MAT 511 Notes on rings, modules, and representations November 16, 2017

1 Rings and fields

Definition 1.1. A ring is a triple $(R, +, \cdot)$ consisting of a set R and two binary operations + and \cdot on R, such that (i) (R, +) is an abelian group (with identity element 0_R); (ii) $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all $x, y, z \in R$; (iii) $x \cdot (y + z) = x \cdot y + x \cdot z$ and $(x + y) \cdot z = x \cdot z + y \cdot z$ for all $x, y, z \in R$. R is a ring with 1 if there is an element $1_R \in R$ such that $1_R \cdot x = x = x \cdot 1_R$ for all $x \in R$. R is commutative if $x \cdot y = y \cdot x$ for all $x, y \in R$.

We will assume all rings have 1, unless otherwise stated. It is easily proven from the axioms that 1_R is unique, $0_R \cdot x = 0_R = x \cdot 0_R$ and $-x = (-1_R) \cdot x$ for all $x \in R$. We usually assume without mention that $0_R \neq 1_R$, which is the case unless $R = \{0_R\}$. We will usually drop the \cdot and write xy for $x \cdot y$.

Definition 1.2. An element $x \in R$ is a *unit* if there exists $y \in R$ such that $xy = yx = 1_R$.

The set of units of R is denoted U(R); it is a group under \cdot . 0_R is not a unit (assuming $0_R \neq 1_R$). If $x \in U(R)$, the element y satisfying $xy - 1_R = yx$ is unquely determined by x, and is deonted x^{-1} .

Definition 1.3. A division ring is a ring satisfying $U(R) = R - \{0_R\}$. A field is a commutative division ring.

Examples of rings:

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} , the usual addition and multiplication; the latter three are fields.
- \mathbb{Z}_n under addition and multiplication modulo n; these are commutative rings; $U(\mathbb{Z}_n)$ consists of the residue classes k for which k and n are relatively prime, hence \mathbb{Z}_n is a field if and only if n is prime.
- the set $M_n(R)$ of all $n \times n$ matrices with entries in a ring R, with addition and multiplication of such $n \times n$ matrices defined using the usual formulas for matrices with real entries - this is a non-commutative ring, even if R is commutative. The group of units $U(M_n(R))$ consists of the invertible $n \times n$ matrices with entries in R, and is denoted $\operatorname{GL}_n(R)$, called the general linear group of R.
- the set R[x] of polynomials in one variable x and coefficients in a ring R; if R is commutative this is a commutative ring.
- the set $R[x_1, \ldots, x_n]$ of polynomials in variables x_1, \ldots, x_n and coefficients in a ring R; if R is commutative this is a commutative ring.

• the set $\mathbb{C}z$ of convergent power series in one complex variable z is a ring under addition and multiplication of power series. This is a commutative ring.

There is a famous division ring called the quaternions¹ \mathbb{H} , (for W.R. Hamilton, who invented or discovered them), consisting of the vector space \mathbb{R}^4 with basis labelled 1, *i*, *j*, *k* and multiplication defined as in the quaternion group Q_8 , and extended linearly. In particular ij = k = -ji so \mathbb{H} is not a field. A well-known theorem of Wedderburn states that any finite division ring is a field.

Definition 1.4. Let R be a ring and G a group. The group ring of G over R is the set R[G] of finite "linear combinations" $\sum_{g \in G} gc_g$, where $c_g \in R$ for $g \in G$ (and $c_g = 0_R$ for all but finitely many g), with addition defined by "combining like terms" and multiplication defined using the multiplication in G and extending linearly.

The group ring R[G] is a ring with 1, which is commutative if and only if G is abelian. A more formal definition of R[G] will be given in the next section.

Definition 1.5. Let R be a ring. The *trace* of a matrix $A = [a_{ij}] \in M_n(R)$ is $tr(A) := \sum_{i=1}^n a_{ii}$. \Box

Theorem 1.6. Suppose R is commutative. For any $A, B \in M_n(R)$, tr(AB) = tr(BA).

Proof. By definition of matrix multiplication, the (i, j) entry of AB is $\sum_{k=1}^{n} a_{ik} b_{kj}$. Then

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki}$$
$$= \sum_{k=1}^{n} \sum_{i=1}^{n} b_{ki} a_{ik}$$
$$= \sum_{i=1}^{n} \sum_{k=1}^{n} b_{ik} a_{ki}$$
$$= \operatorname{tr}(BA),$$

by interchange of the order of summation (and re-indexing).

Corollary 1.7. Suppose R is commutative. If $A \in M_n(R)$ and $P \in M_n(R)$ is a unit, then $tr(A) = tr(P^{-1}AP)$.

Proof. By the previous theorem,

$$\operatorname{tr}(P^{-1}AP) = \operatorname{tr}(P^{-1}(AP))$$
$$= \operatorname{tr}((AP)P^{-1}))$$
$$= \operatorname{tr}(A).$$

¹see https://en.wikipedia.org/wiki/History_of_quaternions

Definition 1.8. Let R be a ring. A subring of R is an additive subgroup S of R satisfying $xy \in S$ for all $x, y \in S$. A right ideal of R is a subring I satisfying the stronger requirement $xr \in I$ for all $x \in I$ and $r \in R$. A (two-sided) ideal of R is a right ideal I of R that satisfies the additional requirement $rx \in I$ for all $x \in I$ and $r \in R$.

Examples of subrings and ideals:

- \mathbb{Z} is a subring of \mathbb{Q} is a subring of \mathbb{R} is a subring of \mathbb{C} . None of these are (right) ideals.
- for any $n \in \mathbb{Z}$, the subgroup $n\mathbb{Z}$ of \mathbb{Z} is an ideal.
- if S is a subring (resp., ideal) of R, then $M_n(S)$ is a subring (resp., ideal) of $M_n(R)$.

Definition 1.9. Let R and S be rings. A ring homomorphism of R to S is a homomorphism $\varphi \colon R \to S$ of the underlying abelian groups that satisfies $(xy)\varphi = (x)\varphi(y)\varphi$ for all $x, y \in R$.

Theorem 1.10. If $\varphi \colon R \to S$ is a ring homomorphism, then $\ker(\varphi)$ is a two-sided ideal of R and $\operatorname{im}(\varphi)$ is a subring of S.

Let R be a ring and let I be a two-sided ideal of R. Then the quotient abelian group R/I has a well-defined multiplication defined by (I + x)(I + y) := I + xy, making R/I into a ring, called the *quotient of* R by I.

Theorem 1.11. (1st isomorphism theorem for rings) If $\varphi \colon R \to S$ is a ring homomorphism, then φ induces an isomorphism $\overline{\varphi} \colon R/\ker(\varphi) \to \operatorname{im}(\varphi)$.

2 Modules and vector spaces

Let R be a ring (with 1).

Definition 2.1. A (right) *R*-module is an abelian group *M* equipped with a "scalar" multiplication operation $: M \times R \to M$, denoted $(x, r) \mapsto x \cdot r$, satisfying (i) $(x + y) \cdot r = x \cdot r + y \cdot r$, (ii) $x \cdot (r + s) = x \cdot r + x \cdot s$, and (iii) $(x \cdot r) \cdot s = x \cdot (rs)$, for all $x, y \in M$ and $r, s \in R$. *M* is unital if, in addition, (iv) $x \cdot 1_R = x$ for all $x \in M$. If *R* is a field, a unital (right) *R*-module is called a (right) *R*-vector space.

Examples of R-modules:

- every abelian group M has a natural structure as a \mathbb{Z} -module, with $x \cdot n$ defined to equal nx, for $x \in M$ and $n \in \mathbb{Z}$.
- if R is a ring, then the cartesian product \mathbb{R}^n has a natural structure as an R-module, with addition and scalar multiplication defined coordinate-wise just as in the familiar special case of the real vector space \mathbb{R}^n . This is called the *free* R-module of rank n.
- if G is a group, \Bbbk is a field, and $\mathcal{X}: G \to \operatorname{GL}_n(\Bbbk); g \mapsto (g)\mathcal{X}$ is a homomorphism (i.e., \mathcal{X} is a \Bbbk -representation of G), then the \Bbbk -vector space \Bbbk^n has the structure of a $\Bbbk[G]$ -module, with scalar multiplication defined by

$$v \cdot \left(\sum_{g \in G} gc_g\right) = \sum_{g \in G} v\left((g) \mathcal{X} c_g\right),$$

for $v \in \mathbb{k}^n$ identified with a $1 \times n$ (row) matrix with entries in \mathbb{k} . Conversely, any $\mathbb{k}[G]$ -module structure on \mathbb{k}^n determines a \mathbb{k} -representation of G, using the fact that $\operatorname{GL}_n(\mathbb{k})$ is a subset of the ring $M_n(\mathbb{k})$, via

$$(g)\mathcal{X} = \boxed{\begin{bmatrix} e_1 \cdot g \\ \vdots \\ e_n \cdot g \end{bmatrix}},$$

where e_i is the row matrix with 1 in the i^{th} column and 0's elsewhere. Here we use the ring structure The defining properties of the module structure are equivalent to the homomorphism property of \mathcal{X} together with the distributive and associative properties of matrix multiplication.

Exercise 2.2. Assume \mathcal{X} is a k-representation of G and prove that \mathbb{k}^n is a $\mathbb{k}[G]$ -module under the scalar multiplication defined above.

Definition 2.3. Let \Bbbk be a field. A \Bbbk -algebra is a \Bbbk -vector space A which also has the structure of a ring, satisfying (i) $(v \cdot \lambda)w = (vw) \cdot \lambda$ and (ii) $v(w \cdot \lambda) = (vw) \cdot \lambda$, for all $v, w \in A$ and $\lambda \in \Bbbk$.

 \mathbf{If}