
Architectural, Development Lifecycle, and 
Programmatic Considerations of 
Hyperexponential Change 

John Georgas
The Aerospace Corporation

Institute for Software Research (UCI)



Outline

Software Architecture
Hyperexponential Change
Raging Incrementalism
Raging Incremental Development

Architectural Principles
Lifecycle Considerations
Programmatic Considerations

Example: Launch Range Video
Summary



Software Architecture
Structures of architectural elements.

Components (and their parameters).
Interconnections (preferably explicit).

Software architecture promises systems that 
are easier to understand, build, maintain, and 
analyze.
Software architecture is about composition.

Composing elements to achieve system goals.
Focus on architecting, rather than building.
High-level view of systems; not getting mired in 
the low-level implementation details.



System Composition
Not all architectures are created equal.

When and how are components bound?
Early and late binding.
Static and dynamic binding.

Often, these issues are addressed by architectural styles.
Late and dynamic binding are ideal.

Just some examples:
Data

A

B

Components share a 
common data store.

A

B

Data One component 
subsumes another.

Remote components 
exchange data.

A BData



Outline

Software Architecture
Hyperexponential Change
Raging Incrementalism
Raging Incremental Development

Architectural Principles
Lifecycle Considerations
Programmatic Considerations

Example: Launch Range Video
Summary



Accelerating Change
Examine the rate of change of change.
Trends show:

Exponential improvement in rate of change and doubling 
periods.
By 2025, 100 years of 90’s type progress.
By 2101, 20000 years of 90’s type progress.

The result is hyperexponential change.
Everything changes…

“Everything you knew yesterday is wrong today.”
The system you’ve just designed is already obsolete.



Architectural Requirements

Late binding of components.
As far away from source code composition 
as possible.

Dynamic binding of components.
Bindings that are changeable at runtime.

Embracing change through appropriate 
architectural methodologies and 
techniques.



Outline

Software Architecture
Hyperexponential Change
Raging Incrementalism
Raging Incremental Development

Architectural Principles
Lifecycle Considerations
Programmatic Considerations

Example: Launch Range Video
Summary



Raging Incrementalism

System engineering based on:
Components (bricks) made of:

Commodity hardware piece-parts.
Open-source software.

Interconnections through:
Protocols-based interaction.
REpresentational State Transfer (REST) 
architectural style.



Outline

Software Architecture
Hyperexponential Change
Raging Incrementalism
Raging Incremental Development

Architectural Principles
Lifecycle Considerations
Programmatic Considerations

Example: Launch Range Video
Summary



Architectural Principles
Naturalistic architectural design.

Based on “naturally occurring” materials.
Architecture “grown” from these materials.
Architect around the building blocks, rather 
than building around the architecture.
Continually evolving entity.

Explicit architectural model description.
Based on REST architectural style.

Independent components.
Stateless interactions.
Components modeled as resources with their 
own namespace (which may expand).
Late and dynamic binding.

Interconnections using URI addressing.



Outline

Software Architecture
Hyperexponential Change
Raging Incrementalism
Raging Incremental Development

Architectural Principles
Lifecycle Considerations
Programmatic Considerations

Example: Launch Range Video
Summary



Lifecycle Considerations



Rapid System Engineering
Elicit Requirements

System requirements, as understood at the time.
Evaluate Commodity Hardware

Cheap, non-specialized, easily replaced, 
hyperexponentially improving.

Evaluate Open-Source Software
Free (in more ways than one), diverse.

Architect
Architecture may be refined or revised due to:

Increased requirements understanding.
New hardware/software components.



Lifecycle Considerations



Rapid System Prototyping

Develop Prototype
Rapidly developed.
Relative to effort, extremely fully-featured.

Test Prototype
Evaluate Results
Architect

May be refined or revised due to:
Insight gained during prototyping.
Failure to meet goals/requirements during testing.



Outline

Software Architecture
Hyperexponential Change
Raging Incrementalism
Raging Incremental Development

Architectural Principles
Lifecycle Considerations
Programmatic Considerations

Example: Launch Range Video
Summary



Development Cycles
Measured in weeks and months, not years.

A few months (at the most) for an initial iteration 
resulting in a complete prototype.
Weeks for further iterations resulting in revisions 
and refinements.

Independent and parallel modification of 
components.

Promoted through decoupled RESTful interactions.
Shorter cycles result in less management 
overhead.

Promote early incorporation of lessons-learned.



Productivity

Development focused on integration, not 
coding.

Conventional productivity measures (LOC, function 
points) inappropriate in this context.

Measures and project milestones focused on:
Scale of integrated components.
Functionality achieved.

Focus on quality, not quantity.



Staffing
Exceptional architects and integrators take 
precedence over programmers.

Development focuses on integration, rather than “in-house” 
development.

Special role – software surveyor
Knowledge of open-source projects – both existing, and 
planned.
Aware of strengths and weaknesses of projects, as well as 
dependencies and requirements.
This knowledge is essential:

Formulates early prototype systems.
Enables and guides long-term planning.



Outline

Software Architecture
Hyperexponential Change
Raging Incrementalism
Raging Incremental Development

Architectural Principles
Lifecycle Considerations
Programmatic Considerations

Example: Launch Range Video
Summary



RAnge Video Experiment

Experimental replacement for video 
monitoring at Eastern and Western 
launch ranges.
Features:

Large-scale, distributed system.
Real-time video encoding and decoding.
Video archival.



Raging Incremental Prototype
Peer-to-peer architecture.
RESTful interactions.
Developed in a 6 week cycle.
Video Camera Brick:

Shuttle PC with Firewire camera.
Network camera control.
Software-based MPEG-4 encoding.
Precision timestamps for video frames.
Digital video streaming.

Video Proxy Brick
Custom Python program.
Live.com streaming libraries.

Video Distribution Server Brick
Based on open-source Darwin Streaming Server from Apple.

Video Archive Brick
4U commodity rack server containing 4 terabytes of storage.
FreeBSD.



Components Used
Video Camera Brick

Hardware
Shuttle form-factor box.
Unibrain Firewire camera.

Software
Debian Linux OS (open source).
libdc1394 (open source).
spook broadcaster (open source).
xViD MPEG4 encoding (open source).

Video Distribution Brick
Hardware

Shuttle form-factor box.
Software

Debian Linux OS (open source).
Darwin Streaming Server (open 
source).

Video Archive Brick
Hardware

4U commodity rack server (4 TB).
Software

FreeBSD OS (open source).
mencoder MPEG4 encoder (open 
source).
mplayer for video playback (open 
source).
MySQL database (open source).

Video Proxy Brick
Hardware

Shuttle form-factor.
Software

Custom Python video proxy.
Live.com RTP/RTSP libraries (open 
source).

Protocols
RTSP, RTP, HDP, HTTP, TCP.

Standards
IEEE1394.

Languages
C, C++, Python.



Outline

Software Architecture
Hyperexponential Change
Raging Incrementalism
Raging Incremental Development

Architectural Principles
Lifecycle Considerations
Programmatic Considerations

Example: Launch Range Video
Summary



Summary
Hyperexponential change changes 
everything.
Raging incrementalism

Architecture must be about composition.
Late and dynamic component binding.

Formulations of architectural principles, 
development lifecycle, and programmatic 
insight.
Proof-of-concept prototype in the RAnge 
Video Experiment (RAVE) system.



What We Learned…

Success comes at a price.
Tangible results rest on a mountain of 
failure.

Going at it alone can hurt.
Walk a fine line between asking for help 
and being self-sufficient.

Flexible and understanding 
management is the key to happiness.


	Architectural, Development Lifecycle, and Programmatic Considerations of Hyperexponential Change
	Outline
	Software Architecture
	System Composition
	Outline
	Accelerating Change
	Architectural Requirements
	Outline
	Raging Incrementalism
	Outline
	Architectural Principles
	Outline
	Lifecycle Considerations
	Rapid System Engineering
	Lifecycle Considerations
	Rapid System Prototyping
	Outline
	Development Cycles
	Productivity
	Staffing
	Outline
	RAnge Video Experiment
	Raging Incremental Prototype
	Components Used
	Outline
	Summary
	What We Learned…

