
STCML: An Extensible XML-based Language for Socio-
Technical Modeling

John C. Georgas
Electrical Engineering and Computer Science

Northern Arizona University
Flagstaff, AZ 86011, USA
John.Georgas@nau.edu

Anita Sarma
Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, NE 68588, USA

asarma@cse.unl.edu

ABSTRACT
Understanding the complex dependencies between the technical
artifacts of software engineering and the social processes involved
in their development has the potential to improve the processes we
use to engineer software as well as the eventual quality of the
systems we produce. A foundational capability in grounding this
study of socio-technical concerns is the ability to explicitly model
technical and social artifacts as well as the dependencies between
them. This paper presents the STCML language, intended to sup-
port the modeling of core socio-technical aspects in software
development in a highly extensible fashion. We present the basic
structure of the language, discuss important language design prin-
ciples, and offer an example of its application.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – programming
teams; D.2.11 [Software Engineering]: Software Architectures –
languages

General Terms
Design, Standardization, Languages.

Keywords
Socio-technical congruence, modeling languages.

1. INTRODUCTION
Software engineering is a highly social activity that exhibits a
complex interplay of technical and social concerns that are inter-
related and dependent on one another. While the software engi-
neering community has spent a great deal of effort in exploring
the technical aspects and artifacts of software development, sig-
nificantly less attention has been devoted to understanding soft-
ware engineering through the lens of social perspectives.

Research within the area of socio-technical congruence (STC)
focuses on the study and understanding of these dependencies
between technical and social artifacts and processes, providing
insights into the development process. For example, one interest-
ing research result shows that a high degree of congruence be-

tween the technical dependencies of source code artifacts and the
communication patterns exhibited by the developers results in
higher quality software and faster development times. Clearly,
understanding and actionably applying STC insights can have a
significant impact in software engineering productivity.

A very interesting socio-technical dependency is the interplay
between social structures and the architectural design of software
systems (as opposed to lower level source code artifacts), but it is
challenging to transition insights from examining these relation-
ships to actionable interventions into the development process.
While one factor that contributes to this difficulty is the lack of
comprehensive toolsets intended to be used in everyday develop-
ment – since much current work is focused on post hoc STC
analysis – a more fundamental issue is the lack of a common rep-
resentational foundation that developers can use to explicitly spec-
ify social, technical, and architectural concerns.

In order to address these challenges, we have developed STCML,
an extensible modeling language intended to achieve two funda-
mental goals. First, STCML aims to provide support, currently
lacking from other tools and approaches, for specifying relation-
ships between architectural artifacts and social processes. Second,
our goal is to provide an extensible modeling language foundation
to serve as a basis for reuse.

This paper presents the foundations of our work in the socio-
technical analysis and architectural modeling domains, discusses
the foundations of the STCML language, elaborates on important
design principles of the language, and demonstrates the lan-
guage’s application on an open-source project.

2. BACKGROUND
This section discusses foundational topics in socio-technical con-
gruence and representations and architectural languages.

2.1 Socio-Technical Congruence
Socio-technical congruence (STC) is a theory that focuses on
aligning the social and technical dependencies in a project. The
underlying technical dependencies, which can be calculated either
via program analysis or heuristics such as co-committed files, lead
to social dependencies. That is, developers need to coordinate
with each other because of shared resources and work dependen-
cies. Socio-technical congruence determines the match between
developers who need to coordinate and those who are communi-
cating [3, 9], where the underlying assumption is that coordination
is achieved through communication. Communication networks are
created by tracking team communications.

Past research in socio-technical congruence has shown that a
higher congruence leads to higher productivity. For example,
Cataldo et al. [3] found that teams with higher congruence be-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHASE'11, May 21, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0576-1/11/05... $10.00.

tween technical dependencies and developer communications are
more productive. Similarly, Valetto et al. [9] propose a quantita-
tive measure of socio-technical congruence as an indicator of the
performance of an organization during a development project.

2.2 Socio-Technical Representations
Social network analysis (SNA) has been a critical component in
organizational science and management research. A majority of
tools developed in the domain, however, use proprietary and often
incompatible data representation formats, some of which lack
explicit specification documents. While many tools are designed
to accept inputs in different formats, no one tool covers all exist-
ing formats. For example, Pajek [1] a tool for social network visu-
alization and analysis, uses .net, .paj, .dat(UCINET), .ged, .bs,
.mac, .mol; whereas UCINET [2], another seminal social network
analysis tool, accepts Excel, DL, text, Pajek .net, krackplot, Ne-
gopy, and proprietary formats (##.d & ##.h). As a result of this
proliferation of notations, researchers must deal with data inter-
change in an ad hoc fashion, which results in extra effort and pos-
sibly losses to data integrity. We see a similar challenge in the
STC tools used in software engineering. Currently, many tools use
proprietary internal data structures (usually, a matrix representa-
tion) and input and output data formats, including the work in-
volving Design Structure Matrices (DSM) [10], which use internal
matrixes to represent modularity in software systems.

To the best of our knowledge, DyNetML is the only exception and
is intended to be a more widely applicable data interchange lan-
guage [8]. DyNetML is XML1-derived and supports the specifica-
tion of nodes and edges as well as attributes and related metadata,
with the primary extension mechanism of the language being the
addition of named properties to elements. While the language is
capable of modeling a very wide range of network data, it lacks a
concrete grammar that shows the relationships between various
applications and language extensions.

2.3 Architectural Representation
One of the critical research interests that underpin our work is
studying socio-technical concerns as they relate to the architec-
tures of software systems. This necessitates that both these aspects
of the software engineering process are explicitly modeled and the
dependencies between them precisely captured, which shares
challenges with the field architecture description languages [6].
While a large number of notations and languages have been de-
veloped within this domain to support a particular kind of concern
or analysis, certain efforts have rather been focused on developing
languages that can serve as an extensible foundation for heteroge-
neous approaches and data interchange: two of the most promi-
nent of these approaches are xADL [4] and Acme [5].

Our own work is specifically influenced by xADL; an XML-
based language intended to be easily extensible while preserving a
concrete shared foundation. The language is defined through a
collection of XSD2 schemas, the meta-language that accompanies
XML and can used to specify the grammars of XML-based lan-
guages. In our design of and work with STCML, we adopt a small
number of xADL schemas that address the modeling of architec-
tural elements, such as components and connectors, while adding
significant extensions in order to provide novel support for the
specification of socio-technical concerns.

1 http://www.w3.org/XML
2 http://www.w3.org/XML/Schema

3. APPROACH
The first step in being able to capture, visualize, and understand
the complex socio-technical relationships between developers and
the architectural and source code artifacts that they create is the
ability to precisely capture and explicitly model these relation-
ships. STCML represents our effort to provide a principled and
rigorous modeling foundation for socio-technical concerns, with
special emphasis and support for modeling architectural artifacts.

As motivated in the preceding section, our work with STCML is
guided by two key challenges: First, the overly low-level repre-
sentations used within the socio-technical domain are overly pro-
prietary and not highly reusable. Second, the distinct lack of prin-
cipled support for the inclusion of architectural artifacts within the
domain of discourse makes it difficult to include architectural
concerns in socio-technical analysis.

3.1 Design Principles
In our design of the STCML language, we have elected to adopt
XML-related technologies in order to address key design con-
cerns, including interchange and extensibility. Our adoption of
XML provides a common foundation for facilitating exchange
between heterogeneous representations and toolsets. Using XSD
as the meta-language that defines valid STCML expressions pro-
vides a principled extensibility mechanism well supported by a
large number of commercial as well as freely available tools; ex-
amples include XMLSpy3 and the Eclipse Web Tools Platform4.

One prominent design feature of STCML is the decision to sup-
port extensibility using inheritance and type extension, rather than
the alternative of parameterization. To illustrate the difference
between these two mechanisms, we’ll draw upon the following
example: Consider the need to extend a base XML type EDGE,
capturing an undirected edge between graph nodes, in order to
support the representation of a directed edge. Parameterization is
one common way to fulfill this requirement, and may be imple-
mented by adding two key-value pairs to an instance of the EDGE
type: the keys, for example, named “head” and “tail” containing
the names of the nodes connected by this edge element respec-
tively. Further extending this type to support a weighted directed
edge works similarly: one could add a key-value pair with a key
called “weight” containing a value representing the edge’s weight.
One fundamental problem with parameter-based extension is that
all extended elements are essentially objects of the same type (in
this example, EDGE) and are only differentiated by their parameter
contents. The semantics of what it means to be a directed or a
weighted edge are not contained in the type system of the lan-
guage, but are hidden in individual element instances. This brings
up the fundamental issue of type equivalency: If another devel-
oper elects to create a weighted edge using “importance” as the
key, is that element semantically equivalent to using “weight” as
the key? Does the key “head” carry the same semantic meaning as
“origin?” Without a concrete type system, these questions are
challenging to answer. The directed and weighted edges created
through this mechanism, which fundamentally capture semantic
distinctions, can only be practically differentiated by investigating
their contents. This extension mechanism makes it challenging for
users to establish semantic commonalities and agreement between
their distinct uses of the same language elements.

3 http://www.altova.com/xml-editor
4 http://www.eclipse.org/webtools

The mechanic we adopt for STCML centers on the application of
inheritance (natively supported by XSD): In order to create a di-
rected edge, a user would extend the EDGE type to create a DI-
RECTEDEDGE type that contains additional semantics and could be
used to create instances of directed edges. A weighted edge would
involve the creation of a WEIGHTEDEDGE type, with EDGE as the
parent. The semantic distinctiveness of the two edge types is ex-
plicitly captured in the type system of the language, and distin-
guishing between the two requires a simple reference to the ele-
ment’s type, rather than an investigation of the element’s contents.

This latter technique is quite familiar from object-oriented pro-
gramming, and provides a number of benefits. With this extension
mechanism, for example, it is possible to provide tool support for
language analysis that is context-driven and applicable to reusable
parts of type systems, as opposed to custom tools that only sup-
port non-reusable instances of overly general types. Furthermore,
the existence of an inheritance-based type system eases the burden
on human readers, as some semantic information can be gleaned
solely through studying this information source. One trade-off, of
course, is that this approach is more constraining in the uses of
existing type systems and the manner in which types can be ex-
tended. However, while it might be easier to extend a type by
adding an arbitrary key-value pair, an inheritance-based approach
provides a more rigorous basis for further extension and reuse.

3.2 STCML Structure
The STCML language consists of a family of XSD schemas that
capture the entities required for modeling socio-technical con-
cepts. Each schema in the language can be adopted independently
of others, and users can further independently adopt each type
defined by each schema. The following discussion provides more
details on each of the core elements of STCML, following a pro-
gression from basic types (used in the definition of other types) to
those types that are primarily compositions of other types:
• Agents: One of the core schemas of STCML, this schema sup-
ports the modeling of human participants in a development effort.
The AGENT type is the core type of this schema, and is specialized
into the DEVELOPER and MANAGER types, along with support for
creating nodes for each of these types that can be used in net-
works. A visualization of the structure of the DEVELOPER type is
shown in Figure 1.
• Resources: This schema supports the specification of a variety
of development process resources, providing the foundational
building blocks for modeling the technical artifacts of a develop-
ment effort. The base type of this schema is RESOURCE, with sub-
types that support modeling and representing units of source code,
architectural structures, components, connectors, implementations
and component types. This STCML schema also supports the
specification of network nodes associated with each of these re-
source types.

• Task: This schema supports the specification of tasks and task
assignments through the TASK type that links together AGENT and
RESOURCE elements (or any of their sub-types, of course), while
also providing support for the specification of task networks.
• Team: Primarily a compositional schema, the TEAM element
type allows STCML users to model teams of developers and other
agents, relationships between agents that capture supervisory
roles, and the capability to model larger-scale organizations
through the ORGANIZATION type that hierarchically composes
teams into organizations.
• Graph: This schema provides core capabilities for modeling
graphs and networks of any of the preceding STCML types, with
sub-types of the GRAPH type natively supporting the specification
of directed, undirected, and weighted graphs, or graphs with arbi-
trary combinations of edges.
• Networks: Primarily addressing compositions and specializa-
tions of previous types, this schema supports specialized social-
network analysis graphs, such as communication needs and tech-
nical dependency graphs.

4. STCML APPLICATION
In order to demonstrate the application of STCML, its capability
to capture socio-technical concepts, and the form that STCML
specifications take, we applied the language to the modeling of a
subset of data relating to the GNOME project, based on analyses
and social network data performed using Tesseract [7].

4.1 GNOME and Rhythmbox
The (GNU Network Object Model Environment) GNOME5 pro-
ject is an open-source desktop environment for Unix systems.
Initiated in 1997, GNOME consists of roughly 1200 smaller pro-
jects ranging from GUI tools to low level libraries. Projects under
GNOME adopt a versioning system, communicate through mail-
ing lists and real-time chats, and use the open source Bugzilla
issue tracking system. Through these sources, we have access to
ten years of data from GNOME development that includes
roughly 480,000 commits from about 1,000 developers and
790,000 comments on 200,000 issues from 26,000 contributors.

Within this data set, we focus on development data from Rhyth-
mbox, an integrated music management application for the
GNOME desktop. The entire data set includes information about
107 developers working with 918 source files involving 2865
commits. More specifically, we concentrate on development ac-
tivities that took place between 6/1/2005 and 7/27/2005, analyzing
the data using Tesseract [7] in order to generate dependency net-
works between socio-technical entities.

4.2 STCML Example Code
First, we analyze technical dependencies in the Rhythmbox de-
velopment data set, as exhibited in dependencies between source

5 http://www.gnome.org

Figure 1. A visualization of the DEVELOPER type, showing
inheritance from AGENT and use of TASK and RESOURCE;

image generated using Eclipse’s Web Tools Platform.

Figure 2. A graphical depiction of GNOME example net-
works: file dependencies shown on the left and developer

communications on the right.

code files. The discovery of file dependencies is founded on
analysis of GNOME versioning commit logs, with files that are
committed closely together assumed to be dependent on each
other. Based on this analysis, we generated the file dependency
network that appears on the left of Figure 2. Using STCML, the
partial XML-based representation for this network becomes (for
brevity, we omit namespaces and some type system annotations):
<resources type=”ResourceSet”>
 <resource id="rbqc" fileName="rb-query-creator.c"
 type=”SourceFile”/>
 <resource id="rdbt" fileName="rhythmdb-tree.c"
 type=”SourceFile”/>
 <resource id="rdb" fileName="rhythmdb.c"
 type=”SourceFile”/>
 ...
</resources>
<techDependencyNetwork id="rhythmbox_file_to_file"
 type=”UndirectedGraph”>
 <node id="node_rdb-t.c" type=”ResourceNode”>
 <resource href="#rdbt" type="simple" type=”XMLLink”/>
 </node>
 <node type=”ResourceNode” id="node_rdb.c">
 <resource href="#rdb" type="simple" type=”XMLLink”/>
 </node>
 ...
 <edge id="rdbt_to_rdb" type=”Edge”>
 <endpoint href="#node_rdb-t.c" type="simple"
 type=”XMLLink”/>
 <endpoint href="#node_rdb.c" type="simple"
 type=”XMLLink”/>
 </edge>
 ...
</techDependencyNetwork>

Based on this same data set, we also generated the communication
network showing dependencies between developers. While the
graphical depiction appears on the right of Figure 2, the following
partial STCML fragment (abridged as the previous examples)
captures this information in our XML-based specification using
AGENT and DEVELOPER elements. As a further example, the frag-
ment also shows the integration of elements from the TASK type:
<agents type="AgentSet">
 <agent id="Bastien Nocera" type="Developer">
 <assignedTo id="bug_fix_rbqc" type="Task">
 <relatesTo href="#rbqc" type="simple"
 type="XMLLink"/>
 </assignedTo>
 ...
 </agent>
 <agent id="Christophe Fergeau" type="Agent"/>
 <agent id="Paolo Borelli" type="Agent"/>
 ...
</agents>
<commNetwork id="rhythmbox_dev_to_dev"
 type="UndirectedGraph">
 <node id="bnocera" type="AgentNode">
 <agent href="#Bastien Nocera" type="simple"
 type="XMLLink"/>
 </node>
 <node id="cfergeau" type="AgentNode">
 <agent href="#Christophe Fergeau" type="simple"
 type="XMLLink"/>
 </node>
 <edge id="noc_to_fer" weight=".68" type="WeightedEdge">
 <endpoint href="#bnocera" type="simple"
 type="XMLLink"/>
 <endpoint href="#cfergeau" type="simple"
 type="XMLLink"/>
 </edge>
</commNetwork>

The above examples show another key decision in the design of
STCML, which is the heavy use of XML links in order to connect
artifacts together. While this requires that elements must have
unique identifiers, it ensures a high level of reuse and non-
duplication. The SOURCEFILE elements in the preceding fragment

of STCML, for example, could be reused in a network other than
that shown without having to be duplicated. This addresses a key
requirement of the social analysis problem space, where derived
artifacts, such as networks, are re-generated while other parts of
the data set, such as the set of developers, remain constant. It is
also important to note that these STCML specifications can easily
be used as machine-readable input to automated tools, which is
something that purely graphical depictions cannot be used for.

5. CONCLUSION
Empirical research in software engineering has shown that in-
sights from socio-technical congruence can improve team produc-
tivity and streamline inter-developer communication. However,
making these insights – particularly those involving architectural
design – actionable in everyday development activities is ham-
pered by a lack of modeling and representational capabilities.
Current STC tools follow proprietary, ad hoc data representation
formats and lack sufficient modeling capabilities for software
artifacts other than code. In this paper, we present STCML: an
XML-based, highly-extensible modeling language that makes
extensive use of linking and inheritance in order to provide an
interoperable data representation with particular support for archi-
tectural concerns. While in the near future we will be working on
enhancing STCML with explicit modeling support for additional
concerns, our next step will be tool development: In addition to
interchange tools for language interoperability, our eventual goal
is the creation of an Eclipse-based development environment for
integrating STC insights into everyday development activities.

6. ACKNOWLEDGMENTS
This research is supported by the National Science Foundation
under Grant numbers CCF-1016134 and CCF-1017408.

7. REFERENCES
[1] V. Batagelj and A. Mrvar, "Pajek - Analysis and Visualization

of Large Networks," in Graph Drawing Software, M. Jünger,
Mutzel, P., Eds, 2003, pp. 77-103.

[2] S. P. Borgatti, et al. UCINET 6 for Windows: Software for
Social Network Analysis. http://www.analytictech.com/ucinet/
help.htm

[3] M. Cataldo, et al., "Identification of Coordination
Requirements: Implications for the Design of Collaboration
and Awareness Tools," CSCW, 2006, pp. 353-362.

[4] E. M. Dashofy, et al., "A Comprehensive Approach for the
Development of Modular Software Architecture Description
Languages," ACM TOSEM, 14(2), 2005, pp. 199–245.

[5] D. Garlan, et al., "Acme: Architectural Description of
Component-Based Systems," Foundations of Component-
Based Sys., G. Leavens & M. Sitaraman, 2000, pp. 47-68.

[6] N. Medvidovic and R. N. Taylor, "A Classification and
Comparison Framework for Software Architecture
Description Languages," IEEE TSE, 26(1), 2001, pp. 70-93.

[7] A. Sarma, et al., "Tesseract: Interactive Visual Exploration of
Socio-Technical Relationships in Software Development,"
ICSE, 2009, pp. 23-33.

[8] M. Tsvetovat, et al., "DyNetML: Interchange Format for Rich
Social Network Data," NAACSOS Conference 2003.

[9] G. Valetto, et al., "Using Software Repositories to Investigate
Socio-technical Congruence in Development Projects,"
Workshop on Mining Software Repositories, ed, 2007, p. 27.

[10] S. Wong, et al., "Design Rule Hierarchies and Parallelism in
Software Development Tasks," ASE, 2009, pp. 197-208.

