
http://www.isr.uci.edu/

Autonomous, Self-Adaptive
Software: Architecture-based

Tools, Techniques, and Methods

John Georgas, (Eric Dashofy)
Institute for Software Research

University of California, Irvine
May 6, 2004

http://www.isr.uci.edu/

Outline

Software Dynamism
Software Architecture
Architecture-Based Approach

Evolution Management
Adaptation Management

Summary

http://www.isr.uci.edu/

What is dynamism?

The ability to the change the structure or behavior of a
software system at run-time.

Generally, in ways not explicitly planned for in the initially deployed
system.

Dynamism is essential for high-availability systems.
Medical devices
Space probes
Emergency response systems

Dynamism is desirable for all systems.
PC security patches, virus updates
Service packs and other functionality upgrades
MMORPGs

Dynamism is necessary for self-adaptive systems.

http://www.isr.uci.edu/

Examples of Dynamic Systems

Dynamic load/install plugins in Internet
Explorer/Netscape

Generally, these work without shutting down the browser.

Not-so-dynamic systems
Windows Update

Only works without a reboot if resources weren’t in use.
JPL Space Probe system updates

Require restart of many non-core systems.
Application patches

May not require a full reboot but generally require
application restart.

To this…

We would like to move from this…

http://www.isr.uci.edu/

Techniques for Dynamism

Plug-in Mechanisms (e.g. Netscape/IE)
Generally, specific extensions to a core platform.
Core usually remains unchanged.

Dynamic code loading (e.g. Java ClassLoaders)
Handle loading new code and unloading old code.

Dynamic component instantiation (e.g. CORBA)
Generally, handles unloading poorly.
Makes understanding and managing changes difficult

Little change visibility.

http://www.isr.uci.edu/

Outline

Software Dynamism
Software Architecture
Architecture-Based Approach

Evolution Management
Adaptation Management

Summary

http://www.isr.uci.edu/

Architecture: A New Perspective

Architecture views software systems at the level of
components and connectors.

Not lines-of-code or modules.
Not objects.

Architecture generally leverages explicit software
models that depict at least:

Software Components
Including provided and required interfaces.

Explicit (generally) Software Connectors
Provided and required interfaces.

Explicit links between the two.
Links form various system configurations.

http://www.isr.uci.edu/

Example of an Architecture-level
Depiction:

ls -l grep “foo” more

stdout

http://www.isr.uci.edu/

Example of an Architecture-level
Depiction:

ls -l grep “foo” more

stdout•Components

http://www.isr.uci.edu/

Example of an Architecture-level
Depiction:

ls -l grep “foo” more

stdout•Components
•Connectors

(all pipes)

http://www.isr.uci.edu/

Example of an Architecture-level
Depiction:

ls -l grep “foo” more

stdout•Components
•Connectors

(all pipes)
•Provided interfaces

http://www.isr.uci.edu/

Example of an Architecture-level
Depiction:

ls -l grep “foo” more

stdout•Components
•Connectors

(all pipes)
•Provided interfaces
•Required interfaces

http://www.isr.uci.edu/

Example of an Architecture-level
Depiction:

ls -l grep “foo” more

stdout•Components
•Connectors

(all pipes)
•Provided interfaces
•Required interfaces
•Links

http://www.isr.uci.edu/

A slightly larger example

http://www.isr.uci.edu/

Outline

Software Dynamism
Software Architecture
Architecture-Based Approach

Evolution Management
Adaptation Management

Summary

http://www.isr.uci.edu/

Can we use architecture to manage
and enact dynamism?

Leverage architecture-level models to:
Understand and visualize the structure of the system.
Depict, visualize, and understand changes to that
structure.
Guide automated tools in making changes to modeled
components.

Leverage the above concepts to:
Serve as the basis for self-healing/self-adaptive systems
that make decisions and changes based on architecture-
level models.

http://www.isr.uci.edu/

A Vision for Architecture-based
Adaptation: The Figure-8 Diagram

Feedback
and

Planning

Implementation
Issues

http://www.isr.uci.edu/

Outline

Software Dynamism
Software Architecture
Architecture-Based Approach

Evolution Management
Adaptation Management

Summary

http://www.isr.uci.edu/

First Focus: Bottom Half

Key Insight: Keep the model and the implementation in-sync: a
change to one automatically results in a change to the other.

http://www.isr.uci.edu/

Assumptions Implicit in the
Figure-8 Diagram

There is a modeling language.
It can be accessed programmatically.

Change descriptions can be expressed
and deployed to (multiple?) sites.

There is an implementation framework
that supports dynamic changes.

There is a tool that can maintain
model implementation consistency.

http://www.isr.uci.edu/

A Modeling Language

Traditionally architectures are expressed in
an Architecture Description Language (ADL):

A formalism that allows you to ‘write down’ architectures.
At minimum, must support:

Components
Connectors
Interfaces
Links

For our purposes, must also support some mapping to
implementation.

Ideally, flexible enough to support many domains.

http://www.isr.uci.edu/

Problems with current ADLs
Too broad.

Example: Acme
Supports arbitrary properties on elements, but only basic
support for these properties

Too narrowly-focused.
Examples: Rapide, Wright, Darwin, Meta-H, etc.
Support one domain or set of concerns well, others poorly.
Often lack implementation mappings.

Not extensible.
Too hard to extend existing ADLs (and their tool-sets) to
add information.

http://www.isr.uci.edu/

Our Solution: xADL 2.0
An extensible, XML-based ADL.

Modeling features all expressed in language modules (XML
schemas).
A composition of XML schemas make up an ADL.
Schemas available from UCI to support:

Design-time & run-time structural modeling.
Implementation mappings.
Product-line architectures
(allows managing model
evolution over time). xArch – Run-time

(Architectural Instances Core)

Types & Instances -
Design-time

CM/Product Families
(Versions, Options,

Variants)

Implementation
Mappings

(Future Expansions)

http://www.isr.uci.edu/

Change Descriptions
Required to express and understand
architectural changes.
Different levels of change to consider:

Basic ‘diffs’
Describe changes between Model1 and Model2.

Product-Line ‘diffs’
Describe changes between Product-Line1 and Product-Line2.

Pattern-based ‘diffs’
Describe changes to patterns found in Model1 and and
patterns found in Model2.

http://www.isr.uci.edu/

Our Change Descriptions

We currently support:
Basic ‘diffs’
Product-line ‘diffs’

Both implemented as extensions to xADL 2.0.
Accompanied by automated tools:

Automatically generate diff documents from two
architectures or product lines.

(the architecture equivalent of ‘diff’ on UNIX)
Automatically merge a diff into an architecture or product
line.

(the architecture equivalent of ‘patch’ on UNIX)

http://www.isr.uci.edu/

Architecture Frameworks
Bridge the gap between elements found in architectural styles

(components, connectors)

…and programming languages.
(classes, objects, procedure calls)

Often support a particular architectural style or family of
styles.
For our purposes, should support run-time dynamism
primitives (add/remove component, add/remove link, etc.).
Potential candidates:

Component frameworks like COM, EJB, CORBA…

http://www.isr.uci.edu/

c2.fw: One such framework

Architectural style(s):
Component- and message-based styles.
Special support for C2 style.

Programming languages:
Java
(Other frameworks available for other languages)

C++, Embedded C++, Ada95, etc.

Dynamism Primitives
Exposes a single, unified interface for adding/removing
components, connectors, links, interfaces, etc.

http://www.isr.uci.edu/

Maintain Consistency

Tool must monitor both architectural model
and running system:

When model changes (e.g. due to patching a diff), must
modify the implementation to match.
When application changes (e.g. due to component failure
or shutdown) must modify the model to match.

Algorithms to accomplish this with different
kinds of models and dynamism primitives are
still being researched.

http://www.isr.uci.edu/

Architecture Evolution
Manager

A component of our architecture-based
development environment that performs this
function.
Currently supports local changes, will evolve
to support distributed changes and things like
maintaining component state across
replacements/upgrades.

http://www.isr.uci.edu/

Open Dynamism Research Issues

Distributed systems
Encounter many new types of failures—network failure,
host failure, etc.

Infrastructure adaptation
Can be partially addressed with a multi-level approach
(AEMs running inside other AEMs).
We have a proof of concept in our current infrastructure.

Maintaining state across component
upgrade/replacement.
Assessing/maintaining reliability.

http://www.isr.uci.edu/

A Vision for Architecture-based
Adaptation: The Figure-8 Diagram

Feedback
and

Planning

Implementation
Issues

http://www.isr.uci.edu/

Outline

Software Dynamism
Software Architecture
Architecture-Based Approach

Evolution Management
Adaptation Management

Summary

http://www.isr.uci.edu/

Second Focus: Top Half

Key Insight: Managing and planning adaptations is done at the
architectural level, independent of the application semantics.

http://www.isr.uci.edu/

Implicit Assumptions

Changes can be enacted and
observations collected.

Observations can be evaluated for
their meaning.

Modifications can be planned
according to some criteria.

http://www.isr.uci.edu/

Planning Changes

Interesting questions:
Who is responsible?

System designers, administrators, users.

When should changes be enacted?
Pre-planned situations, user discretion.

What are the specifics?
Pre-planned change scripts, user-defined modifications.

http://www.isr.uci.edu/

Self-Adaptive Software

Software that can modify itself in response to:
Software faults.
Changing deployment conditions.
New behavioral requirements.

Modifications do not need human intervention.
The system itself decides…

…when changes need to take place.
…what the specifics of these changes are.

http://www.isr.uci.edu/

Various Approaches

Changes are pre-programmed into software components.
Little visibility, close coupling with implementations.

Pre-planned change scripts.
Static responses for a non-static world.
Limited to the foresight of the system designer.

Adaptive algorithms
Domain-specific solutions in a constrained environment.

The challenge lies in developing an approach that ensures
high visibility, strict decoupling, and dynamic evolution.

http://www.isr.uci.edu/

A Knowledge-Based
Approach: Overview

An architecture-centric, knowledge-based approach which
reasons about change based on observations and policies.

Observations comprise known information.
Policies define when modifications should take place and what the
responses should be.

Features:
High visibility

Knowledge and policies are specified as part of the system’s architectural
description.

Decoupled
Policies are strongly-decoupled from component implementations.
Components need not have any knowledge of adaptation.

Dynamic
Observations may be transient.
Policies may be added, removed, and composed.

http://www.isr.uci.edu/

Knowledge-based
Adaptation Policies

Policies determine the timing and specifics of
adaptations.
Knowledge-based policy structure:

Observation+ Response+

Adaptation policies are specified at the architectural
level, and can be dynamically modified at run-time.
Representational support using xADL 2.0, and
expert system implementation using the Java Expert
System Shell (JESS). Again, fully extensible.

http://www.isr.uci.edu/

Adaptation Observations

Observations express architectural knowledge.
Events indicating non-nominal operation.

Component or connector failure.

Events indicating the structure of the architecture has changed.
Components and connector addition, link removal, etc.

Events which may indicate composition errors.
Requests and notifications go unanswered or ignored.

These observations are supported by:
xADL 2.0 modeling extensions.
c2.fw implementation framework.

But, they are easily extended to accommodate domain-
specific information.

http://www.isr.uci.edu/

Collecting Observations

May be emitted by components themselves.
Collected using independent software probes.

May be dynamically inserted into the running system.
Primarily observe communication patterns.

Component A Component BProbe

http://www.isr.uci.edu/

Adaptation Responses

Responses indicate architectural modifications.
Addition of architectural elements (components, connectors, or
links).
Removal of architectural elements.
Addition and removal of observations or adaptation policies.
Composite operations.

Using these responses, the system can modify both:
Its structure, and therefore its behavior.
The policies guiding adaptations themselves.

Again, supported by xADL 2.0 extensions and the
c2.fw framework but also fully extensible.

http://www.isr.uci.edu/

Enacting adaptations

Modifications due to adaptation responses
are not directly enacted. May need to…

Maintain architectural constraints.
Log and publish modifications.

Architecture Adaptation Manager (AAM)
Point of coordination for these “value add” services.

AAM (to be) included in the ArchStudio 3.0
toolkit.

Currently, coordinates constraint maintenance facilities.

http://www.isr.uci.edu/

A short example

Unmanned Air Vehicle (UAV) with limited on-
board resources.
Operates software components supporting
various tasks.

Nominal navigation.
Threat avoidance navigation.
Image processing.
Inter-networking management.

In certain situations, some of these tasks take
precedence.

http://www.isr.uci.edu/

An example policy
Policy giving threat avoidance precedence.

<AdaptationPolicy id="Avoid_threats">
<Description>Replace normal navigation.</Description>
<Observation id="Threat_Detected" />
<Response id="Replace_Component"
old="Nominal_Nav" new="Threat_Avoidance_Nav"/>

</AdaptationPolicy>

Observations
Domain specific: Threat Detected.

Responses
Composite operation:

Remove Nominal navigation component.
Adding Threat Avoidance component in its place.

http://www.isr.uci.edu/

Open Research Issues

Distributed systems
Can local adaptation decisions give rise to global adaptive
behavior?

Expressiveness
Is this knowledge-based approach expressive enough?

Safety and Predictability
Given the non-deterministic nature of the approach, can
guarantees about the system’s architecture be made?
Are constraints sufficient for this?

http://www.isr.uci.edu/

Outline

Software Dynamism
Software Architecture
Architecture-Based Approach

Evolution Management
Adaptation Management

Summary

http://www.isr.uci.edu/

Summary

Architectural models are central not only to software
development but also evolution.
Architecture provides a promising approach for:

Dynamic, run-time system evolution.
Developing self-adaptive capabilities.

“Proof of concept” techniques and tools:
xADL 2.0 architecture description language.
ArchStudio 3 environment.
Knowledge-Based Architecture Adaptation Management
(KBAAM).

	Autonomous, Self-Adaptive Software: Architecture-based Tools, Techniques, and Methods
	Outline
	What is dynamism?
	Examples of Dynamic Systems
	Techniques for Dynamism
	Outline
	Architecture: A New Perspective
	Example of an Architecture-level Depiction:
	Example of an Architecture-level Depiction:
	Example of an Architecture-level Depiction:
	Example of an Architecture-level Depiction:
	Example of an Architecture-level Depiction:
	Example of an Architecture-level Depiction:
	A slightly larger example
	Outline
	Can we use architecture to manage and enact dynamism?
	A Vision for Architecture-based Adaptation: The Figure-8 Diagram
	Outline
	First Focus: Bottom Half
	Assumptions Implicit in the Figure-8 Diagram
	A Modeling Language
	Problems with current ADLs
	Our Solution: xADL 2.0
	Change Descriptions
	Our Change Descriptions
	Architecture Frameworks
	c2.fw: One such framework
	Maintain Consistency
	Architecture EvolutionManager
	Open Dynamism Research Issues
	A Vision for Architecture-based Adaptation: The Figure-8 Diagram
	Outline
	Second Focus: Top Half
	Implicit Assumptions
	Planning Changes
	Self-Adaptive Software
	Various Approaches
	A Knowledge-BasedApproach: Overview
	Knowledge-basedAdaptation Policies
	Adaptation Observations
	Collecting Observations
	Adaptation Responses
	Enacting adaptations
	A short example
	An example policy
	Open Research Issues
	Outline
	Summary

