problem. Include your truth table(s) and K-

map(s) along with anything else you think might be helpful for me to see how you arrived at

your solution. Don’t be skimpy; a good or reasonable approach can get you partial points even if

your final solution didn’t quite work correctly.

For the sample output, show me your circuit. You can do a screen shot but be sure to show all

the components if your circuit consists of sub-circuits. And also attach your circuit file to your

submission so I can test your circuit if necessary. Be sure to also show some testing that shows

you tried it out. I don’t need to see every possible combination of inputs, just some reasonable

tests.

The conclusions are your own to tell me what you thought about the project. I’m always happy

to hear that you learned something but you can also use it to explain why things didn’t work out

or even tell me how you think I could improve the project. A good conclusion, like a good

approach, can net you some partial credit even if your solution didn’t quite work. But, avoid

generalities unless you back them up. An example:

BAD: “I really liked this project; I learned a lot.”

 So? You’ve told me nothing. What did you like? What did you learn?

BETTER: “This project was good because I finally saw how K-maps get translated to circuits.”

 Ok, I’m glad you learned something. But what do I do with what you told me?

GOOD: “I had a hard time figuring out the truth tables; the inputs and outputs weren’t clear to

me. Once a friend showed me how they worked, I figured out how to translate them to a K-map

and then to a circuit. Best of all, I could make the circuit work and it was really cool to see it add

numbers and get the right answer. I could keep stringing adders together to add any size

numbers…”

Now, I have a clear idea of what caused problems (maybe I should talk more about how

to create a truth table from scratch), and also what you figured out plus even something

you figured out that was beyond the scope of the project. (By the way, don’t copy my

GOOD example; it’s just an example and probably won’t describe your experience at all.)

Hopefully, that gives you some ideas. Don’t give me less than a paragraph per section (and a

paragraph is not a single long sentence) but you don’t need to write a long report – unless you

have a lot to say, in which case I’m perfectly willing to read it.

