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ABSTRACT 
Understanding the complex dependencies between the technical 
artifacts of software engineering and the social processes involved 
in their development has the potential to improve the processes we 
use to engineer software as well as the eventual quality of the 
systems we produce. A foundational capability in grounding this 
study of socio-technical concerns is the ability to explicitly model 
technical and social artifacts as well as the dependencies between 
them. This paper presents the STCML language, intended to sup-
port the modeling of core socio-technical aspects in software 
development in a highly extensible fashion. We present the basic 
structure of the language, discuss important language design prin-
ciples, and offer an example of its application. 

Categories and Subject Descriptors 
D.2.9 [Software Engineering]: Management – programming 
teams; D.2.11 [Software Engineering]: Software Architectures – 
languages 

General Terms 
Design, Standardization, Languages. 

Keywords 
Socio-technical congruence, modeling languages. 

1. INTRODUCTION 
Software engineering is a highly social activity that exhibits a 
complex interplay of technical and social concerns that are inter-
related and dependent on one another. While the software engi-
neering community has spent a great deal of effort in exploring 
the technical aspects and artifacts of software development, sig-
nificantly less attention has been devoted to understanding soft-
ware engineering through the lens of social perspectives. 

Research within the area of socio-technical congruence (STC) 
focuses on the study and understanding of these dependencies 
between technical and social artifacts and processes, providing 
insights into the development process. For example, one interest-
ing research result shows that a high degree of congruence be-

tween the technical dependencies of source code artifacts and the 
communication patterns exhibited by the developers results in 
higher quality software and faster development times. Clearly, 
understanding and actionably applying STC insights can have a 
significant impact in software engineering productivity. 

A very interesting socio-technical dependency is the interplay 
between social structures and the architectural design of software 
systems (as opposed to lower level source code artifacts), but it is 
challenging to transition insights from examining these relation-
ships to actionable interventions into the development process. 
While one factor that contributes to this difficulty is the lack of 
comprehensive toolsets intended to be used in everyday develop-
ment – since much current work is focused on post hoc STC 
analysis – a more fundamental issue is the lack of a common rep-
resentational foundation that developers can use to explicitly spec-
ify social, technical, and architectural concerns. 

In order to address these challenges, we have developed STCML, 
an extensible modeling language intended to achieve two funda-
mental goals. First, STCML aims to provide support, currently 
lacking from other tools and approaches, for specifying relation-
ships between architectural artifacts and social processes. Second, 
our goal is to provide an extensible modeling language foundation 
to serve as a basis for reuse. 

This paper presents the foundations of our work in the socio-
technical analysis and architectural modeling domains, discusses 
the foundations of the STCML language, elaborates on important 
design principles of the language, and demonstrates the lan-
guage’s application on an open-source project. 

2. BACKGROUND 
This section discusses foundational topics in socio-technical con-
gruence and representations and architectural languages. 

2.1 Socio-Technical Congruence 
Socio-technical congruence (STC) is a theory that focuses on 
aligning the social and technical dependencies in a project. The 
underlying technical dependencies, which can be calculated either 
via program analysis or heuristics such as co-committed files, lead 
to social dependencies. That is, developers need to coordinate 
with each other because of shared resources and work dependen-
cies. Socio-technical congruence determines the match between 
developers who need to coordinate and those who are communi-
cating [3, 9], where the underlying assumption is that coordination 
is achieved through communication. Communication networks are 
created by tracking team communications. 

Past research in socio-technical congruence has shown that a 
higher congruence leads to higher productivity. For example, 
Cataldo et al. [3] found that teams with higher congruence be-
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tween technical dependencies and developer communications are 
more productive. Similarly, Valetto et al. [9] propose a quantita-
tive measure of socio-technical congruence as an indicator of the 
performance of an organization during a development project. 

2.2 Socio-Technical Representations  
Social network analysis (SNA) has been a critical component in 
organizational science and management research. A majority of 
tools developed in the domain, however, use proprietary and often 
incompatible data representation formats, some of which lack 
explicit specification documents. While many tools are designed 
to accept inputs in different formats, no one tool covers all exist-
ing formats. For example, Pajek [1] a tool for social network visu-
alization and analysis, uses .net, .paj, .dat(UCINET), .ged, .bs, 
.mac, .mol; whereas UCINET [2], another seminal social network 
analysis tool, accepts Excel, DL, text, Pajek .net, krackplot, Ne-
gopy, and proprietary formats (##.d & ##.h). As a result of this 
proliferation of notations, researchers must deal with data inter-
change in an ad hoc fashion, which results in extra effort and pos-
sibly losses to data integrity. We see a similar challenge in the 
STC tools used in software engineering. Currently, many tools use 
proprietary internal data structures (usually, a matrix representa-
tion) and input and output data formats, including the work in-
volving Design Structure Matrices (DSM) [10], which use internal 
matrixes to represent modularity in software systems. 

To the best of our knowledge, DyNetML is the only exception and 
is intended to be a more widely applicable data interchange lan-
guage [8]. DyNetML is XML1-derived and supports the specifica-
tion of nodes and edges as well as attributes and related metadata, 
with the primary extension mechanism of the language being the 
addition of named properties to elements. While the language is 
capable of modeling a very wide range of network data, it lacks a 
concrete grammar that shows the relationships between various 
applications and language extensions.  

2.3 Architectural Representation 
One of the critical research interests that underpin our work is 
studying socio-technical concerns as they relate to the architec-
tures of software systems. This necessitates that both these aspects 
of the software engineering process are explicitly modeled and the 
dependencies between them precisely captured, which shares 
challenges with the field architecture description languages [6]. 
While a large number of notations and languages have been de-
veloped within this domain to support a particular kind of concern 
or analysis, certain efforts have rather been focused on developing 
languages that can serve as an extensible foundation for heteroge-
neous approaches and data interchange: two of the most promi-
nent of these approaches are xADL [4] and Acme [5]. 

Our own work is specifically influenced by xADL; an XML-
based language intended to be easily extensible while preserving a 
concrete shared foundation. The language is defined through a 
collection of XSD2 schemas, the meta-language that accompanies 
XML and can used to specify the grammars of XML-based lan-
guages. In our design of and work with STCML, we adopt a small 
number of xADL schemas that address the modeling of architec-
tural elements, such as components and connectors, while adding 
significant extensions in order to provide novel support for the 
specification of socio-technical concerns. 

                                                                    
1 http://www.w3.org/XML 
2 http://www.w3.org/XML/Schema 

3. APPROACH 
The first step in being able to capture, visualize, and understand 
the complex socio-technical relationships between developers and 
the architectural and source code artifacts that they create is the 
ability to precisely capture and explicitly model these relation-
ships. STCML represents our effort to provide a principled and 
rigorous modeling foundation for socio-technical concerns, with 
special emphasis and support for modeling architectural artifacts. 

As motivated in the preceding section, our work with STCML is 
guided by two key challenges: First, the overly low-level repre-
sentations used within the socio-technical domain are overly pro-
prietary and not highly reusable. Second, the distinct lack of prin-
cipled support for the inclusion of architectural artifacts within the 
domain of discourse makes it difficult to include architectural 
concerns in socio-technical analysis. 

3.1 Design Principles 
In our design of the STCML language, we have elected to adopt 
XML-related technologies in order to address key design con-
cerns, including interchange and extensibility. Our adoption of 
XML provides a common foundation for facilitating exchange 
between heterogeneous representations and toolsets. Using XSD 
as the meta-language that defines valid STCML expressions pro-
vides a principled extensibility mechanism well supported by a 
large number of commercial as well as freely available tools; ex-
amples include XMLSpy3 and the Eclipse Web Tools Platform4. 

One prominent design feature of STCML is the decision to sup-
port extensibility using inheritance and type extension, rather than 
the alternative of parameterization. To illustrate the difference 
between these two mechanisms, we’ll draw upon the following 
example: Consider the need to extend a base XML type EDGE, 
capturing an undirected edge between graph nodes, in order to 
support the representation of a directed edge. Parameterization is 
one common way to fulfill this requirement, and may be imple-
mented by adding two key-value pairs to an instance of the EDGE 
type: the keys, for example, named “head” and “tail” containing 
the names of the nodes connected by this edge element respec-
tively. Further extending this type to support a weighted directed 
edge works similarly: one could add a key-value pair with a key 
called “weight” containing a value representing the edge’s weight. 
One fundamental problem with parameter-based extension is that 
all extended elements are essentially objects of the same type (in 
this example, EDGE) and are only differentiated by their parameter 
contents. The semantics of what it means to be a directed or a 
weighted edge are not contained in the type system of the lan-
guage, but are hidden in individual element instances. This brings 
up the fundamental issue of type equivalency: If another devel-
oper elects to create a weighted edge using “importance” as the 
key, is that element semantically equivalent to using “weight” as 
the key? Does the key “head” carry the same semantic meaning as 
“origin?” Without a concrete type system, these questions are 
challenging to answer. The directed and weighted edges created 
through this mechanism, which fundamentally capture semantic 
distinctions, can only be practically differentiated by investigating 
their contents. This extension mechanism makes it challenging for 
users to establish semantic commonalities and agreement between 
their distinct uses of the same language elements. 
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The mechanic we adopt for STCML centers on the application of 
inheritance (natively supported by XSD): In order to create a di-
rected edge, a user would extend the EDGE type to create a DI-
RECTEDEDGE type that contains additional semantics and could be 
used to create instances of directed edges. A weighted edge would 
involve the creation of a WEIGHTEDEDGE type, with EDGE as the 
parent. The semantic distinctiveness of the two edge types is ex-
plicitly captured in the type system of the language, and distin-
guishing between the two requires a simple reference to the ele-
ment’s type, rather than an investigation of the element’s contents. 

This latter technique is quite familiar from object-oriented pro-
gramming, and provides a number of benefits. With this extension 
mechanism, for example, it is possible to provide tool support for 
language analysis that is context-driven and applicable to reusable 
parts of type systems, as opposed to custom tools that only sup-
port non-reusable instances of overly general types. Furthermore, 
the existence of an inheritance-based type system eases the burden 
on human readers, as some semantic information can be gleaned 
solely through studying this information source. One trade-off, of 
course, is that this approach is more constraining in the uses of 
existing type systems and the manner in which types can be ex-
tended. However, while it might be easier to extend a type by 
adding an arbitrary key-value pair, an inheritance-based approach 
provides a more rigorous basis for further extension and reuse. 

3.2 STCML Structure 
The STCML language consists of a family of XSD schemas that 
capture the entities required for modeling socio-technical con-
cepts. Each schema in the language can be adopted independently 
of others, and users can further independently adopt each type 
defined by each schema. The following discussion provides more 
details on each of the core elements of STCML, following a pro-
gression from basic types (used in the definition of other types) to 
those types that are primarily compositions of other types: 
• Agents: One of the core schemas of STCML, this schema sup-
ports the modeling of human participants in a development effort. 
The AGENT type is the core type of this schema, and is specialized 
into the DEVELOPER and MANAGER types, along with support for 
creating nodes for each of these types that can be used in net-
works. A visualization of the structure of the DEVELOPER type is 
shown in Figure 1. 
• Resources: This schema supports the specification of a variety 
of development process resources, providing the foundational 
building blocks for modeling the technical artifacts of a develop-
ment effort. The base type of this schema is RESOURCE, with sub-
types that support modeling and representing units of source code, 
architectural structures, components, connectors, implementations 
and component types. This STCML schema also supports the 
specification of network nodes associated with each of these re-
source types. 

• Task: This schema supports the specification of tasks and task 
assignments through the TASK type that links together AGENT and 
RESOURCE elements (or any of their sub-types, of course), while 
also providing support for the specification of task networks. 
• Team: Primarily a compositional schema, the TEAM element 
type allows STCML users to model teams of developers and other 
agents, relationships between agents that capture supervisory 
roles, and the capability to model larger-scale organizations 
through the ORGANIZATION type that hierarchically composes 
teams into organizations. 
• Graph: This schema provides core capabilities for modeling 
graphs and networks of any of the preceding STCML types, with 
sub-types of the GRAPH type natively supporting the specification 
of directed, undirected, and weighted graphs, or graphs with arbi-
trary combinations of edges. 
• Networks: Primarily addressing compositions and specializa-
tions of previous types, this schema supports specialized social-
network analysis graphs, such as communication needs and tech-
nical dependency graphs. 

4. STCML APPLICATION 
In order to demonstrate the application of STCML, its capability 
to capture socio-technical concepts, and the form that STCML 
specifications take, we applied the language to the modeling of a 
subset of data relating to the GNOME project, based on analyses 
and social network data performed using Tesseract [7]. 

4.1 GNOME and Rhythmbox 
The (GNU Network Object Model Environment) GNOME5 pro-
ject is an open-source desktop environment for Unix systems. 
Initiated in 1997, GNOME consists of roughly 1200 smaller pro-
jects ranging from GUI tools to low level libraries. Projects under 
GNOME adopt a versioning system, communicate through mail-
ing lists and real-time chats, and use the open source Bugzilla 
issue tracking system. Through these sources, we have access to 
ten years of data from GNOME development that includes 
roughly 480,000 commits from about 1,000 developers and 
790,000 comments on 200,000 issues from 26,000 contributors. 

Within this data set, we focus on development data from Rhyth-
mbox, an integrated music management application for the 
GNOME desktop. The entire data set includes information about 
107 developers working with 918 source files involving 2865 
commits. More specifically, we concentrate on development ac-
tivities that took place between 6/1/2005 and 7/27/2005, analyzing 
the data using Tesseract [7] in order to generate dependency net-
works between socio-technical entities. 

4.2 STCML Example Code 
First, we analyze technical dependencies in the Rhythmbox de-
velopment data set, as exhibited in dependencies between source 
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Figure 1. A visualization of the DEVELOPER type, showing 
inheritance from AGENT and use of TASK and RESOURCE; 

image generated using Eclipse’s Web Tools Platform. 

Figure 2. A graphical depiction of GNOME example net-
works: file dependencies shown on the left and developer 

communications on the right. 



code files. The discovery of file dependencies is founded on 
analysis of GNOME versioning commit logs, with files that are 
committed closely together assumed to be dependent on each 
other. Based on this analysis, we generated the file dependency 
network that appears on the left of Figure 2. Using STCML, the 
partial XML-based representation for this network becomes (for 
brevity, we omit namespaces and some type system annotations): 
<resources type=”ResourceSet”> 
  <resource id="rbqc" fileName="rb-query-creator.c" 
    type=”SourceFile”/> 
  <resource id="rdbt" fileName="rhythmdb-tree.c" 
    type=”SourceFile”/> 
  <resource id="rdb" fileName="rhythmdb.c" 
    type=”SourceFile”/> 
  ... 
</resources> 
<techDependencyNetwork id="rhythmbox_file_to_file" 
  type=”UndirectedGraph”> 
  <node id="node_rdb-t.c" type=”ResourceNode”> 
    <resource href="#rdbt" type="simple" type=”XMLLink”/> 
  </node> 
  <node type=”ResourceNode” id="node_rdb.c"> 
    <resource href="#rdb" type="simple" type=”XMLLink”/> 
  </node> 
  ... 
  <edge id="rdbt_to_rdb" type=”Edge”> 
    <endpoint href="#node_rdb-t.c" type="simple" 
      type=”XMLLink”/> 
    <endpoint href="#node_rdb.c" type="simple" 
      type=”XMLLink”/> 
  </edge> 
  ... 
</techDependencyNetwork> 

Based on this same data set, we also generated the communication 
network showing dependencies between developers. While the 
graphical depiction appears on the right of Figure 2, the following 
partial STCML fragment (abridged as the previous examples) 
captures this information in our XML-based specification using 
AGENT and DEVELOPER elements. As a further example, the frag-
ment also shows the integration of elements from the TASK type: 
<agents type="AgentSet"> 
  <agent id="Bastien Nocera" type="Developer"> 
    <assignedTo id="bug_fix_rbqc" type="Task"> 
      <relatesTo href="#rbqc" type="simple" 
        type="XMLLink"/> 
    </assignedTo> 
    ... 
  </agent> 
  <agent id="Christophe Fergeau" type="Agent"/> 
  <agent id="Paolo Borelli" type="Agent"/> 
  ... 
</agents> 
<commNetwork id="rhythmbox_dev_to_dev" 
  type="UndirectedGraph"> 
  <node id="bnocera" type="AgentNode"> 
    <agent href="#Bastien Nocera" type="simple" 
      type="XMLLink"/> 
  </node> 
  <node id="cfergeau" type="AgentNode"> 
    <agent href="#Christophe Fergeau" type="simple" 
      type="XMLLink"/> 
  </node> 
  <edge id="noc_to_fer" weight=".68" type="WeightedEdge"> 
    <endpoint href="#bnocera" type="simple"  
      type="XMLLink"/> 
    <endpoint href="#cfergeau" type="simple"  
      type="XMLLink"/> 
  </edge> 
</commNetwork> 

The above examples show another key decision in the design of 
STCML, which is the heavy use of XML links in order to connect 
artifacts together. While this requires that elements must have 
unique identifiers, it ensures a high level of reuse and non-
duplication. The SOURCEFILE elements in the preceding fragment 

of STCML, for example, could be reused in a network other than 
that shown without having to be duplicated. This addresses a key 
requirement of the social analysis problem space, where derived 
artifacts, such as networks, are re-generated while other parts of 
the data set, such as the set of developers, remain constant. It is 
also important to note that these STCML specifications can easily 
be used as machine-readable input to automated tools, which is 
something that purely graphical depictions cannot be used for. 

5. CONCLUSION 
Empirical research in software engineering has shown that in-
sights from socio-technical congruence can improve team produc-
tivity and streamline inter-developer communication. However, 
making these insights – particularly those involving architectural 
design – actionable in everyday development activities is ham-
pered by a lack of modeling and representational capabilities. 
Current STC tools follow proprietary, ad hoc data representation 
formats and lack sufficient modeling capabilities for software 
artifacts other than code. In this paper, we present STCML: an 
XML-based, highly-extensible modeling language that makes 
extensive use of linking and inheritance in order to provide an 
interoperable data representation with particular support for archi-
tectural concerns. While in the near future we will be working on 
enhancing STCML with explicit modeling support for additional 
concerns, our next step will be tool development: In addition to 
interchange tools for language interoperability, our eventual goal 
is the creation of an Eclipse-based development environment for 
integrating STC insights into everyday development activities. 
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