1. (16) (a) Suppose X is a T_1 space\(^1\) and $A \subseteq X$. Show that $(A')' \subseteq A'$.

Note: There is a hint on the web page.

Lemma. If $U \subseteq X$ is open and $K \subseteq X$ is closed, then $U - K$ is open. Proof: \(X - K\) is open and $U - K = U \cap (X - K)$. Thus $U - K$ is open.

Now let $x \in (A')'$ and let U be an open nbhd of x. Then $U \cap A' \neq \emptyset$. Let $y \in U \cap A'$. If $x = y$ let $V = U$; if $x \neq y$ let $V = U - \{x\}$. Then V is an open nbhd of y and $V \subseteq U$. Since $y \in A'$ we conclude $A \cap (V - \{x\}) \neq \emptyset$. Since $x \not\in A \cap (U - \{y\})$, we conclude that $A \cap (U - \{y, x\}) \neq \emptyset$, hence $x \in A'$. \(\square\)

(b) Show that any finite T_1 space is discrete.

Since any finite union of closed sets is closed, any finite subset of a T_1 space is closed. So, if X is a finite T_1 space, every subset is open, hence every subset is open, hence X is discrete.

(c) Let $X = \{0, 1, 2\}$ with the topology $T = \{\emptyset, \{0, 1\}, \{0, 2\}, \{0, 1, 2\}, X\}$, and let $A = \{1\}$. Show that $(A')' \neq A'$.

\[A' = \{0, 2\}\] since every open nbhd of each of 0 and 2 meets A in a point different of 0 and 2, but not so for 1.

\[(A')' = 0, 2 \neq \emptyset \neq A'.\]

(d) Prove: if X is a T_1 space, $A \subseteq X$, and $x \in A'$, then every open neighborhood of x contains infinitely many points of A.

Note: There is a hint on the web page.

Suppose X is T_1, $A \subseteq X$, $x \in A'$, and U is an open nbhd of x. Suppose $U \cap A$ is finite. Then $(U \cap A)' = \{x\}$ is finite, hence closed. Then $V = U - (U \cap A)'$ is open, and $x \in V$, but $A \cap (V - \{x\}) = A \cap (U - (U \cap A)) - \{x\} = \emptyset$, contradicting the assumption that $x \in A'$.

Thus $U \cap A$ is infinite.

\(^1\)That is, $\{x\}$ is closed for every $x \in X$.
2.(12) Let \(\mathbb{R} \) denote the set of reals with the standard topology, and \(\mathbb{R}_c \) the set of reals with the half-open interval topology.\(^2\)

(a) Let \(f \) be the identity function, \(f(x) = x \) for all real numbers \(x \). Determine whether \(f: \mathbb{R} \to \mathbb{R}_c \) and/or \(f: \mathbb{R}_c \to \mathbb{R} \) are continuous, and prove your answer.

Let \(-\infty < a < b < \infty \). Then \((a, b) = \bigcup_{n=1}^{\infty} (a + \frac{1}{n}, b) \), hence \((a, b) \) is open in \(\mathbb{R}_c \). It follows that any open set in \(\mathbb{R} \) is open in \(\mathbb{R}_c \). Thus \(f: \mathbb{R}_c \to \mathbb{R} \) is continuous.

On the other hand, \([a, b) \) is not open in \(\mathbb{R}_c \), so \(f: \mathbb{R} \to \mathbb{R}_c \) is not continuous.

(b) Let \(X = \mathbb{R}_c \times \mathbb{R} \), with the product topology. Let \(L \) be a straight line in \(X \), with the subspace topology. Determine conditions under which \(L \) is homeomorphic to \(\mathbb{R} \), or to \(\mathbb{R}_c \), or neither.

A basic open set in \(\mathbb{R}_c \times \mathbb{R} \) has the form \((a, b) \times (c, d) \). If \(L \) is not vertical, then \(L \) is homeomorphic to \(\mathbb{R} \), since \(L \cap (a, b) \times (c, d) \) can be a half-open interval (but not a single point). If \(L \) is vertical, then \(L \) is homeomorphic to \(\mathbb{R} \).

(c) Let \(x, y \in \mathbb{R}_c \), with \(x \neq y \). Prove that there are open subsets \(U \) and \(V \) of \(\mathbb{R}_c \) with \(x \in U, y \in V, U \cap V = \emptyset, \) and \(U \cup V = \mathbb{R}_c \). (A space with this property is said to be totally disconnected.)

Assume without loss of generality that \(x < y \). From part (a), \((a, y) \) is open for all \(a < y \), so

\[
U = (-\infty, y) = \bigcup_{a < y} (a, y) \text{ is open, and it contains } x.
\]

Similarly, \(V = [y, \infty) = \bigcup_{b > y} [y, b) \) is open, and it contains \(x \).

\[
U \cap V = (-\infty, y) \cap [y, \infty) = \emptyset, \text{ and } U \cup V = (-\infty, y) \cup [y, \infty) = \mathbb{R}_c.
\]

\(^2\)So \(\mathbb{R}_c \) has basis consisting of the half-open intervals \([a, b)\) with \(-\infty < a < b < \infty\).
3. (12) (a) Let X and Y be nonempty topological spaces. Suppose $X \times Y$ is Hausdorff. Prove that X is Hausdorff.

Let $x, x' \in X$ with $x \neq x'$. Choose $y \in Y$. (Since $Y \neq \emptyset$ we can do that.) Then $(x, y) \neq (x', y)$. Since $X \times Y$ is Hausdorff, there are disjoint open nbhds W and W' of (x, y) and (x', y), respectively. Then \exists open sets U, U' in X and V, V' in Y with $(x, y) \in U \times V \subseteq W$ and $(x', y) \in U' \times V' \subseteq W'$.

(b) Let $p : X \times Y \to X$ be the canonical projection, $p(x, y) = x$. Show that p is an open map. Then $x \in U$, $x' \in U'$, and $U \cap U' = \emptyset$. Thus X is Hausdorff.

(c) Find an example to show that $p : X \times Y \to X$ need not be a closed map, that is, it need not map closed sets to closed sets.

Note: You may find it convenient to use the results of HW #2.3

Let $X = Y = \mathbb{R}$. Let $K = \{ (x, y) \in \mathbb{R}^2 \mid x = \tan^{-1}(y) \}$. Then K is closed in \mathbb{R}^2: K is the image under the homeomorphism $(x, y) \mapsto (y, x)$ of the graph of the continuous function $f(x) = \tan^{-1}(x)$, which is closed by HW 2.3. But $p(K) = (-\frac{\pi}{2}, \frac{\pi}{2})$, which is not closed in \mathbb{R}.

4. (5) Let $f : X \to Y$ be a continuous function. Let $\Gamma(f) \subseteq X \times Y$ be the graph of f, defined by $\Gamma(f) = \{(x, y) \in X \times Y \mid y = f(x)\}$, considered as a subspace of $X \times Y$. Show that $\Gamma(f)$ is homeomorphic to X.

Let $h : X \to \Gamma(f)$ be defined by $h(x) = (x, f(x))$. h is continuous since each component function is continuous. Let $p : \Gamma(f) \to X$ be defined by $p(x, y) = x$. p is continuous because it is the restriction to Γ of the (continuous) projection $X \times Y \to X$.

Moreover, $(p \circ h)(x) = p(x, f(x)) = x$, and $(h \circ p)(x, y) = (x, f(x)) = (x, y)$ for $(x, y) \in \Gamma(f)$. Thus h and p are inverse bijections, so X is homeomorphic to $\Gamma(f)$.
5.(15) Parts (a) and (b) of this exercise shows that for general (non-metrizable) topological spaces a limit point of a subset \(A \) need not be the limit of a sequence of points in \(A \).

Let \(X = \mathbb{R} \) with the co-countable (or "countable complement") topology: a subset \(U \) is open iff \(U = \emptyset \) or \(\mathbb{R} - U \) is countable\(^3\). It is easy to check that this is indeed a topology on \(X \) (e.g., using the axioms for closed sets).

(a) Suppose \(A \subseteq X \) is an uncountable set (for instance, \(A = [0, 1] \)). Show that every point \(x \in X \) is a limit point of \(A \).

Hint: A subset of a countable set must be countable.

Let \(x \in X \). Let \(U \) be an open neighborhood of \(x \).

Then \(X - U \) is countable, so \((X -(U-\{x\})) = (X-U) \cup \{x\}\) is countable. Then \(A \not\subseteq (X -(U-\{x\})) \), so \(A \cap (U-\{x\}) \neq \emptyset \). Thus \(x \in A' \).

(b) Show that no sequence \((x_n)_{n=1}^{\infty}\) in \(X \) converges, unless for some \(N \geq 1 \), \(x_n = x_N \) for all \(n \geq N \).

Let \(x \in X \) and \(U = (X - \{x\} \cap \{x\}) \cup \{x\} \). Then \(X - U \subseteq \{x\} \cap \{x\} \) so \(X - U \) is countable. Thus \(U \) is an open neighborhood of \(x \). If \(\{x_n\}_{n=1}^{\infty} \) converges to \(x \), then \(\exists N \geq 1 \) such that \(x_n \in U \) for all \(n \geq N \), which implies \(x_n = x \) for all \(n \geq N \).

(c) Suppose \(X \) is a metric space, \(A \subseteq X \), and \(x \in A' \). Prove that there is a sequence \((x_n)_{n=1}^{\infty} \subseteq A \) that converges to \(x \).

For each \(n \geq 1 \), the open ball \(B(x, \frac{1}{n}) \) is an open nbhd of \(x \). Since \(x \in A' \), \(A \cap (B(x, \frac{1}{n}) - \{x\}) \neq \emptyset \), so we can choose \(x_n \in A \cap (B(x, \frac{1}{n}) - \{x\}) \). Claim \(\{x_n\}_{n=1}^{\infty} \) converges to \(x \): if \(U \) is an open nbhd of \(x \), then \(\exists \varepsilon > 0 \) with \(B(x, \varepsilon) \subseteq U \). Then \(\exists N \geq 1 \) with \(\frac{1}{N} < \varepsilon \), and then, for every \(n \geq N \), \(x_n \in B(x, \frac{1}{n}) \subseteq B(x, \frac{1}{N}) \subseteq B(x, \varepsilon) \subseteq U \).

\(^3\) Recall, a set \(C \) is countable iff it is finite or there is a bijection \(N \to C \).