Review topics for Final Exam

MAT 320 12/9/2017

I. Formal logic

A. propositional logic

i. propositions and connectives; $\lor, \land, \sim, \Longrightarrow, \iff$

- ii. tautologies (valid arguments)
 - (a) DeMorgan's Laws

(b) standard arguments, e.g., $modus\ ponens,$ contrapositive (or indirect) proof, proof by contradiction.

B. predicate logic

i. open sentences (or predicates); \forall and \exists ; interpretation (English to symbols, symbols to English); free and bound variables; the difference between $(\forall x)(\exists y)P(x,y)$ and $(\exists y)(\forall x)P(x,y)$.

ii. inference rules *

- C. DeMorgan's Laws for quantified predicates.
- II. Set theory

A. definition of subset and equality of sets, the difference between \in vs. \subseteq

B. empty set, intersection, union, complement, difference; DeMorgan's Laws for pairs of sets; set-theoretic identities and elementary theorems

- C. new sets from old
 - i. power sets
 - ii. cartesian product of sets
- D. families of sets
 - i. families and indexed families
 - ii. intersection and union
 - iii. DeMorgan's Laws for families
- E. Axiomatic set theory
 - i. Russell's paradox and the separation axiom \ast
 - ii. the axiom of infinity and the construction of natural numbers
 - iii. The principle of mathematical induction
 - iv. the axiom of choice *
- F. Mathematical induction
 - i. inductive sets^{*}, well-ordering property of the natural numbers
 - ii. "ordinary" (one-step) induction
 - iii. "strong" induction

III. Relations on a set

A. definition of relation on X as set of ordered pairs; representation as directed graph

- B. equivalence relations
 - i. reflexivity, symmetry, transitivity
 - ii. equivalence classes and the partition associated with an equivalence relation

^{*}excluded from final exam

iii. relation associated with a given partition

iv. well-definition of functions and operations defined in terms of representatives of equivalence classes

- C. Number systems
 - i. construction of integers and rational numbers as sets of equivalence classes *
 - ii. "congruence modulo n" and \mathbb{Z}_n ; modular addition and multiplication
- D. order relations
 - i. antisymmetric relations and partially ordered sets

ii. linear (total) orderings, upper and lower bounds, lub's and glb's, maximal and minimal elements.

iii. Hasse diagrams

iv. standard examples: the Boolean lattice $\mathcal{P}(X)$ (ordered by inclusion), \mathbb{N} ordered by divisibility; the partition lattice

IV. Relations between sets

- A. definition of "relation from X to Y"
- B. source and domain, codomain (target) and range
- C. inverse relations
- D. identity relation
- E. composition of relations

(i) relations as "partially-defined, multi-valued functions"; definition of composition of relations

(ii) expression of reflexive, symmetric, transitive, and anti-symmetric properties of a relation R in terms of composition, inverse, and identity relations

- (iii) associativity of composition
- (iv) composites of inverse relations, esp. when one is a function, and relation with injectivity and surjectivity

V. Functions as relations

A. definition; functional notation

- i. domain and codomain
- ii. vertical line test; single-valued relations
- B. standard constructions
 - i. identity function

ii. the inclusion map of a subset to a set; restriction of a function to a subset of the domain; "co-restriction" of the codomain to a subset containing the range

- iii. the canonical projection maps $p_1: X \times Y \to X$ and $p_2: X \times Y \to Y$
- iv. the canonical quotient map $q: X \to X/\sim$ arising from an equivalence relation \sim ;
- equivalently, the natural map $\pi: X \to \mathcal{B}$ associated to a partition \mathcal{B} of X
- C. injectivity and surjectivity

i. definitions; "horizontal line test" for injectivity; "vertical line test (variant)" for surjectivity

ii. the four theorems describing behavior under compositions (injectivity/surjectivity of f and/or g implies/is implied by injectivity/surjectivity of $f \circ g$)

^{*}excluded from final exam

- D. bijections and invertible functions
 - i. inverse relations and inverse functions
 - ii. definition of invertible function; equivalence of invertibility and bijectivity
 - iii. permutations of a set; two-line, one-line, and cycle notation; composition and inversion
 - iv. the symmetric group, and abstract groups $\!\!\!\!\!\!^*$
- E. induced set functions
 - i. the image f(A) (written $f_{\vdash}(A)$ in our class) of a subset A of the domain of f
 - ii. the pre-image (a.k.a inverse image) $f^{-1}(B)$ (written $f^{\dashv}(A)$ in our class) of a subset B of the codomain of f
 - iii. behavior under composition: $(f \circ g)_{\vdash} = f_{\vdash} \circ g_{\vdash}$ and $(f \circ g)^{\dashv} = g^{\dashv} \circ f^{\dashv}$
 - iv. behavior of f_{\vdash} and f^{\dashv} with respect to union, intersection, complement, difference (of
 - pairs or families of sets) for general functions, injective functions, and surjective functions v. order-preserving functions between partially-ordered sets
 - vi. continuous functions between topological spaces
- F. functions, partitions, and equivalence relations
 - (i) the partition of the domain given by the fibers of a function
 - (ii) the equivalence relation on the domain determined by a function
 - (iii) well-definition and bijectivity of the induced map: the "first isomorphism theorem for set functions" *
- G. finite topological spaces and posets
 - (i) posets
 - (a) isomorphisms of partially-ordered sets (posets)
 - (b) order-preserving maps of posets
 - (c) upper ideals in posets
 - (ii) finite topological spaces
 - (a) definition of (finite) topological space and continuous function
 - (b) topologies on small finite sets
 - (c) the order topology (of upper ideals) on a poset
 - (d) continuity of order-preserving maps

VI. Cardinality

- A. finite and infinite sets
 - (i) definition of equicardinal sets using bijections
 - (ii) finite sets
 - (a) pigeonhole principle and non-existence of bijection $f: \{1, ..., n\} \to \{1, ..., m\}$ for $n \neq m$
 - (b) injectivity/surjectivity of $f: \{1, \ldots, n\} \to \{1, \ldots, n\}$ implies the other
 - (c) definition of finite set and cardinality of a finite set
 - (iii.) equicardinality of $(-\infty, \infty)$ and (a, b)
- B. countable and uncountable sets
 - i. definition of countability
 - ii. countability of $\mathbb{N}\times\mathbb{N}$
 - iii. countability of \mathbbm{Z} and \mathbbm{Q}
 - iv. countable unions of countable sets

^{*}excluded from final exam

v. nonexistence of bijection $X \to \mathcal{P}(X)$

vi. uncountability of $\mathcal{P}(\mathbb{N})$ and $\mathbb{R}:$ Cantor's diagonal argument

vii. equicardinality of (0,1) and $\mathcal{P}(\mathbb{N}):$ characteristic functions, bit strings, and binary decimal expansion*

vii. "cardinal order" $(|A| \leq |B|)$; axiom of choice and Schröder-Bernstein Theorem *

 $^{^{*}}$ excluded from final exam