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1 Rings and fields

Definition 1.1. A ring is a triple (R,+, ·) consisting of a set R and two binary operations + and
· on R, such that (i) (R,+) is an abelian group (with identity element 0R); (ii) (x · y) · z = x · (y · z)
for all x, y, z ∈ R; (iii) x · (y + z) = x · y + x · z and (x + y) · z = x · z + y · z for all x, y, z ∈ R.
R is a ring with 1 if there is an element 1R ∈ R such that 1R · x = x = x · 1R for all x ∈ R. R is
commutative if x · y = y · x for all x, y ∈ R.

We will assume all rings have 1, unless otherwise stated. It is easily proven from the axioms that
1R is unique, 0R · x = 0R = x · 0R and −x = (−1R) · x for all x ∈ R. We usually assume without
mention that 0R 6= 1R, which is the case unless R = {0R}. We will usually drop the · and write xy
for x · y.

Definition 1.2. An element x ∈ R is a unit if there exists y ∈ R such that xy = yx = 1R.

The set of units of R is denoted U(R); it is a group under ·. 0R is not a unit (assuming 0R 6= 1R).
If x ∈ U(R), the element y satisfying xy − 1R = yx is unqiuely determined by x, and is deonted
x−1.

Definition 1.3. A division ring is a ring satisfying U(R) = R − {0R}. A field is a commutative
division ring.

Examples of rings:

• Z, Q, R, and C, the usual addition and multiplication; the latter three are fields.

• Zn under addition and multiplication modulo n; these are commutative rings; U(Zn) consists
of the residue classes k for which k and n are relatively prime, hence Zn is a field if and only
if n is prime.

• the set Mn(R) of all n×n matrices with entries in a ring R, with addition and multiplication
of such n × n matrices defined using the usual formulas for matrices with real entries - this
is a non-commutative ring, even if R is commutative. The group of units U(Mn(R)) consists
of the invertible n× n matrices with entries in R, and is denoted GLn(R), called the general
linear group of R.

• the set R[x] of polynomials in one variable x and coefficients in a ring R; if R is commutative
this is a commutative ring.

• the set R[x1, . . . , xn] of polynomials in variables x1, . . . , xn and coefficients in a ring R; if R
is commutative this is a commutative ring.



• the set Cz of convergent power series in one complex variable z is a ring under addition and
multiplication of power series. This is a commutative ring.

There is a famous division ring called the quaternions1 H, (for W.R. Hamilton, who invented or
discovered them), consisting of the vector space R4 with basis labelled 1, i, j, k and multiplication
defined as in the quaternion group Q8, and extended linearly. In particular ij = k = −ji so H is
not a field. A well-known theorem of Wedderburn states that any finite division ring is a field.

Definition 1.4. Let R be a ring and G a group. The group ring of G over R is the set R[G] of
finite “linear combinations”

∑
g∈G gcg, where cg ∈ R for g ∈ G (and cg = 0R for all but finitely

many g), with addition defined by “combining like terms” and multiplication defined using the
multiplication in G and extending linearly.

The group ring R[G] is a ring with 1, which is commutative if and only if G is abelian. A more
formal definition of R[G] will be given in the next section.

Definition 1.5. Let R be a ring. The trace of a matrix A =
[
aij
]
∈Mn(R) is tr(A) :=

∑n
i=1 aii.

Theorem 1.6. Suppose R is commutative. For any A,B ∈Mn(R), tr(AB) = tr(BA).

Proof. By definition of matrix multiplication, the (i, j) entry of AB is
∑n

k=1 aikbkj . Then

tr(AB) =
n∑

i=1

n∑
k=1

aikbki

=

n∑
k=1

n∑
i=1

bkiaik

=

n∑
i=1

n∑
k=1

bikaki

= tr(BA),

by interchange of the order of summation (and re-indexing).

Corollary 1.7. Suppose R is commutative. If A ∈ Mn(R) and P ∈ Mn(R) is a unit, then
tr(A) = tr(P−1AP ).

Proof. By the previous theorem,

tr(P−1AP ) = tr
(
P−1(AP )

)
= tr

(
(AP )P−1)

)
= tr(A).

1see https://en.wikipedia.org/wiki/History of quaternions



Definition 1.8. Let R be a ring. A subring of R is an additive subgroup S of R satisfying xy ∈ S
for all x, y ∈ S. A right ideal of R is a subring I satisfying the stronger requirement xr ∈ I for
all x ∈ I and r ∈ R. A (two-sided) ideal of R is a right ideal I of R that satisties the additional
requirement rx ∈ I for all x ∈ I and r ∈ R.

Examples of subrings and ideals:

• Z is a subring of Q is a subring of R is a subring of C. None of these are (right) ideals.

• for any n ∈ Z, the subgroup nZ of Z is an ideal.

• if S is a subring (resp., ideal) of R, then Mn(S) is a subring (resp., ideal) of Mn(R).

Definition 1.9. Let R and S be rings. A ring homomorphism of R to S is a homomorphism
ϕ : R→ S of the underlying abelian groups that satisfies (xy)ϕ = (x)ϕ(y)ϕ for all x, y ∈ R.

Theorem 1.10. If ϕ : R→ S is a ring homomorphism, then ker(ϕ) is a two-sided ideal of R and
im(ϕ) is a subring of S.

Let R be a ring and let I be a two-sided ideal of R. Then the quotient abelian group R/I has a
well-defined multiplication defined by (I + x)(I + y) := I + xy, making R/I into a ring, called the
quotient of R by I.

Theorem 1.11. (1st isomorphism theorem for rings) If ϕ : R→ S is a ring homomorphism, then
ϕ induces an isomorphism ϕ̄ : R/ ker(ϕ)→ im(ϕ).

2 Modules and vector spaces

Let R be a ring (with 1).

Definition 2.1. A (right) R-module is an abelian group M equipped with a “scalar” multiplication
operation · : M × R → M , denoted (x, r) 7→ x · r, satisfying (i) (x + y) · r = x · r + y · r, (ii)
x · (r+ s) = x · r+ x · s, and (iii) (x · r) · s = x · (rs), for all x, y ∈M and r, s ∈ R. M is unital if, in
addition, (iv) x · 1R = x for all x ∈M . If R is a field, a unital (right) R-module is called a (right)
R-vector space.

Examples of R-modules:

• every abelian group M has a natural structure as a Z-module, with x ·n defined to equal nx,
for x ∈M and n ∈ Z.

• if R is a ring, then the cartesian product Rn has a natural structure as an R-module, with
addition and scalar multiplication defined coordinate-wise just as in the familiar special case
of the real vector space Rn. This is called the free R-module of rank n.

• if G is a group, k is a field, and X : G→ GLn(k); g 7→ (g)X is a homomorphism (i.e., X is a
k-representation of G), then the k-vector space kn has the structure of a k[G]-module, with
scalar multiplication defined by

v · (
∑
g∈G

gcg) =
∑
g∈G

v ((g)X cg) ,



for v ∈ kn identified with a 1×n (row) matrix with entries in k. Conversely, any k[G]-module
structure on kn determines a k-representation of G, using the fact that GLn(k) is a subset of
the ring Mn(k), via

(g)X =


e1 · g

...

en · g

 ,

where ei is the row matrix with 1 in the ith column and 0’s elsewhere. Here we use the
ring structure The defining properties of the module structure are equivalent to the homo-
morphism property of X together with the distributive and associative properties of matrix
multiplication.

Exercise 2.2. Assume X is a k-representation of G and prove that kn is a k[G]-module under
the scalar multiplication defined above.

Definition 2.3. Let k be a field. A k-algebra is a k-vector space A which also has the structure of
a ring, satisfying (i) (v · λ)w = (vw) · λ and (ii) v(w · λ) = (vw) · λ, for all v, w ∈ A and λ ∈ k.

If


