
University of Amsterdam
Dept. of Social Science Informatics (SWI)

Roeterstraat 15, 1018 WB Amsterdam
The Netherlands

Tel. (+31) 20 5256121 SSSIII
WWW

SWI-Prolog 3.2
Reference Manual

Updated for version 3.2.9, July 1999

Jan Wielemaker

jan@swi.psy.uva.nl http://www.swi.psy.uva.nl/projects/SWI-Prolog/

SWI-Prolog is a Prolog implementation based on a subset of the WAM (Warren Abstract
Machine [Warren, 1983]). SWI-Prolog has been designed and implemented such that it
can easily be modified for experiments with logic programming and the relation between
logic programming and other programming paradigms (such as the object oriented XPCE
environment [Anjewierden & Wielemaker, 1989]). SWI-Prolog has a rich set of built-in
predicates and reasonable performance, which makes it possible to develop substantial
applications in it. The current version offers a module system, garbage collection and an
interface to the C language.

This document gives an overview of the features, system limits and built-in predicates.

Copyright c 1990–1999, University of Amsterdam

1 Introduction 7
1.1 SWI-Prolog . 7
1.2 Status . 8
1.3 Should you be Using SWI-Prolog? . 8
1.4 The XPCE GUI system for Prolog . 9
1.5 Version 1.5 Release Notes . 10
1.6 Version 1.6 Release Notes . 10
1.7 Version 1.7 Release Notes . 10
1.8 Version 1.8 Release Notes . 11
1.9 Version 1.9 Release Notes . 11
1.10 Version 2.0 Release Notes . 11
1.11 Version 2.1 Release Notes . 12
1.12 Version 2.5 Release Notes . 13
1.13 Version 2.6 Release Notes . 13
1.14 Version 2.7 Release Notes . 14
1.15 Version 2.8 Release Notes . 14
1.16 Version 2.9 Release Notes . 14
1.17 Version 3.0 Release Notes . 14
1.18 Version 3.1 Release Notes . 14
1.19 Version 3.2 Release Notes . 15
1.20 Acknowledgements . 15

2 Overview 16
2.1 Getting started quickly . 16

2.1.1 Starting SWI-Prolog . 16
2.1.2 Executing a query . 17

2.2 The user’s initialisation file . 17
2.3 Initialisation goals . 17
2.4 Command Line Options . 18
2.5 GNU Emacs Interface . 20
2.6 Online Help . 20
2.7 Query Substitutions . 21

2.7.1 Limitations of the History System . 21
2.8 Reuse of toplevel bindings . 23
2.9 Overview of the Debugger . 24
2.10 Compilation . 27

2.10.1 During program development . 27
2.10.2 For running the result . 27

2.11 Environment Control . 29
2.12 Automatic loading of libraries . 32

SWI-Prolog 3.2 Reference Manual

Contents 3

2.13 Garbage Collection . 33
2.14 Syntax Notes . 33

2.14.1 ISO Syntax Support . 34
2.15 System Limits . 35

2.15.1 Limits on Memory Areas . 35
2.15.2 Other Limits . 37
2.15.3 Reserved Names . 37

3 Built-In Predicates 38
3.1 Notation of Predicate Descriptions . 38
3.2 Consulting Prolog Source files . 38

3.2.1 Quick Load Files . 43
3.3 Listing and Editor Interface . 44
3.4 Verify Type of a Term . 45
3.5 Comparison and Unification or Terms . 46

3.5.1 Standard Order of Terms . 46
3.6 Control Predicates . 47
3.7 Meta-Call Predicates . 49
3.8 ISO compliant Exception handling . 50

3.8.1 Debugging and exceptions . 51
3.8.2 The exception term . 51
3.8.3 Printing a message from an exception . 52

3.9 Handling signals . 52
3.9.1 Notes on signal handling . 54

3.10 Advanced control-structures: blocks . 54
3.11 Grammar rule interface (phrase) . 55
3.12 Database . 56

3.12.1 Indexing databases . 58
3.13 Declaring Properties of Predicates . 58
3.14 Examining the Program . 59
3.15 Input and Output . 62

3.15.1 Input and Output Using Implicit Source and Destination 62
3.15.2 Explicit Input and Output Streams . 63
3.15.3 Switching Between Implicit and Explicit I/O 65

3.16 Status of Input and Output Streams . 66
3.17 Primitive Character Input and Output . 66
3.18 Term Reading and Writing . 68
3.19 Analysing and Constructing Terms . 71
3.20 Analysing and Constructing Atoms . 73
3.21 Representing Text in Strings . 75
3.22 Operators . 75
3.23 Arithmetic . 76
3.24 Arithmetic Functions . 77
3.25 Adding Arithmetic Functions . 81
3.26 List Manipulation . 81
3.27 Set Manipulation . 83
3.28 Sorting Lists . 83

SWI-Prolog 3.2 Reference Manual

4

3.29 Finding all Solutions to a Goal . 84
3.30 Invoking Predicates on all Members of a List . 85
3.31 Forall . 85
3.32 Formatted Write . 86

3.32.1 Writef . 86
3.32.2 Format . 87
3.32.3 Programming Format . 89

3.33 Terminal Control . 90
3.34 Operating System Interaction . 90
3.35 File System Interaction . 92
3.36 Multi-threading (PRE-ALPHA: developers only!) 94
3.37 User Toplevel Manipulation . 96
3.38 Creating a Protocol of the User Interaction . 97
3.39 Debugging and Tracing Programs . 98
3.40 Obtaining Runtime Statistics . 100
3.41 Finding Performance Bottlenecks . 101
3.42 Memory Management . 102
3.43 Windows DDE interface . 103

3.43.1 DDE client interface . 103
3.43.2 DDE server mode . 104

3.44 Miscellaneous . 105

4 Using Modules 107
4.1 Why Using Modules? . 107
4.2 Name-based versus Predicate-based Modules . 107
4.3 Defining a Module . 108
4.4 Importing Predicates into a Module . 108

4.4.1 Reserved Modules . 109
4.5 Using the Module System . 109

4.5.1 Object Oriented Programming . 110
4.6 Meta-Predicates in Modules . 111

4.6.1 Definition and Context Module . 111
4.6.2 Overruling Module Boundaries . 112

4.7 Dynamic Modules . 112
4.8 Module Handling Predicates . 113
4.9 Compatibility of the Module System . 114

4.9.1 Emulating meta predicate/1 . 116

5 Foreign Language Interface 117
5.1 Overview of the Interface . 117
5.2 Linking Foreign Modules . 117

5.2.1 What linking is provided? . 118
5.2.2 What kind of loading should I be using? . 118

5.3 Dynamic Linking of shared libraries . 118
5.4 Using the library shlib for .DLL and .so files . 119

5.4.1 Static Linking . 120
5.4.2 Dynamic Linking based on load foreign/[2,5] 121

SWI-Prolog 3.2 Reference Manual

Contents 5

5.5 Interface Data types . 122
5.5.1 Type term t : a reference to a Prolog term 122
5.5.2 Other foreign interface types . 123

5.6 The Foreign Include File . 124
5.6.1 Argument Passing and Control . 124
5.6.2 Atoms and functors . 126
5.6.3 Analysing Terms via the Foreign Interface 127
5.6.4 Constructing Terms . 131
5.6.5 Unifying data . 134
5.6.6 Calling Prolog from C . 137
5.6.7 Discarding Data . 139
5.6.8 Foreign Code and Modules . 140
5.6.9 Prolog exceptions in foreign code . 141
5.6.10 Miscellaneous . 143
5.6.11 Catching Signals (Software Interrupts) . 143
5.6.12 Errors and warnings . 144
5.6.13 Environment Control from Foreign Code 144
5.6.14 Querying Prolog . 144
5.6.15 Registering Foreign Predicates . 144
5.6.16 Foreign Code Hooks . 146
5.6.17 Storing foreign data . 147
5.6.18 Embedding SWI-Prolog in a C-program . 150

5.7 Linking embedded applications using plld . 151
5.7.1 A simple example . 153

5.8 Example of Using the Foreign Interface . 153
5.9 Notes on Using Foreign Code . 157

5.9.1 Memory Allocation . 157
5.9.2 Debugging Foreign Code . 157
5.9.3 Name Conflicts in C modules . 157
5.9.4 Compatibility of the Foreign Interface . 157

6 Generating Runtime Applications 159
6.1 Limitations of qsave program . 161
6.2 Runtimes and Foreign Code . 161
6.3 Using program resources . 162

6.3.1 Predicates Definitions . 163
6.3.2 The plrc program . 164

6.4 Finding Application files . 164
6.4.1 Passing a path to the application . 165

6.5 The Runtime Environment . 165
6.5.1 The Runtime Emulator . 165

A Hackers corner 167
A.1 Examining the Environment Stack . 167
A.2 Intercepting the Tracer . 168
A.3 Exception Handling . 169
A.4 Readline Interaction . 170

SWI-Prolog 3.2 Reference Manual

6

B Summary 171
B.1 Predicates . 171
B.2 Arithmetic Functions . 181
B.3 Operators . 183

SWI-Prolog 3.2 Reference Manual

1.1 SWI-Prolog

SWI-Prolog has been designed and implemented to get a Prolog implementation which can be used
for experiments with logic programming and the relation to other programming paradigms. The inten-
tion was to build a Prolog environment which offers enough power and flexibility to write substantial
applications, but is straightforward enough to be modified for experiments with debugging, optimi-
sation or the introduction of non-standard data types. Performance optimisation is limited due to the
main objectives: portability (SWI-Prolog is entirely written in C and Prolog) and modifiability.

SWI-Prolog is based on a very restricted form of the WAM (Warren Abstract Machine) described
in [Bowen & Byrd, 1983] which defines only 7 instructions. Prolog can easily be compiled into this
language and the abstract machine code is easily decompiled back into Prolog. As it is also possible
to wire a standard 4-port debugger in the WAM interpreter there is no need for a distinction between
compiled and interpreted code. Besides simplifying the design of the Prolog system itself this ap-
proach has advantages for program development: the compiler is simple and fast, the user does not
have to decide in advance whether debugging is required and the system only runs slightly slower
when in debug mode. The price we have to pay is some performance degradation (taking out the
debugger from the WAM interpreter improves performance by about 20%) and somewhat additional
memory usage to help the decompiler and debugger.

SWI-Prolog extends the minimal set of instructions described in [Bowen & Byrd, 1983] to im-
prove performance. While extending this set care has been taken to maintain the advantages of de-
compilation and tracing of compiled code. The extensions include specialised instructions for unifi-
cation, predicate invocation, some frequently used built-in predicates, arithmetic, and control (;/2 ,
|/2), if-then (- >/2) and not (\+/1).

This manual does not describe the full syntax and semantics of Prolog, nor how one should
write a program in Prolog. These subjects have been described extensively in the literature. See
[Bratko, 1986], [Sterling & Shapiro, 1986], and [Clocksin & Melish, 1987]. For more advanced Pro-
log material see [OKeefe, 1990]. Syntax and standard operator declarations confirm to the ‘Edinburgh
standard’. Most built in predicates are compatible with those described in [Clocksin & Melish, 1987].
SWI-Prolog also offers a number of primitive predicates compatible with Quintus Prolog1 [Qui, 1997]
and BIM Prolog2 [BIM, 1989].

ISO compliant predicates are based on “Prolog: The Standard”, [Deransart et al., 1996].

1Quintus is a trademark of Quintus Computer Systems Inc., USA
2BIM is a trademark of BIM sa/nv., Belgium

SWI-Prolog 3.2 Reference Manual

8 CHAPTER 1. INTRODUCTION

1.2 Status

This manual describes version 3.2 of SWI-Prolog. SWI-Prolog has been used now for several years.
The application range includes Prolog course material, meta-interpreters, simulation of parallel Pro-
log, learning systems, natural language processing and two large workbenches for knowledge en-
gineering. Although we experienced rather obvious and critical bugs can remain unnoticed for a
remarkable long period, we can assume the basic Prolog system is fairly stable. Bugs can be expected
in infrequently used builtin predicates.

Some bugs are known to the author. They are described as footnotes in this manual.

1.3 Should you be Using SWI-Prolog?

There are a number of reasons why you better choose a commercial Prolog system, or another aca-
demic product:

SWI-Prolog is not supported
Although I usually fix bugs shortly after a bug report arrives, I cannot promise anything. Now
that the sources are provided, you can always dig into them yourself.

Memory requirements and performance are your first concerns
A number of commercial compilers are more keen on memory and performance than SWI-
Prolog. I do not wish to sacrifice some of the nice features of the system, nor its portability to
compete on raw performance.

You need features not offered by SWI-Prolog
In this case you may wish to give me suggestions for extensions. If you have great plans, please
contact me (you might have to implement them yourself however).

On the other hand, SWI-Prolog offers some nice facilities:

Nice environment
This includes ‘Do What I Mean’, automatic completion of atom names, history mechanism and
a tracer that operates on single key-strokes. Interfaces to standard Unix editors are provided, as
well as a facility to maintain programs (see make/0).

Very fast compiler
Even very large applications can be loaded in seconds on most machines. If this is not enough,
there is a Quick Load Format that is slightly more compact and loading is almost always I/O
bound.

Transparent compiled code
SWI-Prolog compiled code can be treated just as interpreted code: you can list it, trace it, assert
to or retract from it, etc. This implies you do not have to decide beforehand whether a module
should be loaded for debugging or not. Also, performance is much better than the performance
of most interpreters.

Profiling
SWI-Prolog offers tools for performance analysis, which can be very useful to optimise pro-
grams. Unless you are very familiar with Prolog and Prolog performance considerations this
might be more helpful than a better compiler without these facilities.

SWI-Prolog 3.2 Reference Manual

1.4. THE XPCE GUI SYSTEM FOR PROLOG 9

Flexibility
SWI-Prolog allows for easy and flexible integration with C, both Prolog calling C functions
as C calling Prolog predicates. SWI-Prolog is provided in source form, which implies SWI-
Prolog can be linked in with another package. Command line options and predicates to obtain
information from the system and feedback into the system are provided.

Integration with XPCE
SWI-Prolog offers a tight integration to the Object Oriented Package for User Interface De-
velopment, called XPCE [Anjewierden & Wielemaker, 1989]. XPCE allows you to implement
graphical user interfaces that are source-code compatible over Unix/X11 and Win32 (Windows
95 and NT).

1.4 The XPCE GUI system for Prolog

The XPCE GUI system for dynamically typed languages has been with SWI-Prolog for a long time.
It is developed by Anjo Anjewierden and Jan Wielemaker from the department of SWI, University of
Amsterdam. It aims at a high-productive development environment for graphical applications based
on Prolog.

Object oriented technology has proven to be a suitable model for implementing GUIs, which
typically deal with things Prolog is not very good at: event-driven control and global state. With
XPCE, we designed a system that has similar characteristics that make Prolog such a powerful tool:
dynamic typing, meta-programming and dynamic modification of the running system.

XPCE is an object-system written in the C-language. It provides for the implementation of meth-
ods in multiple languages. New XPCE classes may be defined from Prolog using a simple, natural
syntax. The body of the method is executed by Prolog itself, providing a natural interface between the
two systems. Below is a very simple class definition.

:- pce_begin_clas s(pr olo g_li st er , frame,
"List Prolog predicates").

initialise(Self) :->
"As the C++ constructor"::
send(Self, send_super, initialise, ’Prolog Lister’),
send(Self, append, new(D, dialog)),
send(D, append,

text_item(predi ca te , message(Self, list, @arg1))),
send(new(view), below, D).

list(Self, From:name) :->
"List predicates from specification"::
(term_to_atom(T er m, From)
-> get(Self, member, view, V),

pce_open(V, write, Fd),
set_output(Fd) ,
listing(Term),
close(Fd)

; send(Self, report, error, ’Syntax error’)

SWI-Prolog 3.2 Reference Manual

10 CHAPTER 1. INTRODUCTION

).

:- pce_end_class.

test :- send(new(prolog_ li st er), open).

Its 165 built-in classes deal with the meta-environment, data-representation and—of course—
graphics. The graphics classes concentrate on direct-manipulation of diagrammatic representations.

Availability. XPCE runs on most Unix platforms, Windows 95, 98 and Windows NT. It has been
connected to SWI-Prolog, SICStus and Quintus Prolog as well as some Lisp dialects and C++.
The Quintus version is commercially distributed and supported as ProWindows-3 .

Info. further information is available from http://www.swi.p sy .u va .nl /p ro je ct s/x pc e/ home.ht ml
or by E-mail to xpce-request@sw i.p sy .u va .n l . There are demo versions for Windows 95,
98, NT and i386/Linux available from the XPCE download page.

1.5 Version 1.5 Release Notes

There are not many changes between version 1.4 and 1.5. The C-sources have been cleaned and
comments have been updated. The stack memory management based on using the MMU has been
changed to run on a number of System-V Unix systems offering shared memory. Handling dates has
been changed. All functions handling dates now return a floating point number, expressing the time
in seconds since January 1, 1970. A predicate convert time/8 is available to get the year, month,
etc. The predicate time/6 has been deleted. get time/1 and convert time/8 together do the
same.

From version 1.5, the system is distributed in source form, rather than in object form as used with
previous releases. This allows users to port SWI-Prolog to new machines, extend and improve the
system. If you want your changes to be incorporated in the next release, please indicate all changes
using a C-preprocessor flag and send complete source files back to me. Difference listings are of no
use, as I generally won’t have exactly the same version around.

1.6 Version 1.6 Release Notes

Version 1.6 is completely compatible with version 1.5. Some new features have been added, the
system has been ported to various new platforms and there is a provisional interface to GNU Emacs.
This interface will be improved and documented later.

The WAM virtual-machine interpreter has been modified to use GCC-2’s support for threaded
code.

From version 1.6, the sources are now versioned using the CVS version control system.

1.7 Version 1.7 Release Notes

Version 1.7 integrates the GNU-readline library, offering powerful history and command-line editing
both using Emacs and vi key-bindings.

SWI-Prolog 3.2 Reference Manual

1.8. VERSION 1.8 RELEASE NOTES 11

1.8 Version 1.8 Release Notes

Version 1.8 offers a stack-shifter to provide dynamically expanding stacks on machines that do not
offer operating-system support for implementing dynamic stacks.

1.9 Version 1.9 Release Notes

Version 1.9 offers better portability including an MS-Windows 3.1 version. Changes to the Prolog
system include:

Redefinition of system predicates
Redefinition of system predicates was allowed silently in older versions. Version 1.9 only allows
it if the new definition is headed by a :- redefine system predicate/1 directive.

‘Answer’ reuse
The toplevel maintains a table of bindings returned by toplevel goals and allows for reuse of
these bindings by prefixing the variables with the $ sign. See section 2.8.

Better source code administration
Allows for proper updating of multifile predicates and finding the sources of individual clauses.

1.10 Version 2.0 Release Notes

Version 2.0 is first of all a freeze of all the features added to the various 1.9.x releases. Version 2.0.6
for PC has moved from the WATCOM C 32-bit windows extender to Windows NT and runs under
Windows 3.1 using the Win32s NT emulator.

New features offered:

32-bit Virtual Machine
Removes various limits and improves performance.

Inline foreign functions
‘Simple’ foreign predicates no longer build a Prolog stack-frame, but are directly called from
the VM. Notably provides a speedup for the test predicates such as var/1 , etc.

Various compatibility improvements

Stream based I/O library
All SWI-Prolog’s I/O is now handled by the stream-package defined in the foreign include
file SWI- Stream.h . Physical I/O of Prolog streams may be redefined through the foreign
language interface, facilitating much simpler integration in window environments.

Version 2.0.6 offers a few incompatibilities:

retractall/1
In previous releases, the definition of retractall/1 was:

SWI-Prolog 3.2 Reference Manual

12 CHAPTER 1. INTRODUCTION

retractall(Term) :-
retract(Term),
fail.

retractall(_).

As from version 2.0.6, retractall/1 is implemented as a deterministic foreign predicate
compatible with Quintus Prolog. It behaves as:

retractall(Head) :-
retract(Head),
fail.

retractall(Head) :-
retract((Head :- _)),
fail.

retractall(_).

I.e. the definition behaves the same when handling predicates consisting of facts. Clauses with
a non-true body will be retracted if their head matches.

Foreign interface types
All foreign interface types now have names ending in t to lessen the chance for conflicts.
term , atomic , functor and module have #define ’s for backward compatibility.

PL register foreign()
The attributes is now a bitwise or of the attribute flags rather than a 0 terminated list. This has
no consequences for predicates that have no attributes (99% of them), while predicates with just
one attribute will generate a compiler warning, but work properly otherwise. Predicates with
more than one attributes must be changed.

PL dispatch events
This pointer is replaced by PL dispatch hook() . A function was necessary for the Win32
.DLL interface.

1.11 Version 2.1 Release Notes

In addition to several bug fixes, the 2.1 versions provide some new features:

setarg/3
A new predicate setarg/3 for extra-logical (destructive) assignment to arguments of terms is
provided.

Modified keysort/2
keysort/2 is now stable with regard to multiple values on the same key. Makes this predicate
compatible with SICStus and Quintus.

Modified grammar rule expansion
DCG translation of free variables now calls phrase/3 , which has been changed slightly to
deal with ‘un-parsing’. Modification is probably not complete, but it fixes some problems
encountered by Michael Böhlen.

SWI-Prolog 3.2 Reference Manual

1.12. VERSION 2.5 RELEASE NOTES 13

Exception handling
The top of the runtime stack are automatically dumped on floating point exceptions.

Foreign interface
Added facilities to allow for embedding SWI-Prolog in C applications.

1.12 Version 2.5 Release Notes

Version 2.5 is an intermediate release on the path from 2.1 to 3.0. All changes are to the foreign-
language interface, both to user- and system-predicates implemented in the C-language. The aim
is twofold. First of all to make garbage-collection and stack-expansion (stack-shifts) possible while
foreign code is active without the C-programmer having to worry about locking and unlocking C-
variables pointing to Prolog terms. The new approach is closely compatible to the Quintus and SIC-
Stus Prolog foreign interface using the +term argument specification (see their respective manuals).
This allows for writing foreign interfaces that are easily portable over these three Prolog platforms.

According to the current plan, ISO compliant exception handling and hooks for source-code de-
bugging will be added before the system will be called 3.0.

Apart from various bug fixes listed in the Changelog file, these are the main changes since 2.1.0:

ISO compatibility
Many ISO compatibility features have been added: open/4 , arithmetic functions, syntax, etc.

Win32
Many fixes for the Win32 (NT, ’95 and win32s) platforms. Notably many problems related to
pathnames and a problem in the garbage collector.

Performance
Many changes to the clause indexing system: added hash-tables, lazy computation of the index
information, etc.

Portable saved-states
The predicate qsave program/[1,2] allows for the creating of machine independent
saved-states that load very quickly.

1.13 Version 2.6 Release Notes

Version 2.6 provides a stable implementation of the features added in the 2.5.x releases, but at the
same time implements a number of new features that may have impact on the system stability.

32-bit integer and double float arithmetic
The biggest change is the support for full 32-bit signed integers and raw machine-format double
precision floats. The internal data representation as well as the arithmetic instruction set and
interface to the arithmetic functions has been changed for this.

Embedding for Win32 applications
The Win32 version has been reorganised. The Prolog kernel is now implemented as Win32 DLL
that may be embedded in C-applications. Two front ends are provided, one for window-based
operation and one to run as a Win32 console application.

SWI-Prolog 3.2 Reference Manual

14 CHAPTER 1. INTRODUCTION

Creating stand-alone executables
Version 2.6.0 can create stand-alone executables by attaching the saved-state to the emulator.
See qsave program/2 .

1.14 Version 2.7 Release Notes

Version 2.7 reorganises the entire data-representation of the Prolog data itself. The aim is to remove
most of the assumption on the machine’s memory layout to improve portability in general and enable
embedding on systems where the memory layout may depend on invocation or on how the executable
is linked. The latter is notably a problem on the Win32 platforms. Porting to 64-bit architectures
should be feasible now.

Furthermore, 2.7 lifts the limits on arity of predicates and number of variables in a clause consid-
erably and allow for further expansion at minimal cost.

1.15 Version 2.8 Release Notes

With version 2.8, we declare the data-representation changes of 2.7.x stable. Version 2.8 exploits the
changes of 2.7 to support 64-bit processors like the DEC Alpha. As of version 2.8.5, the representation
of recorded terms has changed, and terms on the heap are now represented in a compiled format. SWI-
Prolog no longer limits the use of malloc() or uses assumptions on the addresses returned by this
function.

1.16 Version 2.9 Release Notes

Version 2.9 is the next step towards version 3.0, improving ISO compliance and introducing ISO com-
pliant exception handling. New are catch/3 , throw/1 , abolish/1 , write term/[2,3] ,
write canonical/[1,2] and the C-functions PL exception() and PL throw() . The
predicates display/[1,2] and displayq/[1,2] have been moved to library(backcomp),
so old code referring to them will autoload them.

The interface to PL open query() has changed. The debug argument is replaced by a bitwise
or’ed flags argument. The values FALSE and TRUEhave their familiar meaning, making old code
using these constants compatible. Non-zero values other than TRUE(1) will be interpreted different.

1.17 Version 3.0 Release Notes

Complete redesign of the saved-state mechanism, providing the possibility of ‘program resources’.
See resource/3 , open resource/3 , and qsave program/[1,2] .

1.18 Version 3.1 Release Notes

Improvements on exception-handling. Allows relating software interrupts (signals) to exceptions,
handling signals in Prolog and C (see on signal/3 and PL signal()). Prolog stack overflows
now raise the resource error exception and thus can be handled in Prolog using catch/3 .

SWI-Prolog 3.2 Reference Manual

1.19. VERSION 3.2 RELEASE NOTES 15

1.19 Version 3.2 Release Notes

Many small patches and improvements. Support for XPCE 5.0 (improved exception-handling from
foreign code, recorded-database interface from C). Moved compiler to MSVC 5.0 on Windows,
repackaged sources and projects to make building on Windows from the sources feasible for nor-
mal users. Support for non-blocking Input streams. Better and portable support for mmap()-based
stacks on Unix. Raised maximum stack size to 128 MB, etc.

As of 3.2.9, first steps in supporting multi-threaded applications (Unix, developers only).

1.20 Acknowledgements

Some small parts of the Prolog code of SWI-Prolog are modified versions of the corresponding Ed-
inburgh C-Prolog code: grammar rule compilation and writef/2 . Also some of the C-code orig-
inates from C-Prolog: finding the path of the currently running executable and the code underlying
absolute file name/2 . Ideas on programming style and techniques originate from C-Prolog
and Richard O’Keefe’s thief editor. An important source of inspiration are the programming tech-
niques introduced by Anjo Anjewierden in PCE version 1 and 2.

I also would like to thank those who had the fade of using the early versions of this system, sug-
gested extensions or reported bugs. Among them are Anjo Anjewierden, Huub Knops, Bob Wielinga,
Wouter Jansweijer, Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.

Martin Jansche (jansche@novell1 .gs .u ni -h ei del berg .d e) has been so kind to reor-
ganise the sources for version 2.1.3 of this manual.

Horst von Brand has been so kind to fix many typos in the 2.7.14 manual. Thanks!

SWI-Prolog 3.2 Reference Manual

2.1 Getting started quickly

2.1.1 Starting SWI-Prolog

Starting SWI-Prolog on Unix

By default, SWI-Prolog is installed as ‘pl’, though some administrators call it ‘swipl’ or ‘swi-prolog’.
The commandline arguments of SWI-Prolog itself and its utility programs are documented using
standard Unix man pages. SWI-Prolog is normally operated as an interactive application simply by
starting the program:

% pl
/staff/jan/.plr c compiled, 0.00 sec, 1,016 bytes.
Welcome to SWI-Prolog (Version 3.2.9)
Copyright (c) 1993-1998 University of Amsterdam. All rights reserved.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

After starting Prolog, one normally loads a program into it using consult/1 , which—for historical
reasons—may be abbreviated by putting the name of the program file between square brackets. The
following goal loads the file likes.pl containing clauses for the predicates likes/2 :

?- [likes].
likes compiled, 0.00 sec, 596 bytes.

Yes
?-

After this point, Unix and Windows users are united again.

Starting SWI-Prolog on Windows

After SWI-Prolog has been installed on a Windows system, the following important new things are
available to the user:

A folder (called directory in the remainder of this document) called pl containing the executa-
bles, libraries, etc. of the system. No files are installed outside this directory.

SWI-Prolog 3.2 Reference Manual

2.2. THE USER’S INITIALISATION FILE 17

A program plwin.exe , providing a window for interaction with Prolog. The program
plcon.exe is a version of SWI-Prolog that runs in a DOS-box.

The file-extension .pl is associated with the program plwin.exe . Opening a .pl file will
cause plwin.exe to start, change directory to the directory in which the file-to-open resides
and load this file.

The normal way to start with the likes.pl file mentioned in section 2.1.1 is by simply double-
clicking this file in the Windows explorer.

2.1.2 Executing a query

After loading a program, one can ask Prolog queries about the program. The query below asks Pro-
log to prove whether ‘john’ likes someone and who is liked by ‘john’. The system responds with
X = value if it can prove the goal for a certain X. The user can type the semi-colon (;) if (s)he
wants another solution, or RETURN if (s)he is satisfied, after which Prolog will say Yes. If Prolog
answers No, it indicates it cannot find any more answers to the query. Finally, Prolog can answer
using an error message to indicate the query or program contains an error.

?- likes(john, X).

X = mary

2.2 The user’s initialisation file

After the necessary system initialisation the system consults (see consult/1) the user’s startup file.
The base-name of this file follows conventions of the operating system. On MS-Windows, it is the
file pl.ini and on Unix systems .plrc . The file is searched using the file search path/2
clauses for user profile . The table below shows the default value for this search-path.

Unix Windows
local . .
home ˜ %HOME%or %HOMEDRIVE%\%HOMEPATH%
global SWI-Home directory or %WINDIR%or %SYSTEMROOT%

After the first startup file is found it is loaded and Prolog stops looking for further startup files. The
name of the startup file can be changed with the ‘-f file’ option. If File denotes an absolute path,
this file is loaded, otherwise the file is searched for using the same conventions as for the default
startup file. Finally, if file is none , no file is loaded.

2.3 Initialisation goals

After loading the startup file SWI-Prolog executes a user initialisation goal. The default goal is a
system predicate that prints the banner message. The default can be modified with the ‘-g goal’
option. Next the toplevel goal is started. Default is the interactive Prolog loop (see prolog/0). The
user can overwrite this default with the ‘-t toplevel’ option.

SWI-Prolog 3.2 Reference Manual

18 CHAPTER 2. OVERVIEW

2.4 Command Line Options

The full set of command line options is given below:

-help
When given as the only option, it summarises the most important options.

-v
When given as the only option, it summarises the version and the architecture identifier.

-arch
When given as the only option, it prints the architecture identifier (see feature(arch, Arch)) and
exits.

-Lsize[km]
Give local stack limit (2 Mbytes default). Note that there is no space between the size option
and its argument. By default, the argument is interpreted in Kbytes. Postfixing the argument
with mcauses the argument to be interpreted in Mbytes. The following example specifies 32
Mbytes local stack.

% pl -L32m

A maximum is useful to stop buggy programs from claiming all memory resources. -L0 sets
the limit to the highest possible value.

-Gsize[km]
Give global stack limit (4 Mbytes default). See -L for more details.

-Tsize[km]
Give trail stack limit (4 Mbytes default). This limit is relatively high because trail-stack over-
flows are not often caused program bugs. See -L for more details.

-Asize[km]
Give argument stack limit (1 Mbytes default). The argument stack limits the maximum nesting
of terms that can be compiled and executed. SWI-Prolog does ‘last-argument optimisation’ to
avoid many deeply nested structure using this stack. Enlarging this limit is only necessary in
extreme cases. See -L for more details.

-Hsize[km]
Give malloc() heap limit. The default is to raise the limit as high as possible. This option
only applies to machines using the mmap() function for allocating the Prolog stacks. See -L
for more details.

-c file . . .
Compile files into an ‘intermediate code file’. See section 2.10.

-o output
Used in combination with -c or -b to determine output file for compilation.

-O
Optimised compilation. See feature/2 .

SWI-Prolog 3.2 Reference Manual

2.4. COMMAND LINE OPTIONS 19

-f file
Use file as startup file instead of the default. ‘-f none’ stops SWI-Prolog from searching for
a startup file. See section 2.2.

-F script
Selects a startup-script from the SWI-Prolog home directory. The script-file is named
script .rc . The default script name is deduced from the executable, taking the leading al-

phanumerical characters (letters, digits and underscore) from the program-name. -F none

stops looking for a script. Intended for simple management of slightly different versions.
One could for example write a script iso.rc and then select ISO compatibility mode using
pl -F iso or make a link from iso-pl to pl .

-g goal
Goal is executed just before entering the top level. Default is a predicate which prints the wel-
come message. The welcome message can thus be suppressed by giving -g true. goal can
be a complex term. In this case quotes are normally needed to protect it from being expanded
by the Unix shell.

-t goal
Use goal as interactive toplevel instead of the default goal prolog/0 . goal can be a complex
term. If the toplevel goal succeeds SWI-Prolog exits with status 0. If it fails the exit status is
1. This flag also determines the goal started by break/0 and abort/0 . If you want to stop
the user from entering interactive mode start the application with ‘-g goal’ and give ‘halt’ as
toplevel.

-tty
Switches tty control (using ioctl(2)) on (+tty) or off (-tty). Normally tty control is switched
on. This default depends on the installation. You may wish to switch tty control off if Prolog is
used from an editor such as Emacs. If switched off get single char/1 and the tracer will
wait for a return.

-x bootfile
Boot from bootfile instead of the system’s default boot file. A bootfile is a file result-
ing from a Prolog compilation using the -b or -c option or a program saved using
qsave program/[1,2] .

-p alias=path1[:path2 . . .]
Define a path alias for file search path. alias is the name of the alias, path1 ... is a : separated
list of values for the alias. A value is either a term of the form alias(value) or pathname. The
computed aliases are added to file search path/2 using asserta/1 , so they precede
predefined values for the alias. See file search path/2 for details on using this file-
location mechanism.

--
Stops scanning for more arguments, so you can pass arguments for your application after this
one.

The following options are for system maintenance. They are given for reference only.

SWI-Prolog 3.2 Reference Manual

20 CHAPTER 2. OVERVIEW

-b initfile . . . -c file . . .
Boot compilation. initfile . . . are compiled by the C-written bootstrap compiler, file . . . by the
normal Prolog compiler. System maintenance only.

-d level
Set debug level to level. Only has effect if the system is compiled with the -DO DEBUGflag.
System maintenance only.

2.5 GNU Emacs Interface

A provisional interface to emacs has been included since version 1.6 of SWI-Prolog. The interface
is based on the freely distributed interface delivered with Quintus Prolog. When running Prolog as
an inferior process under GNU-Emacs, there is support for finding predicate definitions, completing
atoms, finding the locations of compilation-warnings and many more. For details, see the files pl/
lisp/README and pl/lisp/swi- pro lo g. el .

2.6 Online Help

Online help provides a fast lookup and browsing facility to this manual. The online manual can show
predicate definitions as well as entire sections of the manual.

The online help is displayed from the file library(’MANUAL’). The file library(helpidx) pro-
vides an index into this file. library(’MANUAL’) is created from the LATEX sources with a modified
version of dvitty , using overstrike for printing bold text and underlining for rendering italic text.
XPCE is shipped with library(swi help), presenting the information from the online help in a hy-
pertext window. The feature write help with overstrike controls whether or not help/1
writes its output using overstrike to realise bold and underlined output or not. If this feature is not set
it is initialised by the help library to true if the TERMvariable equals xterm and false otherwise.
If this default does not satisfy you, add the following line to your personal startup file (see section 2.2):

:- set_feature(wr it e_hel p_wi th _over st ri ke , true).

help
Equivalent to help(help/1) .

help(+What)
Show specified part of the manual. What is one of:

Name / Arity Give help on specified predicate
Name Give help on named predicate with any arity or C interface

function with that name
Section Display specified section. Section numbers are dash-

separated numbers: 2-3 refers to section 2.3 of the man-
ual. Section numbers are obtained using apropos/1 .

Examples:

SWI-Prolog 3.2 Reference Manual

2.7. QUERY SUBSTITUTIONS 21

?- help(assert). Give help on predicate assert
?- help(3-4). Display section 3.4 of the manual
?- help(’PL retry’). Give help on interface function PL retry()

apropos(+Pattern)
Display all predicates, functions and sections that have Pattern in their name or summary de-
scription. Lowercase letters in Pattern also match a corresponding uppercase letter. Example:

?- apropos(file). Display predicates, functions and sections that have ‘file’
(or ‘File’, etc.) in their summary description.

explain(+ToExplain)
Give an explanation on the given ‘object’. The argument may be any Prolog data object. If the
argument is an atom, a term of the form Name/Arity or a term of the form Module:Name/Arity,
explain will try to explain the predicate as well as possible references to it.

explain(+ToExplain, -Explanation)
Unify Explanation with an explanation for ToExplain. Backtracking yields further explanations.

2.7 Query Substitutions

SWI-Prolog offers a query substitution mechanism similar to that of Unix csh (csh(1)), called ‘his-
tory’. The availability of this feature is controlled by set feature/2 , using the history feature.
By default, history is available if the feature readline is false . To enable this feature, remem-
bering the last 50 commands, put the following into your startup file (see section 2.2:

:- set_feature(hi st or y, 50).

The history system allows the user to compose new queries from those typed before and remembered
by the system. It also allows to correct queries and syntax errors. SWI-Prolog does not offer the
Unix csh capabilities to include arguments. This is omitted as it is unclear how the first, second, etc.
argument should be defined.1

The available history commands are shown in table 2.1. Figure 2.1 gives some examples.

2.7.1 Limitations of the History System

When in top level SWI-Prolog reads the user’s queries using read history/6 rather than
read/1 . This predicate first reads the current input stream up to a full stop. While doing so it
maps all contiguous blank space onto a single space and deletes /* ...*/ and % ... cr com-
ments. Parts between double quotes (") or single quotes (’) are left unaltered. Note that a Prolog full
stop consists of a ‘non-symbol’ character, followed by a period (.), followed by a blank character.
‘Symbol’ characters are: #$&*+-./:<=>?@ˆ ‘˜ . A single quote immediately preceded by a digit
(0-9) is considered part of the digit ’ digit . . . (e.g. 2’101 ; binary number 101) sequence.

After this initial parsing the result is first checked for the special ˆ old ˆ new . construction. If
this fails the string is checked for all occurrences of the ! , followed by a ! , ?, a digit, a letter or an

1One could choose words, defining words as a sequence of alpha-numeric characters and the word separators as anything
else, but one could also choose Prolog arguments

SWI-Prolog 3.2 Reference Manual

22 CHAPTER 2. OVERVIEW

/staff/jan/.plr c consulted, 0.066667 seconds, 591 bytes
Welcome to SWI-Prolog (Version \plversion)
Copyright (c) 1993-1996 University of Amsterdam. All rights reserved.

For help, use ?- help(Topic). or ?- apropos(Word).

1 ?- append("Hello ", "World", L).

L = [72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100]

Yes
2 ?- !!, writef(’L = %s\n’, [L]).
append("Hello ", "World", L), writef(’L = %s\n’, [L]).
L = Hello World

L = [72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100]

Yes
3 ?- sublist(intege r, [3, f, 3.4], L).

L = [3]

Yes
4 ?- ˆintegerˆnumbe r.
sublist(number, [3, f, 3.4], L).

L = [3, 3.400000]

Yes
5 ?- h.

1 append("Hello ", "World", L).
2 append("Hello ", "World", L), writef(’L = %s\n’, [L]).
3 sublist(integer, [3, f, 3.4], L).
4 sublist(number, [3, f, 3.4], L).

5 ?- !2ˆWorldˆUnive rs e.
append("Hello ", "Universe", L), writef(’L = %s\n’, [L]).
L = Hello Universe

L = [72, 101, 108, 108, 111, 32, 85, 110, 105, 118, 101, 114, 115, 101]

Yes
6 ?- halt.

Figure 2.1: Some examples of the history facility

SWI-Prolog 3.2 Reference Manual

2.8. REUSE OF TOPLEVEL BINDINGS 23

!!. Repeat last query
!nr. Repeat query numbered nr
!str. Repeat last query starting with str
!?str. Repeat last query holding str
ˆoldˆnew. Substitute old into new in last query
!nrˆoldˆnew. Substitute in query numbered nr
!strˆoldˆnew. Substitute in query starting with str
!?strˆoldˆnew. Substitute in query holding str
h. Show history list
!h. Show this list

Table 2.1: History commands

1 ?- maplist(plus(1), "hello", X).

X = [105,102,109,10 9, 112]

Yes
2 ?- format(’˜s˜n’, [$X]).
ifmmp

Yes

Figure 2.2: Reusing toplevel bindings

underscore. These special sequences are analysed and the appropriate substitution from the history
list is made.

From the above it follows that it is hard or impossible to correct quotation with single or double
quotes, comment delimiters and spacing.

2.8 Reuse of toplevel bindings

Bindings resulting from the successful execution of a toplevel goal are asserted in a database. These
values may be reused in further toplevel queries as $Var. Only the latest binding is available. Example:

Note that variables may be set by executing =/2 :

6 ?- X = statistics.

X = statistics

Yes
7 ?- $X.
28.00 seconds cpu time for 183,128 inferences
4,016 atoms, 1,904 functors, 2,042 predicates, 52 modules
55,915 byte codes; 11,239 external references

SWI-Prolog 3.2 Reference Manual

24 CHAPTER 2. OVERVIEW

1 ?- visible(+all), leash(-exit).

Yes
2 ?- trace, min([3, 2], X).

Call: (3) min([3, 2], G235) ? creep
Unify: (3) min([3, 2], G235)
Call: (4) min([2], G244) ? creep
Unify: (4) min([2], 2)
Exit: (4) min([2], 2)
Call: (4) min(3, 2, G235) ? creep
Unify: (4) min(3, 2, G235)
Call: (5) 3 < 2 ? creep
Fail: (5) 3 < 2 ? creep
Redo: (4) min(3, 2, G235) ? creep
Exit: (4) min(3, 2, 2)
Exit: (3) min([3, 2], 2)

Yes
[trace] 3 ?-

Figure 2.3: Example trace

Limit Allocated In use
Heap : 624,820 Bytes
Local stack : 2,048,000 8,192 404 Bytes
Global stack : 4,096,000 16,384 968 Bytes
Trail stack : 4,096,000 8,192 432 Bytes

Yes

2.9 Overview of the Debugger

SWI-Prolog has a 6-port tracer, extending the standard 4-port tracer [Clocksin & Melish, 1987] with
two additional ports. The optional unify port allows the user to inspect the result after unification of
the head. The exception port shows exceptions raised by throw/1 or one of the built-in predicates.
See section 3.8.

The standard ports are called call , exit , redo , fail and unify . The tracer is started by the
trace/0 command, when a spy point is reached and the system is in debugging mode (see spy/1
and debug/0) or when an exception is raised.

The interactive toplevel goal trace/0 means “trace the next query”. The tracer shows the port,
displaying the port name, the current depth of the recursion and the goal. The goal is printed using
the Prolog predicate write term/2 . The style can be modified to include the ignore ops and/or
portray options using the w, p or d command.

SWI-Prolog 3.2 Reference Manual

2.9. OVERVIEW OF THE DEBUGGER 25

On leashed ports (set with the predicate leash/1 , default are call , exit , redo and fail)
the user is prompted for an action. All actions are single character commands which are executed
without waiting for a return, unless the command line option -tty is active. Tracer options:

+ (Spy)
Set a spy point (see spy/1) on the current predicate.

- (No spy)
Remove the spy point (see nospy/1) from the current predicate.

/ (Find)
Search for a port. After the ‘/’, the user can enter a line to specify the port to search for. This
line consists of a set of letters indicating the port type, followed by an optional term, that should
unify with the goal run by the port. If no term is specified it is taken as a variable, searching for
any port of the specified type. If an atom is given, any goal whose functor has a name equal to
that atom matches. Examples:

/f Search for any fail port
/fe solve Search for a fail or exit port of any goal with name

solve
/c solve(a,) Search for a call to solve/2 whose first argument

is a variable or the atom a
/a member(,) Search for any port on member/2 . This is equiv-

alent to setting a spy point on member/2 .

. (Repeat find)
Repeat the last find command (see ‘/’).

A (Alternatives)
Show all goals that have alternatives.

C (Context)
Toggle ‘Show Context’. If on the context module of the goal is displayed between square
brackets (see section 4). Default is off .

L (Listing)
List the current predicate with listing/1 .

a (Abort)
Abort Prolog execution (see abort/0).

b (Break)
Enter a Prolog break environment (see break/0).

c (Creep)
Continue execution, stop at next port. (Also return, space).

d (Display)
Write goals using ignore ops option.

SWI-Prolog 3.2 Reference Manual

26 CHAPTER 2. OVERVIEW

e (Exit)
Terminate Prolog (see halt/0).

f (Fail)
Force failure of the current goal.

g (Goals)
Show the list of parent goals (the execution stack). Note that due to tail recursion optimization
a number of parent goals might not exist any more.

h (Help)
Show available options (also ‘?’).

i (Ignore)
Ignore the current goal, pretending it succeeded.

l (Leap)
Continue execution, stop at next spy point.

n (No debug)
Continue execution in ‘no debug’ mode.

p (Print)
Write goals using the portray option (default).

r (Retry)
Undo all actions (except for database and i/o actions) back to the call port of the current goal
and resume execution at the call port.

s (Skip)
Continue execution, stop at the next port of this goal (thus skipping all calls to children of this
goal).

u (Up)
Continue execution, stop at the next port of the parent goal (thus skipping this goal and all
calls to children of this goal). This option is useful to stop tracing a failure driven loop.

w (Write)
Write goals without using the portray option.

The ideal 4 port model as described in many Prolog books [Clocksin & Melish, 1987] is not vis-
ible in many Prolog implementations because code optimisation removes part of the choice- and
exit-points. Backtrack points are not shown if either the goal succeeded deterministically or its alter-
natives were removed using the cut. When running in debug mode (debug/0) choice points are only
destroyed when removed by the cut. In debug mode, tail recursion optimisation is switched off.2

2This implies the system can run out of local stack in debug mode, while no problems arise when running in non-debug
mode.

SWI-Prolog 3.2 Reference Manual

2.10. COMPILATION 27

2.10 Compilation

2.10.1 During program development

During program development, programs are normally loaded using consult/1 , or the list abbre-
viation. It is common practice to organise a project as a collection of source-files and a load-file, a
Prolog file containing only use module/[1,2] or ensure loaded/1 directives, possibly with
a definition of the entry-point of the program, the predicate that is normally used to start the program.
This file is often called load.pl . If the entry-point is called go, a typical session starts as:

% pl
<banner>

1 ?- [load].
<compilation messages>

Yes
2 ?- go.
<program interaction>

When using Windows, the user may open load.pl from the Windows explorer, which will cause
plwin.exe to be started in the directory holding load.pl . Prolog loads load.pl before entering
the toplevel.

2.10.2 For running the result

There are various options if you want to make your program ready for real usage. The best choice
depends on whether the program is to be used only on machines holding the SWI-Prolog development
system, the size of the program and the operating system (Unix vs. Windows).

Creating a shell-script

Especially on Unix systems and not-too-large applications, writing a shell-script that simply loads
your application and calls the entry-point is often a good choice. A skeleton for the script is given
below, followed by the Prolog code to obtain the program arguments.

#!/bin/sh

base=<absolute- path -t o-s ourc e>
PL=pl

exec $PL -f none -g "load_files([’$ base /l oad’] ,[si le nt (tr ue)])" -
t go -- $*

go :-
unix(argv(Argume nt s)),
append(_SytemArg s, [--|Args], Arguments), !,
go(Args).

SWI-Prolog 3.2 Reference Manual

28 CHAPTER 2. OVERVIEW

go(Args) :-
...

On Windows systems, similar behaviour can be achieved by creating a shortcut to Prolog, passing the
proper options or writing a .bat file.

Creating a saved-state

For larger programs, as well as for programs that are required run on systems that do not have the
SWI-Prolog development system installed, creating a saved state is the best solution. A saved state is
created using qsave program/[1,2] or using the linker plld(1). A saved state is a file containing
machine-independent intermediate code in a format dedicated for fast loading. Optionally, the emu-
lator may be integrated in the saved state, creating a single-file, but machine-dependent, executable.
This process is described in chapter 6.

Compilation using the -c commandline option

This mechanism loads a series of Prolog source files and then creates a saved-state as
qsave program/2 does. The command syntax is:

% pl [option ...] [-o output] -c file ...

The options argument are options to qsave program/2 written in the format below. The option-
names and their values are described with qsave program/2 .

-- option-name=option-value

For example, to create a stan-alone executable that starts by executing main/0 and for which the
source is loaded through load.pl , use the command

% pl --goal=main --stand_alone=t rue -o myprog -c load.pl

This performs exactly the same as executing

% pl
<banner>
?- [load].
?- qsave_program(mypr og,

[goal(main),
stand_alone(true)

]).
?- halt.

See also unix/1 .

SWI-Prolog 3.2 Reference Manual

2.11. ENVIRONMENT CONTROL 29

2.11 Environment Control

The current system defines 2 different mechanisms to query and/or set properties of the environment:
flag/3 and feature/2 as well as a number of special purpose predicates of which unknown/2 ,
fileerrors/2 are examples. The ISO standard defines prolog flag. It is likely that all these global
features will be merged into a single in the future.

feature(?Key, -Value)
The predicate feature/2 defines an interface to installation features: options compiled in,
version, home, etc. With both arguments unbound, it will generate all defined features. With
the ‘Key’ instantiated it unify the value of the feature. Features come in three types: boolean
features, features with an atom value and features with an integer value. A boolean feature is
true iff the feature is present and the Value is the atom true . Currently defined keys:

arch (atom)
Identifier for the hardware and operating system SWI-Prolog is running on. Used to de-
termine the startup file as well as to select foreign files for the right architecture. See also
load foreign/5 .

version (integer)
The version identifier is an integer with value:

Major Minor Patch

Note that in releases upto 2.7.10 this feature yielded an atom holding the three numbers
separated by dots. The current representation is much easier for implementing version-
conditional statements.

home (atom)
SWI-Prolog’s notion of the home-directory. SWI-Prolog uses it’s home directory to
find its startup file as home /startup/startu p. arch and to find its library as
home /library .

pipe (bool)
If true, tell(pipe(command)), etc. are supported.

load foreign (bool)
If true, load foreign/[2,5] are implemented.

open shared object (bool)
If true, open shared object/2 and friends are implemented, providing access to
shared libraries (.so files). This requires the C-library functions dlopen() and friends as
well as the configuration option --with-dlopen .

dynamic stacks (bool)
If true, the system uses some form of ‘sparse-memory management’ to realise the stacks.
If false, malloc()/realloc() are used for the stacks. In earlier days this had consequenses
for foreign code. As of version 2.5, this is no longer the case.

Systems using ‘sparse-memory management’ are a bit faster as there is no stack-shifter,
and checking the stack-boundary is often realised by the hardware using a ‘guard-page’.
Also, memory is actually returned to the system after a garbage collection or call to
trim stacks/0 (called by prolog/0 after finishing a user-query).

SWI-Prolog 3.2 Reference Manual

30 CHAPTER 2. OVERVIEW

c libs (atom)
Libraries passed to the C-linker when SWI-Prolog was linked. May be used to determine
the libraries needed to create statically linked extensions for SWI-Prolog. See section 5.7.

c staticlibs (atom)
On some machines, the SWI-Prolog executable is dynamically linked, but requires some
libraries to be statically linked. Obsolete.

c cc (atom)
Name of the C-compiler used to compile SWI-Prolog. Normally either gcc or cc. See
section 5.7.

c ldflags (atom)
Special linker flags passed to link SWI-Prolog. See section 5.7.

save (bool)
If true, save/[1,2] is implemented. Saving using save/0 is obsolete. See
qsave program/[1,2] .

save program (bool)
If true, save program/[1,2] is implemented. Saving using save program/0 is
obsolete. See qsave program/[1,2] .

readline (bool)
If true, SWI-Prolog is linked with the readline library. This is done by default if you have
this library installed on your system. It is also true for the Win32 plwin.exe version of
SWI-Prolog, which realises a subset of the readline functionality.

saved program (bool)
If true, Prolog is started from a state saved with qsave program/[1,2] .

runtime (bool)
If true, SWI-Prolog is compiled with -DO RUNTIME, disabling various useful develop-
ment features (currently the tracer and profiler).

max integer (integer)
Maximum integer value. Most arithmetic operations will automatically convert to floats if
integer values above this are returned.

min integer (integer)
Minimum integer value.

max tagged integer (integer)
Maximum integer value represented as a ‘tagged’ value. Tagged integers require 4-bytes
storage and are used for indexing. Larger integers are represented as ‘indirect data’ and
require 16-bytes on the stacks (though a copy requires only 4 additional bytes).

min tagged integer (integer)
Start of the tagged-integer value range.

float format (atom)
C printf() format specification used by write/1 and friends to determine how float-
ing point numbers are printed. The default is %g. May be changed. The specified value
is passed to printf() without further checking. For example, if you want more digits
printed, %.12g will print all floats using 12 digits instead of the default 6. See also
format/[1,2] , write/1 , print/1 and portray/1 .

SWI-Prolog 3.2 Reference Manual

2.11. ENVIRONMENT CONTROL 31

compiled at (atom)
Describes when the system has been compiled. Only available if the C-compiler used to
compile SWI-Prolog provides the DATE and TIME macros.

character escapes (bool)
If true (default), read/1 interprets \ escape sequences in quoted atoms and strings. May
be changed.

allow variable name as functor (bool)
If true (default is false), Functor(arg) is read as if it was written ’Functor’(arg) .
Some applications use the Prolog read/1 predicate for reading an application defined
script language. In these cases, it is often difficult to explain none-Prolog users of the
application that constants and functions can only start with a lowercase letter. Variables
can be turned into atoms starting with an uppercase atom by calling read term/2 using
the option variable names and binding the variables to their name. Using this feature,
F(x) can be turned into valid syntax for such script languages. Suggested by Robert van
Engelen. SWI-Prolog specific.

history (integer)
If integer , support Unix csh(1) like history as described in section 2.7. Otherwise,
only support reusing commands through the commandline editor. The default is to set
this feature to 0 if a commandline editor is provided (see feature readline) and 15
otherwise.

gc (bool)
If true (default), the garbage collector is active. If false, neither garbage-collection, nor
stack-shifts will take place, even not on explicit request. May be changed.

iso (bool)
Include some weird ISO compatibility that is incompatible to normal SWI-Prolog be-
haviour. Currently it has the following effect:

is/2 and evaluation under flag/3 do not automatically convert floats to integers
if the float represents an integer.

In the standard order of terms (see section 3.5.1), all floats are before all integers.

optimise (bool)
If true , compile in optimised mode. The initial value is true if Prolog was started with
the -O commandline option.

Currently optimise compilation implies compilation of arithmetic, and deletion of redun-
dant true/0 that may result from expand goal/2 .

Later versions might imply various other optimisations such as integrating small predi-
cates into their callers, eliminating constant expressions and other predictable constructs.
Source code optimisation is never applied to predicates that are declared dynamic (see
dynamic/1).

autoload (bool)
If true (default) autoloading of library functions is enabled. See section 2.12.

verbose autoload (bool)
If true the normal consult message will be printed if a library is autoloaded. By default
this message is suppressed. Intended to be used for debugging purposes.

SWI-Prolog 3.2 Reference Manual

32 CHAPTER 2. OVERVIEW

trace gc (bool)
If true (false is the default), garbage collections and stack-shifts will be reported on the
terminal. May be changed.

max arity (unbounded)
ISO feature describing there is no maximum arity to compound terms.

integer rounding function (down,toward zero)
ISO feature describing rounding by // and rem arithmetic functions. Value depends on
the C-compiler used.

bounded (true)
ISO feature describing integer representation is bound by min integer and
min integer .

tty control (bool)
Determines whether the terminal is switched to raw mode for get single char/1 ,
which also reads the user-actions for the trace. May be set. See also the +/-tty
command-line option.

debug on error (bool)
If true , start the tracer after an error is detected. Otherwise just continue execution. The
goal that raised the error will normally fail. See also fileerrors/2 and the feature
report error . May be changed. Default is true , except for the runtime version.

report error (bool)
If true , print error messages, otherwise suppress them. May be changed. See also the
debug on error feature. Default is true , except for the runtime version.

file name variables (bool)
If true (default false), expand $varname and ˜ in arguments of builtin-predicates
that accept a file name (open/3 , exists file/1 , access file/2 , etc.). The pred-
icate expand file name/2 should be used to expand environment variables and wild-
card patterns. This feature is intended for backward compatibility with older versions of
SWI-Prolog.

unix (bool)
If true , the operating system is some version of Unix. Defined if the C-compiler used to
compile this version of SWI-Prolog either defines __unix__ or unix .

windows (bool)
If true , the operating system is an implementation of Microsoft Windows (3.1, 95, NT,
etc.).

set feature(+Key, +Value)
Define a new feature or change its value. Key is an atom, Value is an atom or number.

2.12 Automatic loading of libraries

If —at runtime— an undefined predicate is trapped the system will first try to import the predicate
from the module’s default module. If this fails the auto loader is activated. On first activation an index
to all library files in all library directories is loaded in core (see library directory/1). If the
undefined predicate can be located in the one of the libraries that library file is automatically loaded

SWI-Prolog 3.2 Reference Manual

2.13. GARBAGE COLLECTION 33

and the call to the (previously undefined) predicate is resumed. By default this mechanism loads the
file silently. The feature/2 verbose autoload is provided to get verbose loading. The feature
autoload can be used to enable/disable the entire auto load system.

The auto-loader only works if the unknown flag (see unknown/2) is set to trace (default). A
more appropriate interaction with this flag will be considered.

Autoloading only handles (library) source files that use the module mechanism described in chap-
ter 4. The files are loaded with use module/2 and only the trapped undefined predicate will be
imported to the module where the undefined predicate was called. Each library directory must hold a
file INDEX.pl that contains an index to all library files in the directory. This file consists of lines of
the following format:

index(Name, Arity, Module, File).

The predicate make/0 scans the autoload libraries and updates the index if it exists, is writable and
out-of-date. It is advised to create an empty file called INDEX.pl in a library directory meant for
auto loading before doing anything else. This index file can then be updated by running the prolog
make library index/1 (‘%’ is the Unix prompt):

% mkdir ˜/lib/prolog
% cd !$
% pl -g true -t ’make_library_ in dex (.)’

If there are more than one library files containing the desired predicate the following search schema
is followed:

1. If there is a library file that defines the module in which the undefined predicate is trapped, this
file is used.

2. Otherwise library files are considered in the order they appear in the library directory/1
predicate and within the directory alphabetically.

make library index(+Directory)
Create an index for this directory. The index is written to the file ’INDEX.pl’ in the specified
directory. Fails with a warning if the directory does not exist or is write protected.

2.13 Garbage Collection

SWI-Prolog version 1.4 was the first release to support garbage collection. Together with last-call
optimisation this guarantees forward chaining programs do not waste infinite amounts of memory.

2.14 Syntax Notes

SWI-Prolog uses standard ‘Edinburgh’ syntax. A description of this syntax can be found in the Prolog
books referenced in the introduction. Below are some non-standard or non-common constructs that
are accepted by SWI-Prolog:

SWI-Prolog 3.2 Reference Manual

34 CHAPTER 2. OVERVIEW

0’ char
This construct is not accepted by all Prolog systems that claim to have Edinburgh compatible
syntax. It describes the ASCII value of char . To test whether C is a lower case character one
can use between(0’a, 0’z, C) .

/* .../* ...*/ ...*/
The /* ...*/ comment statement can be nested. This is useful if some code with /* ...*/
comment statements in it should be commented out.

2.14.1 ISO Syntax Support

SWI-Prolog offers ISO compatible extensions to the Edinburgh syntax.

Character Escape Syntax

Within quoted atoms (using single quotes: ’ atom ’ special characters are represented using escape-
sequences. An escape sequence is lead in by the backslash (\) character. The list of escape sequences
is compatible with the ISO standard, but contains one extension and the interpretation of numerically
specified characters is slightly more flexible to improve compatibility.

\ a
Alert character. Normally the ASCII character 7 (beep).

\ b
Backspace character.

\ c
No output. All input characters upto but not including the first non-layout character are skipped.
This allows for the specification of pretty-looking long lines. For compatibility with Quintus
Prolog. Nor supported by ISO. Example:

format(’This is a long line that would look better if it was \c
split across multiple physical lines in the input’)

\ RETURN
No output. Skips input till the next non-layout character or to the end of the next line. Same
intention as \c but ISO compatible.

\ f
Form-feed character.

\ n
Next-line character.

\ r
Carriage-return only (i.e. go back to the start of the line).

\ t
Horizontal tab-character.

SWI-Prolog 3.2 Reference Manual

2.15. SYSTEM LIMITS 35

\ v
Vertical tab-character (ASCII 11).

\ x23
Hexadecimal specification of a character. 23 is just an example. The ‘x’ may be followed by
a maximum of 2 hexadecimal digits. The closing \ is optional. The code \xa\3 emits the
character 10 (hexadecimal ‘a’) followed by ‘3’. The code \x201 emits 32 (hexadecimal ‘20’)
followed by ‘1’. According to ISO, the closing \ is obligatory and the number of digits is un-
limited. The SWI-Prolog definition allows for ISO compatible specification, but is compatible
with other implementations.

\ 40
Octal character specification. The rules and remarks for hexadecimal specifications apply to
octal specifications too, but the maximum allowed number of octal digits is 3.

\ character
Any character immediately preceded by a \ and not covered by the above escape sequences is
copied verbatim. Thus, ’\\’ is an atom consisting of a single \ and ’\’’ and ’’’’ both
describe the atom with a single ’ .

Character escaping is only available if the feature(charact er escapes, true) is ac-
tive (default). See feature/2 . Character escapes conflict with writef/2 in two ways: \40 is in-
terpreted as decimal 40 by writef/2 , but character escapes handling by read has already interpreted
as 32 (40 octal). Also, \l is translated to a single ‘l’. It is adviced to use the more widely supported
format/[2,3] predicate instead. If you insist using writef, either switch character escapes
to false , or use double \\ , as in writef(’\\l’) .

Syntax for Non-Decimal Numbers

SWI-Prolog implements both Edinburgh and ISO representations for non-decimal numbers. Accord-
ing to Edinburgh syntax, such numbers are written as radix ’ number , where radix is a number
between 2 and 36. ISO defines binary, octal and hexadecimal numbers using 0[bxo] number . For
example: A is 0b100 \/ 0xf00 is a valid expression. Such numbers are always unsigned.

2.15 System Limits

2.15.1 Limits on Memory Areas

SWI-Prolog has a number of memory areas which are only enlarged to a certain limit. The default
sizes for these areas should suffice for most applications, but big applications may require larger ones.
They are modified by command line options. The table below shows these areas. The first column
gives the option name to modify the size of the area. The option character is immediately followed by
a number and optionally by a k or m. With k or no unit indicator, the value is interpreted in Kbytes
(1024 bytes), with m, the value is interpreted in Mbytes (bytes).

The local-, global- and trail-stack are limited to 128 Mbytes on 32 bit processors, or more in
general to bits-per-long bytes.

SWI-Prolog 3.2 Reference Manual

36 CHAPTER 2. OVERVIEW

Option Default Area name Description
-L 2M local stack The local stack is used to store

the execution environments of
procedure invocations. The
space for an environment is re-
claimed when it fails, exits with-
out leaving choice points, the
alternatives are cut of with the
!/0 predicate or no choice points
have been created since the in-
vocation and the last subclause
is started (tail recursion optimi-
sation).

-G 4M global stack The global stack is used to store
terms created during Prolog’s
execution. Terms on this stack
will be reclaimed by backtrack-
ing to a point before the term
was created or by garbage col-
lection (provided the term is no
longer referenced).

-T 4M trail stack The trail stack is used to store as-
signments during execution. En-
tries on this stack remain alive
until backtracking before the
point of creation or the garbage
collector determines they are nor
needed any longer.

-A 1M argument stack The argument stack is used to
store one of the intermediate
code interpreter’s registers. The
amount of space needed on this
stack is determined entirely by
the depth in which terms are
nested in the clauses that con-
stitute the program. Overflow
is most likely when using long
strings in a clause.

Table 2.2: Memory areas

SWI-Prolog 3.2 Reference Manual

2.15. SYSTEM LIMITS 37

The heap

With the heap, we refer to the memory area used by malloc() and friends. SWI-Prolog uses the
area to store atoms, functors, predicates and their clauses, records and other dynamic data. As of
SWI-Prolog 2.8.5, no limits are imposed on the addresses returned by malloc() and friends.

On some machines, the runtime stacks described above are allocated using ‘sparse allocation’.
Virtual space upto the limit is claimed at startup and committed and released while the area grows and
shrinks. On Win32 platform this is realised using VirtualAlloc() and friends. On Unix systems
this is realised using mmap() .

2.15.2 Other Limits

Clauses Currently the following limitations apply to clauses. The arity may not be more than 1024
and the number of variables should be less than 65536.

Atoms and Strings SWI-Prolog has no limits on the sizes of atoms and strings. read/1 and its
derivatives however normally limit the number of newlines in an atom or string to 5 to improve
error detection and recovery. This can be switched off with style check/1 .

Address space SWI-Prolog data is packed in a 32-bit word, which contains both type and value
information. The size of the various memory areas is limited to 128 Mb for each of the areas,
except for the program heap, which is not limited.

Integers Integers are 32-bit to the user, but integers upto the value of the max tagged integer
feature are represented more efficiently.

Floats Floating point numbers are represented as native double precision floats, 64 bit IEEE on most
machines.

2.15.3 Reserved Names

The boot compiler (see -b option) does not support the module system. As large parts of the sys-
tem are written in Prolog itself we need some way to avoid name clashes with the user’s predicates,
database keys, etc. Like Edinburgh C-Prolog [Pereira, 1986] all predicates, database keys, etc. that
should be hidden from the user start with a dollar ($) sign (see style check/1).

The compiler uses the special functor VAR/1 while analysing the clause to compile. Using
this functor in a program causes unpredictable behaviour of the compiler and resulting program.

SWI-Prolog 3.2 Reference Manual

3.1 Notation of Predicate Descriptions

We have tried to keep the predicate descriptions clear and concise. First the predicate name is printed
in bold face, followed by the arguments in italics. Arguments are preceded by a ‘+’, ‘-’ or ‘?’ sign.
‘+’ indicates the argument is input to the predicate, ‘-’ denotes output and ‘?’ denotes ‘either input or
output’.1 Constructs like ‘op/3 ’ refer to the predicate ‘op’ with arity ‘3’.

3.2 Consulting Prolog Source files

SWI-Prolog source files normally have a suffix ‘.pl ’. Specifying the suffix is optional. All predicates
that handle source files first check whether a file with suffix ‘.pl ’ exists. If not the plain file name
is checked for existence. Library files are specified by embedding the file name using the functor
library/1 . Thus ‘foo ’ refers to ‘foo.pl ’ or ‘foo ’ in the current directory, ‘library(foo) ’
refers to ‘foo.pl ’ or ‘foo ’ in one of the library directories specified by the dynamic predicate
library directory/1 . The user may specify other ‘aliases’ than library using the predicate
file search path/2 . This is strongly encouraged for managing complex applications. See also
absolute file name/[2,3] .

SWI-Prolog recognises grammar rules as defined in [Clocksin & Melish, 1987]. The user
may define additional compilation of the source file by defining the dynamic predicate
term expansion/2 . Transformations by this predicate overrule the systems grammar rule trans-
formations. It is not allowed to use assert/1 , retract/1 or any other database predicate in
term expansion/2 other than for local computational purposes.2

Directives may be placed anywhere in a source file, invoking any predicate. They are executed
when encountered. If the directive fails, a warning is printed. Directives are specified by :-/1 or ?-/1.
There is no difference between the two.

SWI-Prolog does not have a separate reconsult/1 predicate. Reconsulting is implied auto-
matically by the fact that a file is consulted which is already loaded.

load files(+Files, +Options)
The predicate load files/2 is the parent of all the other loading predicates. It currently
supports a subset of the options of Quintus load files/2 . Files is either specifies a single, or
a list of source-files. The specification for a source-file is handled absolute file name/2 .
See this predicate for the supported expansions. Options is a list of options using the format

OptionName(OptionValue)

1These marks do notx suggest instantiation (e.g. var(+Var)).
2It does work for consult, but makes it impossible to compile programs into a stand alone executable (see section 2.10)

SWI-Prolog 3.2 Reference Manual

3.2. CONSULTING PROLOG SOURCE FILES 39

The following options are currently supported:

if(Condition)
Load the file only if the specified condition is satisfied. The value true loads the file
unconditionally, changed loads the file if it was not loaded before, or has been modified
since it was loaded the last time, not loaded loads the file if it was not loaded before.

must be module(Bool)
If true , raise an error if the file is not a module file. Used by use module/[1,2] .

imports(ListOrAll)
If all and the file is a module file, import all public predicates. Otherwise import only
the named predicates. Each predicate is refered to as name / arity . This option has no
effect if the file is not a module file.

silent(Bool)
If true , load the file without printing a message. The specified value is the default for all
files loaded as a result of loading the specified files.

consult(+File)
Read File as a Prolog source file. File may be a list of files, in which case all members are con-
sulted in turn. File may start with the csh(1) special sequences ˜ , user and $ var . File may
also be library(Name) , in which case the libraries are searched for a file with the specified
name. See also library directory/1 and file search path/2 . consult/1 may
be abbreviated by just typing a number of file names in a list. Examples:

?- consult(load). % consult load or load.pl
?- [library(quint us)] . % load Quintus compatibility library

Equivalent to load files(Files, []).

ensure loaded(+File)
If the file is not already loaded, this is equivalent to consult/1 . Otherwise, if the file defines a
module, import all public predicates. Finally, if the file is already loaded, is not a module file and
the context module is not the global user module, ensure loaded/1 will call consult/1 .

With the semantics, we hope to get as closely possible to the clear semantics without
the presence of a module system. Applications using modules should consider using
use module/[1,2] .

Equivalent to load files(Files, [if(changed)]).

require(+ListOfNameAndArity)
Declare that this file/module requires the specified predicates to be defined “with their com-
monly accepted definition”. This predicate originates from the Prolog portability layer for
XPCE. It is intended to provide a portable mechanism for specifying that this module requires
the specified predicates.

The implementation normally first verifies whether the predicate is already defined. If not, it
will search the libraries and load the required library.

SWI-Prolog, having autoloading, does not load the library. Instead it creates a procedure header
for the predicate if this does not exist. This will flag the predicate as ‘undefined’. See also
check/0 and autoload/0 .

SWI-Prolog 3.2 Reference Manual

40 CHAPTER 3. BUILT-IN PREDICATES

make
Consult all source files that have been changed since they were consulted. It checks all loaded
source files: files loaded into a compiled state using pl -c ... and files loaded using consult
or one of its derivatives. make/0 is normally invoked by the edit/[0,1] and ed/[0,1]
predicates. make/0 can be combined with the compiler to speed up the development of large
packages. In this case compile the package using

sun% pl -g make -o my_program -c file ...

If ‘my program’ is started it will first reconsult all source files that have changed since the
compilation.

library directory(?Atom)
Dynamic predicate used to specify library directories. Default ./lib , ˜/lib/prolog and
the system’s library (in this order) are defined. The user may add library directories using
assert/1 , asserta/1 or remove system defaults using retract/1 .

file search path(+Alias, ?Path)
Dynamic predicate used to specify ‘path-aliases’. This feature is best described using an exam-
ple. Given the definition

file_search_pat h(d emo, ’˜/demo’).

the file specification demo(myfile) will be expanded to ˜/demo/myfile . The second
argument of file search path/2 may be another alias.

Below is the initial definition of the file search path. This path implies swi(Path) refers to
a file in the SWI-Prolog home directory. The alias foreign(Path) is intended for storing
shared libraries (.so or .DLL files). See also load foreign library/[1,2] .

user:file_searc h_pat h(li br ary , X) :-
library_direct or y(X).

user:file_searc h_pat h(swi, Home) :-
feature(home, Home).

user:file_searc h_pat h(fo re ign , swi(ArchLib)) :-
feature(arch, Arch),
concat(’lib/’, Arch, ArchLib).

user:file_searc h_pat h(fo re ign , swi(lib)).

The file search path/2 expansion is used by all loading predicates as well as by
absolute file name/[2,3] .

expand file search path(+Spec, -Path)
Unifies Path will all possible expansions of the file name specification Spec. See also
absolute file name/3 .

SWI-Prolog 3.2 Reference Manual

3.2. CONSULTING PROLOG SOURCE FILES 41

prolog file type(?Extension, ?Type)
This dynamic multifile predicate defined in module user determines the extensions considered
by file search path/2 . Extension is the filename extension without the leading dot, Type
denotes the type as used by the file type (Type) option of file search path/2 . Here
is the initial definition of prolog file type/2 :

user:prolog_fil e_t yp e(pl , prolog).
user:prolog_fil e_t yp e(Ext, prolog) :-

feature(associ at e, Ext),
Ext \== pl.

user:prolog_fil e_t yp e(ql f, qlf).
user:prolog_fil e_t yp e(so , executable) :-

feature(open_s hare d_obj ec t, true).
user:prolog_fil e_t yp e(dl l, executable) :-

feature(dll, true).

Users may wish to change the extension used for Prolog source files to avoid conflicts (for
example with perl) as well as to be compatible with some specific implementation. The
preferred alternative extension is .pro .

source file(?File)
Succeeds if File was loaded using consult/1 or ensure loaded/1 . File refers to the
full path name of the file (see expand file name/2). The predicate source file/1
backtracks over all loaded source files.

source file(?Pred, ?File)
Is true if the predicate specified by Pred was loaded from file File, where File is an absolute
path name (see expand file name/2). Can be used with any instantiation pattern, but the
database only maintains the source file for each predicate. Predicates declared multifile
(see multifile/1) cannot be found this way.

prolog load context(?Key, ?Value)
Determine loading context. The following keys are defined:

Key Description
module Module into which file is loaded
file File loaded
stream Stream identifier (see current input/1)
directory Directory in which File lives.
term position Position of last term read. Term of the form

’$stream position’(0, Line ,0,0,0)

Quintus compatibility predicate. See also source location/2 .

source location(-File, -Line)
If the last term has been read from a physical file (i.e. not from the file user or a string), unify
File with an absolute path to the file and Line with the line-number in the file. New code should
use prolog load context/2 .

SWI-Prolog 3.2 Reference Manual

42 CHAPTER 3. BUILT-IN PREDICATES

term expansion(+Term1, -Term2)
Dynamic predicate, normally not defined. When defined by the user all terms read during
consulting that are given to this predicate. If the predicate succeeds Prolog will assert Term2 in
the database rather then the read term (Term1). Term2 may be a term of a the form ‘?- Goal’
or ‘:- Goal’. Goal is then treated as a directive. If Term2 is a list all terms of the list are stored
in the database or called (for directives). If Term2 is of the form below, the system will assert
Clause and record the indicated source-location with it.

’$source location’(File , Line): Clause

When compiling a module (see chapter 4 and the directive module/2), expand term/2
will first try term expansion/2 in the module being compiled to allow for term-expansion
rules that are local to a module. If there is no local definition, or the local definition fails to
translate the term, expand term/2 will try user:term expansion/2 . For compatibility
with SICStus and Quintus Prolog, this feature should not be used. See also expand term/2 ,
goal expansion/2 and expand goal/2 .

expand term(+Term1, -Term2)
This predicate is normally called by the compiler to perform preprocessing. First it calls
term expansion/2 . If this predicate fails it performs a grammar-rule translation. If this
fails it returns the first argument.

goal expansion(+Goal1, -Goal2)
Like term expansion/2 , goal expansion/2 provides for macro-expansion of Prolog
source-code. Between term expand/2 and the actual compilation, the body of clauses anal-
ysed and the goals are handed to expand goal/2 , which uses the goal expansion/2
hook to do user-defined expansion.

The predicate goal expansion/2 is first called in the module that is being compiled, and
then on the user module.

Only goals apearing in the body of clauses when reading a source-file are expanded using mech-
anism, and only if they appear literally in the clause, or as an argument to the meta-predicates
not/1 , call/1 or forall/2 . A real predicate definition is required to deal with dynami-
cally constructed calls.

expand goal(+Goal1, -Goal2)
This predicate is normally called by the compiler to perform preprocessing. First it calls
goal expansion/2 . If this fails it returns the first argument.

at initialization(+Goal)
Register Goal to be ran when the system initialises. Initialisation takes place after reloading a
.qlf (formerly .wic) file as well as after reloading a saved-state. The hooks are run in the order
they were registered. A warning message is issued if Goal fails, but execution continues. See
also at halt/1

at halt(+Goal)
Register Goal to be ran when the system halts. The hooks are run in the order they were regis-
tered. Success or failure executing a hook is ignored. These hooks may not call halt/[0,1] .

SWI-Prolog 3.2 Reference Manual

3.2. CONSULTING PROLOG SOURCE FILES 43

initialization(+Goal)
Call Goal and register it using at initialization/ 1. Directives that do other things
that creating clauses, records, flags or setting predicate attributes should normally be written
using this tag to ensure the initialisation is executed when a saved system starts. See also
qsave program/[1,2] .

compiling
Succeeds if the system is compiling source files with the -c option into an intermediate code
file. Can be used to perform code optimisations in expand term/2 under this condition.

preprocessor(-Old, +New)
Read the input file via a Unix process that acts as preprocessor. A preprocessor is specified as
an atom. The first occurrence of the string ‘%f’ is replaced by the name of the file to be loaded.
The resulting atom is called as a Unix command and the standard output of this command is
loaded. To use the Unix C preprocessor one should define:

?- preprocessor(Ol d, ’/lib/cpp -C -P %f’), consult(...).

Old = none

3.2.1 Quick Load Files

The features described in this section should be regarded alpha.
As of version 2.0.0, SWI-Prolog supports compilation of individual or multiple Prolog sourcefiles

into ‘Quick Load Files’. A ‘Quick Load Files’ (.qlf file) stores the contents of the file in a precom-
piled format very similar to compiled files created using the -b and -c flags (see section 2.10).

These files load considerably faster than sourcefiles and are normally more compact. They are
machine independent and may thus be loaded on any implementation of SWI-Prolog. Note however
that clauses are stored as virtual machine instructions. Changes to the compiler will generally make
old compiled files unusable.

Quick Load Files are created using qcompile/1 . They may be loaded explicitly using
qload/1 or implicitly using consult/1 or one of the other file-loading predicates described in
section 3.2. If consult is given the explicit .pl file, it will load the Prolog source. When given the
.qlf file, it will call qload/1 to load the file. When no extension is specified, it will load the .qlf
file when present and the fileextpl file otherwise.

qcompile(+File)
Takes a single file specification like consult/1 (i.e. accepts constructs like
library(LibFile) and creates a Quick Load File from File. The file-extension of
this file is .qlf . The base name of the Quick Load File is the same as the input file.

If the file contains ‘:- consult(+File) ’ or ‘:- [+File] ’ statements, the referred files
are compiled into the same .qlf file. Other directives will be stored in the .qlf file and
executed in the same fashion as when loading the .pl file.

For term expansion/2 , the same rules as described in section 2.10 apply.

Source references (source file/2) in the Quick Load File refer to the Prolog source file
from which the compiled code originates.

SWI-Prolog 3.2 Reference Manual

44 CHAPTER 3. BUILT-IN PREDICATES

qload(+File)
Loads the ‘Quick Load File’. It has the same semantics as consult/1 for a normal sourcefile.
Equivalent to consult(File) iff File refers to a ‘Quick Load File’.

3.3 Listing and Editor Interface

SWI-Prolog offers an extensible interface which allows the user to edit objects of the program: predi-
cates, modules, files, etc. The editor interface is implemented by edit/1 and consists of three parts:
locating, selecting and starting the editor.

Any of these parts may be extended or redefined by adding clauses to various multi-file (see
multifile/1) predicates defined in the module prolog edit .

The built-in edit specifications for edit/1 (see prolog edit:locate/3) are described below.

Fully specified objects
Module : Name / Arity Refers a predicate

module(Module) Refers to a module
file(Path) Refers to a file
source file(Path) Refers to a loaded source-file

Ambiguous specifications
Name / Arity Refers this predicate in any module
Name Refers to (1) named predicate in any module with any ar-

ity, (2) a (source) file or (3) a module.

edit(+Specification)
First exploits prolog edit:locate/3 to translate Specification into a list of Locations. If there
is more than one ‘hit’, the user is allows to select from the found locations. Finally, pro-
log edit:edit source/1 is used to invoke the user’s preferred editor.

prolog edit:locate(+Spec, -FullSpec, -Location)
Where Spec is the specification provided through edit/1 . This multifile predicate is used to
enumerate locations at with an object satisfying the given Spec can be found. FullSpec is unified
with the complete specification for the object. This distinction is used to allow for ambiguous
specifications. For example, if Spec is an atom, which appears as the base-name of a loaded file
and as the name of a predicate, FullSpec will be bound to file (Path) or Name/Arity.

Location is a list of attributes of the location. Normally, this list will contain the term
file (File) and —if available— the term line (Line).

prolog edit:locate(+Spec, -Location)
Same as prolog edit:locate/3 , but only deals with fully-sepecified objects.

prolog edit:edit source(+Location)
Start editor on Location. See locate/3 for the format of a location term. This multi-file
predicate is normally not defined. If it succeeds, edit/1 assumes the editor is started.

If it fails, edit/1 will invoke an external editor. The editor to be invoked is determined from
the evironment variable EDITOR, which may be set from the operating system or from the
Prolog initialisation file using setenv/2 . If no editor is defined, vi is the default in Unix
systems, and notepad on Windows.

The predicate prolog edit:edit command/2 defines how the editor will be invoked.

SWI-Prolog 3.2 Reference Manual

3.4. VERIFY TYPE OF A TERM 45

prolog edit:edit command(+Editor, -Command)
Determines how Editor is to be invoked using shell/1 . Editor is the determined editor (see
edit source/1), without the full path specification, and without possible (exe) extension.
Command is an atom describing the command. The pattern %f is replaced by the full file-name
of the location, and %dby the line number. If the editor can deal with starting at a specified
line, two clauses should be provided, one holding only the %f pattern, and one holding both
patterns.

The default contains definitions for vi , emacs , emacsclient , vim and notepad (latter
without line-number version).

Please contribute your specifications to jan@swi.psy.uva .nl .

prolog edit:load
Normally not-defined multifile predicate. This predicate may be defined to provide loading
hooks for user-extensions to the edit module. For example, XPCE provides the code below to
load library(swi edit), containing definitions to locate classes and methods as well as to bind
this package to the PceEmacs built-in editor.

:- multifile prolog_edit:load /0 .

prolog_edit:loa d :-
ensure_loaded(li br ary (s wi _edi t)) .

listing(+Pred)
List specified predicates (when an atom is given all predicates with this name will be listed).
The listing is produced on the basis of the internal representation, thus loosing user’s layout and
variable name information. See also portray clause/1 .

listing
List all predicates of the database using listing/1 .

portray clause(+Clause)
Pretty print a clause as good as we can. A clause should be specified as a term
‘ Head :- Body ’ (put brackets around it to avoid operator precedence problems). Facts
are represented as ‘ Head :- true ’.

3.4 Verify Type of a Term

var(+Term)
Succeeds if Term currently is a free variable.

nonvar(+Term)
Succeeds if Term currently is not a free variable.

integer(+Term)
Succeeds if Term is bound to an integer.

float(+Term)
Succeeds if Term is bound to a floating point number.

SWI-Prolog 3.2 Reference Manual

46 CHAPTER 3. BUILT-IN PREDICATES

number(+Term)
Succeeds if Term is bound to an integer or a floating point number.

atom(+Term)
Succeeds if Term is bound to an atom.

string(+Term)
Succeeds if Term is bound to a string.

atomic(+Term)
Succeeds if Term is bound to an atom, string, integer or floating point number.

compound(+Term)
Succeeds if Term is bound to a compound term. See also functor/3 and =../2.

ground(+Term)
Succeeds if Term holds no free variables.

3.5 Comparison and Unification or Terms

3.5.1 Standard Order of Terms

Comparison and unification of arbitrary terms. Terms are ordered in the so called “standard order”.
This order is defined as follows:

1. Variables Atoms Strings3 Numbers Terms

2. Old Variable New Variable4

3. Atoms are compared alphabetically.

4. Strings are compared alphabetically.

5. Numbers are compared by value. Integers and floats are treated identically.

6. Compound terms are first checked on their arity, then on their functor-name (alphabetically) and
finally recursively on their arguments, leftmost argument first.

If the feature (see feature/2) iso is defined, all floating point numbers precede all integers.

+Term1 == +Term2
Succeeds if Term1 is equivalent to Term2. A variable is only identical to a sharing variable.

+Term1 \== +Term2
Equivalent to \+Term1 == Term2 .

+Term1 = +Term2
Unify Term1 with Term2. Succeeds if the unification succeeds.

3Strings might be considered atoms in future versions. See also section 3.21
4In fact the variables are compared on their (dereferenced) addresses. Variables living on the global stack are always

than variables on the local stack. Programs should not rely on the order in which variables are sorted.

SWI-Prolog 3.2 Reference Manual

3.6. CONTROL PREDICATES 47

+Term1 \= +Term2
Equivalent to \+Term1 = Term2 .

+Term1 =@=+Term2
Succeeds if Term1 is ‘structurally equal’ to Term2. Structural equivalence is weaker than equiv-
alence (==/2), but stronger than unification (=/2). Two terms are structurally equal if their
tree representation is identical and they have the same ‘pattern’ of variables. Examples:

a =@= A false
A =@= B true

x(A,A) =@= x(B,C) false
x(A,A) =@= x(B,B) true
x(A,B) =@= x(C,D) true

+Term1 \=@= +Term2
Equivalent to ‘\+Term1 =@= Term2’ .

+Term1 @<+Term2
Succeeds if Term1 is before Term2 in the standard order of terms.

+Term1 @=<+Term2
Succeeds if both terms are equal (==/2) or Term1 is before Term2 in the standard order of
terms.

+Term1 @>+Term2
Succeeds if Term1 is after Term2 in the standard order of terms.

+Term1 @>= +Term2
Succeeds if both terms are equal (==/2) or Term1 is after Term2 in the standard order of terms.

compare(?Order, +Term1, +Term2)
Determine or test the Order between two terms in the standard order of terms. Order is one of
<, > or =, with the obvious meaning.

3.6 Control Predicates

The predicates of this section implement control structures. Normally these constructs are translated
into virtual machine instructions by the compiler. It is still necessary to implement these constructs
as true predicates to support meta-calls, as demonstrated in the example below. The predicate finds
all currently defined atoms of 1 character long. Note that the cut has no effect when called via one of
these predicates (see !/0).

one_character_a to ms(A s) :-
findall(A, (current_atom(A) , atom_length(A, 1)), As).

fail
Always fail. The predicate fail/0 is translated into a single virtual machine instruction.

SWI-Prolog 3.2 Reference Manual

48 CHAPTER 3. BUILT-IN PREDICATES

true
Always succeed. The predicate true/0 is translated into a single virtual machine instruction.

repeat
Always succeed, provide an infinite number of choice points.

!
Cut. Discard choice points of parent frame and frames created after the parent frame. Note that
the control structures ;/2 , |/2 , - >/2 and \+/1 are normally handled by the compiler and
do not create a frame, which implies the cut operates through these predicates. Some examples
are given below. Note the difference between t3/1 and t4/1. Also note the effect of call/1 in
t5/0. As the argument of call/1 is evaluated by predicates rather than the compiler the cut
has no effect.

t1 :- (a, !, fail ; b). % cuts a/0 and t1/0
t2 :- (a -> b, ! ; c). % cuts b/0 and t2/0
t3(G) :- a, G, fail. % if ‘G = !’ cuts a/0 and t1/1
t4(G) :- a, call(G), fail. % if ‘G = !’ cut has no effect
t5 :- call((a, !, fail ; b)). % Cut has no effect
t6 :- \+(a, !, fail ; b). % cuts a/0 and t6/0

+Goal1 , +Goal2
Conjunction. Succeeds if both ‘Goal1’ and ‘Goal2’ can be proved. It is defined as (this defini-
tion does not lead to a loop as the second comma is handled by the compiler):

Goal1, Goal2 :- Goal1, Goal2.

+Goal1 ; +Goal2
The ‘or’ predicate is defined as:

Goal1 ; _Goal2 :- Goal1.
_Goal1 ; Goal2 :- Goal2.

+Goal1 | +Goal2
Equivalent to ;/2 . Retained for compatibility only. New code should use ;/2 . Still nice
though for grammar rules.

+Condition - > +Action
If-then and If-Then-Else. The - >/2 construct commits to the choices made at its left-hand
side, destroying choice-points created inside the clause (by ;/2), or by goals called by this
clause. Unlike !/0 , the choicepoint of the predicate as a whole (due to multiple clauses) is not
destroyed. The combination ;/2 and - >/2 is defines as:

If -> Then; _Else :- If, !, Then.
If -> _Then; Else :- !, Else.
If -> Then :- If, !, Then.

SWI-Prolog 3.2 Reference Manual

3.7. META-CALL PREDICATES 49

Note that the operator precedence relation between ; and - > ensure If -> Then ; Else
is actually a term of the form ;(->(If, Then), Else) . The first two clauses belong to
the definition of ;/2), while only the last defines - >/2 .

+Condition *- > +Action ; +Else
This construct implements the so-called ‘soft-cut’. The control is defined as follows: If Condi-
tion succeeds at least once, the semantics is the same as (Condition, Action). If Condition does
not succeed, the semantics is that of (Condition, Else). In other words, If Condition succeeds at
least once, simply behave as the conjunction of Condition and Action, otherwise execute Else.

\+ +Goal
Succeeds if ‘Goal’ cannot be proven (mnemonic: + refers to provable and the backslash (\) is
normally used to indicate negation).

3.7 Meta-Call Predicates

Meta call predicates are used to call terms constructed at run time. The basic meta-call mechanism
offered by SWI-Prolog is to use variables as a subclause (which should of course be bound to a valid
goal at runtime). A meta-call is slower than a normal call as it involves actually searching the database
at runtime for the predicate, while for normal calls this search is done at compile time.

call(+Goal)
Invoke Goal as a goal. Note that clauses may have variables as subclauses, which is identical
to call/1 , except when the argument is bound to the cut. See !/0 .

call(+Goal, +ExtraArg1, . . .)
Append ExtraArg1, ExtraArg2, . . . to the argument list of Goal and call the result. For example,
call(plus(1), 2, X) will call plus/3 , binding X to 3.

The call/[2..] construct is handled by the compiler, which implies that redefinition as a predicate
has no effect. The predicates call/[2-6] are defined as true predicates, so they can be
handled by interpreted code.

apply(+Term, +List)
Append the members of List to the arguments of Term and call the resulting term. For example:
apply(plus(1), [2, X]) will call plus(1, 2, X) . apply/2 is incorporated in the
virtual machine of SWI-Prolog. This implies that the overhead can be compared to the overhead
of call/1 . New code should use call/[2..] if the length of List is fixed, which is more widely
supported and faster because there is no need to build and examine the argument list.

not(+Goal)
Succeeds when Goal cannot be proven. Retained for compatibility only. New code should use
\+/1 .

once(+Goal)
Defined as:

once(Goal) :-
Goal, !.

SWI-Prolog 3.2 Reference Manual

50 CHAPTER 3. BUILT-IN PREDICATES

once/1 can in many cases be replaced with - >/2 . The only difference is how the cut behaves
(see !/0). The following two clauses are identical:

1) a :- once((b, c)), d.
2) a :- b, c -> d.

ignore(+Goal)
Calls Goal as once/1 , but succeeds, regardless of whether Goal succeeded or not. Defined as:

ignore(Goal) :-
Goal, !.

ignore(_).

call with depth limit(+Goal, +Limit, -Result)
If Goal can be proven without recursion deeper than Limit levels,
call with depth limit/3 succeeds, binding Result to the deepest recursion level
used during the proof. Otherwise, Result is unified with depth limit exceeded if the
limit was exceeded during the proof, or the entire predicate fails if Goal fails without exceeding
Limit.

The depth-limit is guarded by the internal machinery. This differ from the depth computed
based on a theoretical model. For example, true/0 is translated into an inlined virtual machine
instruction. Also, repeat/0 is not implemented as below, but as a non-deterministic foreign
predicate.

repeat.
repeat :-

repeat.

As a result, call with depth limit/3 may still loop inifitly on programs that should
theoretically finish in finite time. This problem can be cured by using Prolog equivalents to
such built-in predicates.

This predicate may be used for theorem-provers to realise techniques like iterrative deepening.
It was implemented after discussion with Steve Moyle smoyle@ermine. ox .a c.u k .

3.8 ISO compliant Exception handling

SWI-Prolog defines the predicates catch/3 and throw/1 for ISO compliant raising and catching
of exceptions. In the current implementation (2.9.0), only part of the built-in predicates generate
exceptions. In general, exceptions are implemented for I/O and arithmetic.

catch(:Goal, +Catcher, :Recover)
Behaves as call/1 if no exception is raised when executing Goal. If a exception is raised
using throw/1 while Goal executes, and the Goal is the innermost goal for which Catcher
unifies with the argument of throw/1 , all choicepoints generated by Goal are cut, and Recover
is called as in call/1 .

The overhead of calling a goal through catch/3 is very comparable to call/1 . Recovery
from an exception has a similar overhead.

SWI-Prolog 3.2 Reference Manual

3.8. ISO COMPLIANT EXCEPTION HANDLING 51

throw(+Exception)
Raise an exception. The system will look for the innermost catch/3 ancestor for which
Exception unifies with the Catcher argument of the catch/3 call. See catch/3 for details.

If there is no catch/3 willing to catch the error in the current Prolog context, the toplevel
(prolog/0) catches the error and prints a warning message. If an exception was raised in a
callback from C (see chapter 5), PL next solution() will fail and the exception context
can be retrieved using PL exception() .

3.8.1 Debugging and exceptions

Before the introduction of exceptions in SWI-Prolog a runtime error was handled by printing an
error message, after which the predicate failed. If the feature (see feature/2) debug on error
was in effect (default), the tracer was switched on. The combination of the error message and trace
information is generally sufficient to locate the error.

With exception handling, things are different. A programmer may wish to trap an exception using
catch/3 to avoid it reaching the user. If the exception is not handled by user-code, the interactive
toplevel will trap it to prevent termination.

If we do not take special precautions, the context information associated with an unexpected
exception (i.e. a programming error) is lost. Therefore, if an exception is raised, which is not caught
using catch/3 and the toplevel is running, the error will be printed, and the system will enter trace
mode.

If the system is in an non-interactive callback from foreign code and there is no catch/3 active
in the current context, it cannot determine whether or not the exception will be caught by the external
routine calling Prolog. It will then base its behaviour on the feature debug on error:

feature(debug on error, false)
The exception does not trap the debugger and is returned to the foreign routine calling Prolog,
where it can be accessed using PL exception() . This is the default.

feature(debug on error, true)
If the exception is not caught by Prolog in the current context, it will trap the tracer to help
analysing the context of the error.

While looking for the context in which an exception takes place, it is adviced to switch on debug
mode using the predicate debug/0 .

3.8.2 The exception term

Builtin predicates generates exceptions using a term error (Formal, Context). The first argument
is the ‘formal’ description of the error, specifying the class and generic defined context information.
When applicable, the ISO error-term definition is used. The second part describes some additional
context to help the programmer while debugging. In its most generic form this is a term of the form
context (Name/Arity, Message), where Name/Arity describes the built-in predicate that raised the
error, and Message provides an additional description of the error. Any part of this structure may be a
variable if no information was present.

SWI-Prolog 3.2 Reference Manual

52 CHAPTER 3. BUILT-IN PREDICATES

3.8.3 Printing a message from an exception

The predicate print message/2 may be used to print an exception term in a human readable
format:

print message(+Kind, +Term)
This predicate is modelled after the Quintus predicate with the same name, though its current
implementation is incomplete. It is used only for printing messages from exceptions from built-
in predicates. Kind is one of informational , warning , consterror, help or silent .
Currently only error is defined. Term is an error(2) term described in section 3.8.2. A
human-readable message is printed to the stream user error .

This predicate first obtains the ‘human translation’ of Term and then calls message hook/3 .
If this fails the message is printed to the stream user error .

The print message/2 predicate and its rules are in the file
plhome /boot/messages.p l , which may be inspected for more information on the

error messages and related error terms.

message hook(+Term, +Kind, +Message)
Hook predicate that may be define in the module user to intercept messages from
print message/2 . Term and Kind are the same as passed to print message/2 . Mes-
sage is a string containing the human readable translation of the message. If this predicate
succeeds, print message/2 considers the message printed.

This predicate should be defined dynamic and multifile to allow other modules defining clauses
for it too.

3.9 Handling signals

As of version 3.1.0, SWI-Prolog is capable to handle software interrupts (signals) in Prolog as well as
in foreign (C) code (see section 5.6.11).

Signals are used to handle internal errors (execution of a non-existing CPU intruction, arithmetic
domain errors, illegal memory access, resource overflow, etc.), as well as for dealing asynchronous
inter-process communication.

Signals are defined by the Posix standard and part of all Unix machines. The MS-Windows Win32
provides a subset of the signal handling routines, lacking the vital funtionality to raise a signal in
another thread for achieving asynchronous inter-process (or inter-thread) communication (Unix kill()
function).

on signal(+Signal, -Old, :New)
Determines the reaction on Signal. Old is unified with the old behaviour, while the behaviour is
switched to New. As with similar environment-control predicates, the current value is retrieved
using on signal(Signal, Current, Current) .

The action description is an atom denoting the name of the predicate that will be called if
Signal arrives. on signal/3 is a meta predicate, which implies that Module : Name refers
the Name /1 in the module Module .

Two predicate-names have special meaning. throw implies Prolog will map the signal onto a
Prolog exception as described in section 3.8. default resets the handler to the settings active
before SWI-Prolog manipulated the handler.

SWI-Prolog 3.2 Reference Manual

3.9. HANDLING SIGNALS 53

After receiving a signal mapped to throw , the exception raised has the structure

error(signal(SigName , SigNum), Context)

One possible usage of this is, for example, to limit the time spent on proving a goal. This
requires a little C-code for setting the alarm timer (see chapter 5):

#include <SWI-Prolog.h>
#include <unistd.h>

foreign_t
pl_alarm(term_t time)
{ double t;

if (PL_get_float(ti me, &t))
{ alarm((long)(t+0 .5)) ;

PL_succeed;
}

PL_fail;
}

install_t
install()
{ PL_register_fore ig n("a la rm" , 1, pl_alarm, 0);
}

Next, we can define the following Prolog code:

:- load_foreign_li br ar y(al arm).

:- on_signal(alrm, throw).

:- module_transpar ent
call_with_time _l im it/ 2.

call_with_time_ lim it (Goal, MaxTime) :-
alarm(MaxTime) ,
catch(Goal, signal(alrm, _), fail), !,
alarm(0).

call_with_time_ lim it (_ , _) :-
alarm(0),
fail.

SWI-Prolog 3.2 Reference Manual

54 CHAPTER 3. BUILT-IN PREDICATES

The signal names are defined by the C-Posix standards as symbols of the form
SIG SIGNAME . The Prolog name for a signal is the lowercase version of SIGNAME . The
predicate current signal/3 may be used to map between names and signals.

Initially, some signals are mapped to throw , while all other signals are default . The fol-
lowing signals throw an exception: ill , fpe , segv , pipe , alrm , bus , xcpu , xfsz and
vtalrm .

current signal(?Name, ?Id, ?Handler)
Enumerate the currently defined signal handling. Name is the signal name, Id is the numerical
identifier and Handler is the currently defined handler (see on signal/3).

3.9.1 Notes on signal handling

Before deciding to deal with signals in your application, please consider the following:

Portibility
On MS-Windows, the signal interface is severely limited. Different Unix brands support differ-
ent sets of signals, and the relation between signal name and number may vary.

Safety
Signal handling is not completely safe in the current implementation, especially if throw is
used in combination with external foreign code. The system will use the C longjmp() construct
to direct control to the innermost PL next solution() , thus forcing an external procedure
to be abandoned at an arbitrary moment. Most likely not all SWI-Prologs own foreign code is
(yet) safe too.

Garbage Collection
The garbage collector will block all signals that are handled by Prolog. While handling a signal,
the garbage-collector is disabled.

Time of delivery
Normally delivery is immediate (or as defined by the operating system used). Signals are
blocked when the garbage collector is active, and internally delayed if they occur within in
a ‘critical section’. The critical sections are generally very short.

3.10 Advanced control-structures: blocks

The predicates of this section form a tightly related set for realising premature successful or failing
exits from a block. These predicates are first of all useful for error-recovery. They were primarily
implemented for compatibility reasons.

block(+Label, +Goal, -ExitValue)
Execute Goal in a block. Label is the name of the block. Label is normally an atom, but the
system imposes no type constraints and may even be a variable. ExitValue is normally unified
to the second argument of an exit/2 call invoked by Goal.

exit(+Label, +Value)
Calling exit/2 makes the innermost block which Label unifies exit. The block’s ExitValue is
unified with Value. If this unification fails the block fails.

SWI-Prolog 3.2 Reference Manual

3.11. GRAMMAR RULE INTERFACE (PHRASE) 55

fail(+Label)
Calling fail/1 makes the innermost block which Label unifies fail immediately. Implemented
as

fail(Label) :- !(Label), fail.

! (+Label)
Cut all choice-points created since the entry of the innermost block which Label unifies.

The example below illustrate these constructs to immediately report a syntax-error from a ‘deep-
down’ procedure to the outside world without passing it as an argument ‘all-over-the-place’.

parse(RuleSet, InputList, Rest) :-
block(syntaxerro r, phrase(RuleSet , Input-

List, Rest), Error),
(var(Error)
-> true
; format(’Syntax -e rr or : ˜w˜n’, Error),

fail
).

integer(N) -->
digit(D1), !, digits(Ds),
{ name(N, [D1|Ds]) }.

digits([D|R]) --> digit(D), digits(R).
digits(_) --> letter(_), !, { exit(syntaxerror , ’Illegal num-
ber’) }.
digits([]) --> [].

digit(D, [D|R], R) :- between(0’0, 0’9, D).
letter(D, [D|R], R) :- between(0’a, 0’z, D).

3.11 Grammar rule interface (phrase)

The predicates below may be called to activate a grammar-rule set:

phrase(+RuleSet, +InputList)
Equivalent to phrase(RuleSet, InputList, []) .

phrase(+RuleSet, +InputList, -Rest)
Activate the rule-set with given name. ‘InputList’ is the list of tokens to parse, ‘Rest’ is unified
with the remaining tokens if the sentence is parsed correctly.

SWI-Prolog 3.2 Reference Manual

56 CHAPTER 3. BUILT-IN PREDICATES

3.12 Database

SWI-Prolog offers three different database mechanisms. The first one is the common assert/retract
mechanism for manipulating the clause database. As facts and clauses asserted using assert/1 or
one of its derivatives become part of the program these predicates compile the term given to them.
retract/1 and retractall/1 have to unify a term and therefore have to decompile the pro-
gram. For these reasons the assert/retract mechanism is expensive. On the other hand, once compiled,
queries to the database are faster than querying the recorded database discussed below. See also
dynamic/1 .

The second way of storing arbitrary terms in the database is using the “recorded database”. In this
database terms are associated with a key. A key can be an atom, integer or term. In the last case only
the functor and arity determine the key. Each key has a chain of terms associated with it. New terms
can be added either at the head or at the tail of this chain. This mechanism is considerably faster than
the assert/retract mechanism as terms are not compiled, but just copied into the heap.

The third mechanism is a special purpose one. It associates an integer or atom with a key, which
is an atom, integer or term. Each key can only have one atom or integer associated with it. It again is
considerably faster than the mechanisms described above, but can only be used to store simple status
information like counters, etc.

abolish(:PredicateIndicator)
Removes all clauses of a predicate with functor Functor and arity Arity from the database.
Unlike version 1.2, all predicate attributes (dynamic, multifile, index, etc.) are reset to their
defaults. Abolishing an imported predicate only removes the import link; the predicate will
keep its old definition in its definition module. For ‘cleanup’ of the dynamic database, one
should use retractall/1 rather than abolish/2 .

abolish(+Name, +Arity)
Same as abolish(Name/Ar it y) . The predicate abolish/2 conforms to the Edinburgh
standard, while abolish/1 is ISO compliant.

redefine system predicate(+Head)
This directive may be used both in module user and in normal modules to redefine any system
predicate. If the system definition is redefined in module user , the new definition is the default
definition for all sub-modules. Otherwise the redefinition is local to the module. The system
definition remains in the module system .

Redefining system predicate facilitates the definition of compatibility packages. Use in other
context is discouraged.

retract(+Term)
When Term is an atom or a term it is unified with the first unifying fact or clause in the database.
The fact or clause is removed from the database.

retractall(+Head)
All facts or clauses in the database for which the head unifies with Head are removed.5

assert(+Term)
Assert a fact or clause in the database. Term is asserted as the last fact or clause of the corre-
sponding predicate.

5Note that the definition has changed since version 2.0.6. See release notes.

SWI-Prolog 3.2 Reference Manual

3.12. DATABASE 57

asserta(+Term)
Equivalent to assert/1 , but Term is asserted as first clause or fact of the predicate.

assertz(+Term)
Equivalent to assert/1 .

assert(+Term, -Reference)
Equivalent to assert/1 , but Reference is unified with a unique reference to the asserted
clause. This key can later be used with clause/3 or erase/1 .

asserta(+Term, -Reference)
Equivalent to assert/2 , but Term is asserted as first clause or fact of the predicate.

assertz(+Term, -Reference)
Equivalent to assert/2 .

recorda(+Key, +Term, -Reference)
Assert Term in the recorded database under key Key. Key is an integer, atom or term. Reference
is unified with a unique reference to the record (see erase/1).

recorda(+Key, +Term)
Equivalent to recorda(Key, Value,) .

recordz(+Key, +Term, -Reference)
Equivalent to recorda/3 , but puts the Term at the tail of the terms recorded under Key.

recordz(+Key, +Term)
Equivalent to recordz(Key, Value,) .

recorded(+Key, -Value, -Reference)
Unify Value with the first term recorded under Key which does unify. Reference is unified with
the memory location of the record.

recorded(+Key, -Value)
Equivalent to recorded(Key, Value,) .

erase(+Reference)
Erase a record or clause from the database. Reference is an integer returned by recorda/3 or
recorded/3 , clause/3 , assert/2 , asserta/2 or assertz/2 . Other integers might
conflict with the internal consistency of the system. Erase can only be called once on a record
or clause. A second call also might conflict with the internal consistency of the system.6

flag(+Key, -Old, +New)
Key is an atom, integer or term. Unify Old with the old value associated with Key. If the key
is used for the first time Old is unified with the integer 0. Then store the value of New, which
should be an integer, float, atom or arithmetic expression, under Key. flag/3 is a very fast
mechanism for storing simple facts in the database. Example:

6BUG: The system should have a special type for pointers, thus avoiding the Prolog user having to worry about consis-
tency matters. Currently some simple heuristics are used to determine whether a reference is valid.

SWI-Prolog 3.2 Reference Manual

58 CHAPTER 3. BUILT-IN PREDICATES

:- module_transpar ent succeeds_n_time s/2 .

succeeds_n_time s(G oal, Times) :-
flag(succeeds_ n_ti mes, Old, 0),
Goal,
flag(succeeds_ n_ti mes, N, N+1),
fail ; flag(succeeds_n_ ti mes, Times, Old).

3.12.1 Indexing databases

By default, SWI-Prolog, as most other implementations, indexes predicates on their first argument.
SWI-Prolog allows indexing on other and multiple arguments using the declaration index/1 .

For advanced database indexing, it defines hash term/2 :

hash term(+Term, -HashKey)
If Term is a ground term (see ground/1), HashKey is unified with a positive integer value
that may be used as a hash-key to the value. If Term is not ground, the predicate succeeds
immediately, leaving HashKey an unbound variable.

This predicate may be used to build hash-tables as well as to exploit argument-indexing to find
complex terms more quickly.

The hash-key does not rely on temporary information like addresses of atoms and may be as-
sumed constant over different invocations of SWI-Prolog.

3.13 Declaring Properties of Predicates

This section describes directives which manipulate attributes of predicate definitions. The functors
dynamic/1 , multifile/1 and discontiguous/ 1 are operators of priority 1150 (see op/3),
which implies the list of predicates they involve can just be a comma separated list:

:- dynamic
foo/0,
baz/2.

On SWI-Prolog all these directives are just predicates. This implies they can also be called by a pro-
gram. Do not rely on this feature if you want to maintain portability to other Prolog implementations.

dynamic +Functor/+Arity, . . .
Informs the interpreter that the definition of the predicate(s) may change during execution (us-
ing assert/1 and/or retract/1). Currently dynamic/1 only stops the interpreter from
complaining about undefined predicates (see unknown/2). Future releases might prohibit
assert/1 and retract/1 for not-dynamic declared procedures.

multifile +Functor/+Arity, . . .
Informs the system that the specified predicate(s) may be defined over more than one file. This
stops consult/1 from redefining a predicate when a new definition is found.

SWI-Prolog 3.2 Reference Manual

3.14. EXAMINING THE PROGRAM 59

discontiguous +Functor/+Arity, . . .
Informs the system that the clauses of the specified predicate(s) might not be together in the
source file. See also style check/1 .

index(+Head)
Index the clauses of the predicate with the same name and arity as Head on the specified argu-
ments. Head is a term of which all arguments are either ‘1’ (denoting ‘index this argument’)
or ‘0’ (denoting ‘do not index this argument’). Indexing has no implications for the semantics
of a predicate, only on its performance. If indexing is enabled on a predicate a special purpose
algorithm is used to select candidate clauses based on the actual arguments of the goal. This
algorithm checks whether indexed arguments might unify in the clause head. Only atoms, in-
tegers and functors (e.g. name and arity of a term) are considered. Indexing is very useful for
predicates with many clauses representing facts.

Due to the representation technique used at most 4 arguments can be indexed. All indexed
arguments should be in the first 32 arguments of the predicate. If more than 4 arguments are
specified for indexing only the first 4 will be accepted. Arguments above 32 are ignored for
indexing.

By default all predicates with arity are indexed on their first argument. It is possible to
redefine indexing on predicates that already have clauses attached to them. This will initiate
a scan through the predicates clause list to update the index summary information stored with
each clause.

If—for example—one wants to represents sub-types using a fact list ‘sub type(Sub, Super)’ that
should be used both to determine sub- and super types one should declare sub type/2 as follows:

:- index(sub_type(1, 1)).

sub_type(horse, animal).
...
...

3.14 Examining the Program

current atom(-Atom)
Successively unifies Atom with all atoms known to the system. Note that current atom/1
always succeeds if Atom is instantiated to an atom.

current functor(?Name, ?Arity)
Successively unifies Name with the name and Arity with the arity of functors known to the
system.

current flag(-FlagKey)
Successively unifies FlagKey with all keys used for flags (see flag/3).

current key(-Key)
Successively unifies Key with all keys used for records (see recorda/3 , etc.).

SWI-Prolog 3.2 Reference Manual

60 CHAPTER 3. BUILT-IN PREDICATES

current predicate(?Name, ?Head)
Successively unifies Name with the name of predicates currently defined and Head with the
most general term built from Name and the arity of the predicate. This predicate succeeds for
all predicates defined in the specified module, imported to it, or in one of the modules from
which the predicate will be imported if it is called.

predicate property(?Head, ?Property)
Succeeds if Head refers to a predicate that has property Property. Can be used to test whether a
predicate has a certain property, obtain all properties known for Head, find all predicates having
property or even obtaining all information available about the current program. Property is one
of:

interpreted
Is true if the predicate is defined in Prolog. We return true on this because, although the
code is actually compiled, it is completely transparent, just like interpreted code.

built in
Is true if the predicate is locked as a built-in predicate. This implies it cannot be redefined
in its definition module and it can normally not be seen in the tracer.

foreign
Is true if the predicate is defined in the C language.

dynamic
Is true if the predicate is declared dynamic using the dynamic/1 declaration.

multifile
Is true if the predicate is declared multifile using the multifile/1 declaration.

undefined
Is true if a procedure definition block for the predicate exists, but there are no clauses in it
and it is not declared dynamic. This is true if the predicate occurs in the body of a loaded
predicate, an attempt to call it has been made via one of the meta-call predicates or the
predicate had a definition in the past. See the library package check for example usage.

transparent
Is true if the predicate is declared transparent using the module transparent/1 dec-
laration.

exported
Is true if the predicate is in the public list of the context module.

imported from(Module)
Is true if the predicate is imported into the context module from module Module.

indexed(Head)
Predicate is indexed (see index/1) according to Head. Head is a term whose name
and arity are identical to the predicate. The arguments are unified with ‘1’ for indexed
arguments, ‘0’ otherwise.

file(FileName)
Unify FileName with the name of the sourcefile in which the predicate is defined. See also
source file/2 .

SWI-Prolog 3.2 Reference Manual

3.14. EXAMINING THE PROGRAM 61

line count(LineNumber)
Unify LineNumber with the line number of the first clause of the predicate. Fails if the
predicate is not associated with a file. See also source file/2 .

number of clauses(ClauseCount)
Unify ClauseCount to the number of clauses associated with the predicate. Fails for for-
eign predicates.

dwim predicate(+Term, -Dwim)
‘Do What I Mean’ (‘dwim’) support predicate. Term is a term, which name and arity are used as
a predicate specification. Dwim is instantiated with the most general term built from Name and
the arity of a defined predicate that matches the predicate specified by Term in the ‘Do What
I Mean’ sense. See dwim match/2 for ‘Do What I Mean’ string matching. Internal sys-
tem predicates are not generated, unless style check(+dollar) is active. Backtracking
provides all alternative matches.

clause(?Head, ?Body)
Succeeds when Head can be unified with a clause head and Body with the corresponding clause
body. Gives alternative clauses on backtracking. For facts Body is unified with the atom true.
Normally clause/2 is used to find clause definitions for a predicate, but it can also be used
to find clause heads for some body template.

clause(?Head, ?Body, ?Reference)
Equivalent to clause/2 , but unifies Reference with a unique reference to the clause (see also
assert/2 , erase/1). If Reference is instantiated to a reference the clause’s head and body
will be unified with Head and Body.

nth clause(?Pred, ?Index, ?Reference)
Provides access to the clauses of a predicate using their index number. Counting starts at 1.
If Reference is specified it unifies Pred with the most general term with the same name/arity
as the predicate and Index with the index-number of the clause. Otherwise the name and arity
of Pred are used to determine the predicate. If Index is provided Reference will be unified
with the clause reference. If Index is unbound, backtracking will yield both the indices and
the references of all clauses of the predicate. The following example finds the 2nd clause of
member/2 :

?- nth_clause(memb er (_ ,_), 2, Ref), clause(Head, Body, Ref).

Ref = 160088
Head = system : member(G575, [G578|G579])
Body = member(G575, G579)

clause property(+ClauseRef, -Property)
Queries properties of a clause. ClauseRef is a reference to a clause as produced by clause/3 ,
nth clause/3 or prolog frame attribute/3 . Property is one of the following:

file(FileName)
Unify FileName with the name of the sourcefile in which the clause is defined. Fails if the
clause is not associated to a file.

SWI-Prolog 3.2 Reference Manual

62 CHAPTER 3. BUILT-IN PREDICATES

line count(LineNumber)
Unify LineNumber with the line number of the clause. Fails if the clause is not associated
to a file.

fact
True if the clause has no body.

erased
True if the clause has been erased, but not yet reclaimed because it is referenced.

3.15 Input and Output

SWI-Prolog provides two different packages for input and output. One confirms to the Edinburgh
standard. This package has a notion of ‘current-input’ and ‘current-output’. The reading and writing
predicates implicitly refer to these streams. In the second package, streams are opened explicitly and
the resulting handle is used as an argument to the reading and writing predicate to specify the source
or destination. Both packages are fully integrated; the user may switch freely between them.

3.15.1 Input and Output Using Implicit Source and Destination

The package for implicit input and output destination is upwards compatible to DEC-10 and C-Prolog.
The reading and writing predicates refer to resp. the current input- and output stream. Initially
these streams are connected to the terminal. The current output stream is changed using tell/1
or append/1 . The current input stream is changed using see/1 . The streams current value can be
obtained using telling/1 for output- and seeing/1 for input streams. The table below shows the
valid stream specifications. The reserved names user input , user output and user error
are for neat integration with the explicit streams.

user This reserved name refers to the terminal
user input Input from the terminal
user output Output to the terminal
user error Unix error stream (output only)
Atom Name of a Unix file

pipe(Atom) Name of a Unix command

Source and destination are either a file, one of the reserved words above, or a term
‘pipe(Command)’. In the predicate descriptions below we will call the source/destination argument
‘SrcDest’. Below are some examples of source/destination specifications.

?- see(data). % Start reading from file ‘data’.
?- tell(stderr). % Start writing on the error stream.
?- tell(pipe(lpr)) . % Start writing to the printer.

Another example of using the pipe/1 construct is shown below. Note that the pipe/1 construct
is not part of Prolog’s standard I/O repertoire.

getwd(Wd) :-
seeing(Old), see(pipe(pwd)),
collect_wd(Strin g) ,

SWI-Prolog 3.2 Reference Manual

3.15. INPUT AND OUTPUT 63

seen, see(Old),
atom_chars(Wd, String).

collect_wd([C|R]) :-
get0(C), C \== -1, !,
collect_wd(R).

collect_wd([]).

see(+SrcDest)
Make SrcDest the current input stream. If SrcDest was already opened for reading with see/1
and has not been closed since, reading will be resumed. Otherwise SrcDest will be opened and
the file pointer is positioned at the start of the file.

tell(+SrcDest)
Make SrcDest the current output stream. If SrcDest was already opened for writing with
tell/1 or append/1 and has not been closed since, writing will be resumed. Otherwise
the file is created or—when existing—truncated. See also append/1 .

append(+File)
Similar to tell/1 , but positions the file pointer at the end of File rather than truncating an
existing file. The pipe construct is not accepted by this predicate.

seeing(?SrcDest)
Unify the name of the current input stream with SrcDest.

telling(?SrcDest)
Unify the name of the current output stream with SrcDest.

seen
Close the current input stream. The new input stream becomes user.

told
Close the current output stream. The new output stream becomes user.

3.15.2 Explicit Input and Output Streams

The predicates below are part of the Quintus compatible stream-based I/O package. In this package
streams are explicitly created using the predicate open/3 . The resulting stream identifier is then
passed as a parameter to the reading and writing predicates to specify the source or destination of the
data.

open(+SrcDest, +Mode, -Stream, +Options)
ISO compliant predicate to open a stream. SrcDes is either an atom, specifying a Unix file, or
a term ‘pipe(Command) ’, just like see/1 and tell/1 . Mode is one of read , write ,
append or update . Mode append opens the file for writing, positioning the file-pointer at
the end. Mode update opens the file for writing, positioning the file-pointer at the beginning
of the file without truncating the file. See also stream position/3 . Stream is either a
variable, in which case it is bound to an integer identifying the stream, or an atom, in which
case this atom will be the stream identifier. The Options list can contain the following options:

SWI-Prolog 3.2 Reference Manual

64 CHAPTER 3. BUILT-IN PREDICATES

type(Type)
Using type text (default), Prolog will write a text-file in an operating-system compatible
way. Using type binary the bytes will be read or written without any translation. Note
there is no difference between the two on Unix systems.

alias(Atom)
Gives the stream a name. The following two calls are identical, but only the latter is
allowed in ISO Prolog.

?- open(foo, read, in, []).
?- open(foo, read, S, [alias(in)]).

eof action(Action)
Defines what happens if the end of the input stream is reached. Action eof code makes
get0/1 and friends return -1 and read/1 and friends return the atom end of file .
Repetitive reading keeps yielding the same result. Action error is like eof code , but
repetitive reading will raise an error. With action reset , Prolog will examine the file
again and return more data if the file has grown.

buffer(Buffering)
Defines output buffering. The atom fullf (default) defines full buffering, line buffer-
ing by line, and false implies the stream is fully unbuffered. Smaller buffering is useful
if another process or the user is waiting for the output as it is being produced. See also
flush/0 and flush output/1 . This option is not an ISO option.

close on abort(Bool)
If true (default), the stream is closed on an abort (see abort/0). If false , the stream
is not closed. If it is an output stream, it will be flushed however. Useful for logfiles and
if the stream is associated to a process (using the pipe/1 construct).

The option reposition is not supported in SWI-Prolog. All streams connected to a file may
be repositioned.

open(+SrcDest, +Mode, ?Stream)
Equivalent to open/4 with an empty option-list.

open null stream(?Stream)
Open a stream that produces no output. All counting functions are enabled on such a stream.
An attempt to read from a null-stream will immediately signal end-of-file. Similar to Unix
/dev/null . Stream can be an atom, giving the null-stream an alias name.

close(+Stream)

Close the specified stream. If Stream is not open an error message is displayed. If the closed
stream is the current input or output stream the terminal is made the current input or output.

current stream(?File, ?Mode, ?Stream)
Is true if a stream with file specification File, mode Mode and stream identifier Stream is open.
The reserved streams user and user error are not generated by this predicate. If a stream
has been opened with mode append this predicate will generate mode write .

SWI-Prolog 3.2 Reference Manual

3.15. INPUT AND OUTPUT 65

stream position(+Stream, -Old, +New)
Unify the position parameters of Stream with Old and set them to New. A position is represented
by the following term:

’$stream_positi on’ (C harN o, LineNo, LinePos).

It is only possible to change the position parameters if the stream is connected to a disk file. If
the position is changed, the CharNo field determines the new position in the file. The LineNo
and LinePos are copied in the stream administration. See also seek/4 .

seek(+Stream, +Offset, +Method, -NewLocation)
Reposition the current point of the given Stream. Method is one of bof , current or eof, indicat-
ing positioning relative to the start, current point or end of the underlying object. NewLocation
is unified with the new offset, relative to the start of the stream.

If the seek modifies the current location, the line number and character position in the line are
set to 0.

If the stream cannot be repostioned, a reposition error is raised. The predicate seek/4 is
compatible to Quintus Prolog, though the error conditions and signalling is ISO compliant. See
also stream position/3 .

3.15.3 Switching Between Implicit and Explicit I/O

The predicates below can be used for switching between the implicit- and the explicit stream based
I/O predicates.

set input(+Stream)
Set the current input stream to become Stream. Thus, open(file, read, Stream), set input(Stream)
is equivalent to see(file).

set output(+Stream)
Set the current output stream to become Stream.

current input(-Stream)
Get the current input stream. Useful to get access to the status predicates associated with
streams.

current output(-Stream)
Get the current output stream.

dup stream(+From, +To)
Duplicate the underlying data from stream From to streamTo, so actions performed on either
stream have the same effect. The primary goal of this predicate is to facilitate redirection of the
user interaction to allow for ‘interactor’ windows. For example, the following code will redirect
output to user output and user error to an XPCE text window:

...,
pce_open(Windo w, append, Fd),
dup_stream(use r_ outpu t, Fd),
dup_stream(use r_ er ror , Fd),
...

SWI-Prolog 3.2 Reference Manual

66 CHAPTER 3. BUILT-IN PREDICATES

The old status of a stream can be stored by duplicating to a null-stream as obtained using
open null stream/1 .

This predicate is SWI-Prolog specific.

3.16 Status of Input and Output Streams

wait for input(+ListOfStreams, -ReadyList, +TimeOut)
Wait for input on one of the streams in ListOfStreams and return a list of streams on which input
is available in ReadyList. wait for input/3 waits for at most TimeOut seconds. Timeout
may be specified as a floating point number to specify fractions of a second. If Timeout equals
0, wait for input/3 waits indefinitely. This predicate can be used to implement timeout
while reading and to handle input from multiple sources. The following example will wait for
input from the user and an explicitly opened second terminal. On return, Inputs may hold user
or P4 or both.

?- open(’/dev/ttyp 4’ , read, P4),
wait_for_input([u se r, P4], Inputs, 0).

character count(+Stream, -Count)
Unify Count with the current character index. For input streams this is the number of characters
read since the open, for output streams this is the number of characters written. Counting starts
at 0.

line count(+Stream, -Count)
Unify Count with the number of lines read or written. Counting starts at 1.

line position(+Stream, -Count)
Unify Count with the position on the current line. Note that this assumes the position is 0 after
the open. Tabs are assumed to be defined on each 8-th character and backspaces are assumed to
reduce the count by one, provided it is positive.

fileerrors(-Old, +New)
Define error behaviour on errors when opening a file for reading or writing. Valid values are the
atoms on (default) and off . First Old is unified with the current value. Then the new value is
set to New.7

3.17 Primitive Character Input and Output

nl
Write a newline character to the current output stream. On Unix systems nl/0 is equivalent to
put(10) .

nl(+Stream)
Write a newline to Stream.

7Note that Edinburgh Prolog defines fileerrors/0 and nofileerrors/0 . As this does not allow you to switch
back to the old mode I think this definition is better.

SWI-Prolog 3.2 Reference Manual

3.17. PRIMITIVE CHARACTER INPUT AND OUTPUT 67

put(+Char)
Write Char to the current output stream, Char is either an integer-expression evaluating to an
ASCII value (Char) or an atom of one character.

put(+Stream, +Char)
Write Char to Stream.

tab(+Amount)
Writes Amount spaces on the current output stream. Amount should be an expression that eval-
uates to a positive integer (see section 3.23).

tab(+Stream, +Amount)
Writes Amount spaces to Stream.

flush
Flush pending output on current output stream. flush/0 is automatically generated by
read/1 and derivatives if the current input stream is user and the cursor is not at the left
margin.

flush output(+Stream)
Flush output on the specified stream. The stream must be open for writing.

ttyflush
Flush pending output on stream user. See also flush/0 .

get0(-Char)
Read the current input stream and unify the next character with Char. Char is unified with -1
on end of file.

get0(+Stream, -Char)
Read the next character from Stream.

get(-Char)
Read the current input stream and unify the next non-blank character with Char. Char is unified
with -1 on end of file.

get(+Stream, -Char)
Read the next non-blank character from Stream.

peek byte(-Char)
Reads the next input character like get0/1 , but does not remove it from the input stream. This
predicate is ISO compliant.

peek byte(+Stream, -Char)
Reads the next input character like get0/2 , but does not remove it from the stream. This
predicate is ISO compliant.

skip(+Char)
Read the input until Char or the end of the file is encountered. A subsequent call to get0/1
will read the first character after Char.

SWI-Prolog 3.2 Reference Manual

68 CHAPTER 3. BUILT-IN PREDICATES

skip(+Stream, +Char)
Skip input (as skip/1) on Stream.

get single char(-Char)
Get a single character from input stream ‘user’ (regardless of the current input stream). Unlike
get0/1 this predicate does not wait for a return. The character is not echoed to the user’s
terminal. This predicate is meant for keyboard menu selection etc.. If SWI-Prolog was started
with the -tty option this predicate reads an entire line of input and returns the first non-blank
character on this line, or the ASCII code of the newline (10) if the entire line consisted of blank
characters.

at end of stream
Succeeds after the last character of the current input stream has been read. Also succeeds if
there is no valid current input stream.

at end of stream(+Stream)
Succeeds after the last character of the named stream is read, or Stream is not a valid input
stream.

3.18 Term Reading and Writing

This section describes the basic term reading and writing predicates. The predicates
term to atom/2 and atom to term/3 provide means for translating atoms and strings to terms.
The predicates format/[1,2] and writef/2 provide formatted output.

There are two ways to manipulate the output format. The predicate print/[1,2] may be
programmed using portray/1 . The format of floating point numbers may be manipulated using
the feature (see feature/2) float format .

Reading is sensitive to the feature character escapes , which controls the interpretation of
the \ character in quoted atoms and strings.

write term(+Term, +Options)
The predicate write term/2 is the generic form of all Prolog term-write predicates. Valid
options are:

quoted(true or false)
If true , atoms and functors that needs quotes will be quoted. The default is false .

ignore ops(true or false)
If true , the generic term-representation (functor (args . . .)) will be used for all terms,
Otherwise (default), operators, list-notation and {} /1 will be written using their special
syntax.

numbervars(true or false)
If true , terms of the format $VAR(N) , where N is a positive integer, will be written as
a variable name. The default is false .

portray(true or false)
If true , the hook portray/1 is called before printing a term that is not a variable. If
portray/1 succeeds, the term is considered printed. See also print/1 . The default
is false . This option is an extension to the ISO write term options.

SWI-Prolog 3.2 Reference Manual

3.18. TERM READING AND WRITING 69

write term(+Stream, +Term, +Options)
As write term/2 , but output is sent to Stream rather than the current output.

write canonical(+Term)
Write Term on the current output stream using standard parenthesised prefix notation (i.e. ig-
noring operator declarations). Atoms that need quotes are quoted. Terms written with this
predicate can always be read back, regardless of current operator declarations. Equivalent to
write term/2 using the options ignore ops and quoted .

write canonical(+Stream, +Term)
Write Term in canonical form on Stream.

write(+Term)
Write Term to the current output, using brackets and operators where appropriate. See
feature/2 for controlling floating point output format.

write(+Stream, +Term)
Write Term to Stream.

writeq(+Term)
Write Term to the current output, using brackets and operators where appropriate. Atoms that
need quotes are quoted. Terms written with this predicate can be read back with read/1
provided the currently active operator declarations are identical.

writeq(+Stream, +Term)
Write Term to Stream, inserting quotes.

print(+Term)
Prints Term on the current output stream similar to write/1 , but for each (sub)term of Term
first the dynamic predicate portray/1 is called. If this predicate succeeds print assumes the
(sub)term has been written. This allows for user defined term writing.

print(+Stream, +Term)
Print Term to Stream.

portray(+Term)
A dynamic predicate, which can be defined by the user to change the behaviour of print/1
on (sub)terms. For each subterm encountered that is not a variable print/1 first calls
portray/1 using the term as argument. For lists only the list as a whole is given to
portray/1 . If portray succeeds print/1 assumes the term has been written.

read(-Term)
Read the next Prolog term from the current input stream and unify it with Term. On a syntax
error read/1 displays an error message, attempts to skip the erroneous term and fails. On
reaching end-of-file Term is unified with the atom end of file .

read(+Stream, -Term)
Read Term from Stream.

SWI-Prolog 3.2 Reference Manual

70 CHAPTER 3. BUILT-IN PREDICATES

read clause(-Term)
Equivalent to read/1 , but warns the user for variables only occurring once in a term (sin-
gleton variables) which do not start with an underscore if style check(singleton) is
active (default). Used to read Prolog source files (see consult/1). New code should use
read term/2 with the option singletons(warni ng) .

read clause(+Stream, -Term)
Read a clause from Stream. See read clause/1 .

read variables(-Term, -Bindings)
Similar to read/1 , but Bindings is unified with a list of ‘Name Var’ tuples, thus providing
access to the actual variable names. New code should use read term/2 using the option
variables(X) .

read variables(+Stream, -Term, -Bindings)
Read, returning term and bindings from Stream. See read variables/2 .

read term(-Term, +Options)
Read a term from the current input stream and unify the term with Term. The reading is con-
trolled by options from the list of Options. If this list is empty, the behaviour is the same as
for read/1 . The options are upward compatible to Quintus Prolog. The argument order is
according to the ISO standard. Options:

syntax errors(atom or variable)
Define the behaviour for when a syntax error occurs. The possible values are:

fail
Default behaviour. The error is reported as a warning and the predicate fails.

quiet
Quietly fails if a syntax error has occurred.

Variable
If no error occurs, the variable is unified with none , otherwise Variable is unified
with a term of the form

’$stream_positi on’ (C harN o, LineNo, LinePos):Message

This behaviour is a SWI-Prolog extension.

variable names(Vars)
Unify Vars with a list of ‘Name = Var’, where Name is an atom describing the variable
name and Var is a variable that shares with the corresponding variable in Term.

singletons(Vars)
As variable names, but only reports the variables occurring only once in the Term
read. Variables starting with an underscore (‘ ’) are not included in this list.

term position(Pos)
Unifies Pos with the starting position of the term read. Pos if of the same format as use by
stream position/3 .

subterm positions(TermPos)
Describes the detailed layout of the term. The formats for the various types of terms if
given below. All positions are character positions. If the input is related to a normal

SWI-Prolog 3.2 Reference Manual

3.19. ANALYSING AND CONSTRUCTING TERMS 71

stream, these positions are relative to the start of the input, when reading from the terminal,
they are relative to the start of the term.

From-To
Used for primitive types (atoms, numbers, variables).

string position(From, To)
Used to indicate the position of a string enclosed in double quotes (").

brace term position(From, To, Arg)
Term of the form ... , as used in DCG rules. Arg describes the argument.

list position(From, To, Elms, Tail)
A list. Elms describes the positions of the elements. If the list specifies the tail
as | TailTerm , Tail is unified with the term-position of the tail, otherwise with the
atom none .

term position(From, To, FFrom, FTo, SubPos)
Used for a compound term not matching one of the above. FFrom and FTo describe
the position of the functor. SubPos is a list, each element of which describes the
term-position of the corresponding subterm.

read term(+Stream, -Term, +Options)
Read term with options from Stream. See read term/2 .

read history(+Show, +Help, +Special, +Prompt, -Term, -Bindings)
Similar to read variables/2 , but allows for history substitutions. read history/6 is
used by the top level to read the user’s actions. Show is the command the user should type to
show the saved events. Help is the command to get an overview of the capabilities. Special is a
list of commands that are not saved in the history. Prompt is the first prompt given. Continuation
prompts for more lines are determined by prompt/2 . A %win the prompt is substituted by the
event number. See section 2.7 for available substitutions.

SWI-Prolog calls read history/6 as follows:

read_history(h, ’!h’, [trace], ’%w ?- ’, Goal, Bindings)

prompt(-Old, +New)
Set prompt associated with read/1 and its derivatives. Old is first unified with the current
prompt. On success the prompt will be set to New if this is an atom. Otherwise an error
message is displayed. A prompt is printed if one of the read predicates is called and the cursor
is at the left margin. It is also printed whenever a newline is given and the term has not been
terminated. Prompts are only printed when the current input stream is user.

prompt1(+Prompt)
Sets the prompt for the next line to be read. Continuation lines will be read using the prompt
defined by prompt/2 .

3.19 Analysing and Constructing Terms

functor(?Term, ?Functor, ?Arity)
Succeeds if Term is a term with functor Functor and arity Arity. If Term is a variable it is unified

SWI-Prolog 3.2 Reference Manual

72 CHAPTER 3. BUILT-IN PREDICATES

with a new term holding only variables. functor/3 silently fails on instantiation faults8 If
Term is an atom or number, Functor will be unified with Term and arity will be unified with the
integer 0 (zero).

arg(?Arg, ?Term, ?Value)
Term should be instantiated to a term, Arg to an integer between 1 and the arity of Term.
Value is unified with the Arg-th argument of Term. Arg may also be unbound. In this
case Value will be unified with the successive arguments of the term. On successful unifi-
cation, Arg is unified with the argument number. Backtracking yields alternative solutions.9

The predicate arg/3 fails silently if Arg or Arg arity and raises the exception
domain error(not less then zero, Arg) if Arg .

setarg(+Arg, +Term, +Value)
Extra-logical predicate. Assigns the Arg-th argument of the compound term Term with the given
Value. The assignment is undone if backtracking brings the state back into a position before the
setarg/3 call.

This predicate may be used for destructive assignment to terms, using them as and extra-logical
storage bin.

?Term =.. ?List
List is a list which head is the functor of Term and the remaining arguments are the arguments
of the term. Each of the arguments may be a variable, but not both. This predicate is called
‘Univ’. Examples:

?- foo(hello, X) =.. List.

List = [foo, hello, X]

?- Term =.. [baz, foo(1)]

Term = baz(foo(1))

numbervars(+Term, +Functor, +Start, -End)
Unify the free variables of Term with a term constructed from the atom Functor with one argu-
ment. The argument is the number of the variable. Counting starts at Start. End is unified with
the number that should be given to the next variable. Example:

?- numbervars(foo(A, B, A), this_is_a_vari able , 0, End).

A = this_is_a_variab le (0)
B = this_is_a_variab le (1)
End = 2

In Edinburgh Prolog the second argument is missing. It is fixed to be $VAR.

8In version 1.2 instantiation faults led to error messages. The new version can be used to do type testing without the
need to catch illegal instantiations first.

9The instantiation pattern (-, +, ?) is an extension to ‘standard’ Prolog.

SWI-Prolog 3.2 Reference Manual

3.20. ANALYSING AND CONSTRUCTING ATOMS 73

free variables(+Term, -List)
Unify List with a list of variables, each sharing with a unique variable of Term. For example:

?- free_variables(a(X, b(Y, X), Z), L).

L = [G367, G366, G371]
X = G367
Y = G366
Z = G371

copy term(+In, -Out)
Make a copy of term In and unify the result with Out. Ground parts of In are shared by Out.
Provided In and Out have no sharing variables before this call they will have no sharing variables
afterwards. copy term/2 is semantically equivalent to:

copy_term(In, Out) :-
recorda(copy_k ey , In, Ref),
recorded(copy_ ke y, Out, Ref),
erase(Ref).

3.20 Analysing and Constructing Atoms

These predicates convert between Prolog constants and lists of ASCII values. The predicates
atom chars/2 , number chars/2 and name/2 behave the same when converting from a con-
stant to a list of ASCII values. When converting the other way around, atom chars/2 will generate
an atom, number chars will generate a number or fail and name/2 will return a number if possible
and an atom otherwise.

atom chars(?Atom, ?String)
Convert between an atom and a list of ASCII values. If Atom is instantiated, if will be translated
into a list of ASCII values and the result is unified with String. If Atom is unbound and String
is a list of ASCII values, it will Atom will be unified with an atom constructed from this list.

atom char(?Atom, ?ASCII)
Convert between character and ASCII value for a single character.

number chars(?Number, ?String)
Similar to atom chars/2 , but converts between a number and its representation as a list of
ASCII values. Fails silently if Number is unbound and String does not describe a number.

name(?AtomOrInt, ?String)
String is a list of ASCII values describing Atom. Each of the arguments may be a vari-
able, but not both. When String is bound to an ASCII value list describing an integer and
Atom is a variable Atom will be unified with the integer value described by String (e.g.
‘name(N, "300"), 400 is N + 100 ’ succeeds).

SWI-Prolog 3.2 Reference Manual

74 CHAPTER 3. BUILT-IN PREDICATES

int to atom(+Int, +Base, -Atom)
Convert Int to an ASCII representation using base Base and unify the result with Atom. If
Base the base will be prepended to Atom. Base will try to interpret Int as an ASCII
value and return 0’ c . Otherwise Base . Some examples are given below.

int to atom(45, 2, A)
int to atom(97, 0, A)
int to atom(56, 10, A)

int to atom(+Int, -Atom)
Equivalent to int to atom(Int, 10, Atom) .

term to atom(?Term, ?Atom)
Succeeds if Atom describes a term that unifies with Term. When Atom is instantiated Atom is
converted and then unified with Term. Otherwise Term is “written” on Atom using write/1 .

atom to term(+Atom, -Term, -Bindings)
Use Atom as input to read variables/2 and return the read term in Term and the variable
bindings in Bindings. Bindings is a list of Name Var couples, thus providing access to the
actual variable names. See also read variables/2 .

concat(?Atom1, ?Atom2, ?Atom3)
Atom3 forms the concatenation of Atom1 and Atom2. At least two of the arguments must be
instantiated to atoms, integers or floating point numbers.

concat atom(+List, -Atom)
List is a list of atoms, integers or floating point numbers. Succeeds if Atom can be unified with
the concatenated elements of List. If List has exactly 2 elements it is equivalent to concat/3 ,
allowing for variables in the list.

concat atom(+List, +Separator, -Atom)
Creates an atom just like concat atom/2 , but inserts Separator between each pair of atoms.
For example:

?- concat_atom([gn u, gnat], ’, ’, A).

A = ’gnu, gnat’

atom length(+Atom, -Length)
Succeeds if Atom is an atom of Length characters long. This predicate also works for integers
and floats, expressing the number of characters output when given to write/1 .

atom prefix(+Atom, +Prefix)
Succeeds if Atom starts with the characters from Prefix. Its behaviour is equivalent to
?- concat(Prefix, , Atom) , but avoids the construction of an atom for the ‘remain-
der’.

SWI-Prolog 3.2 Reference Manual

3.21. REPRESENTING TEXT IN STRINGS 75

3.21 Representing Text in Strings

SWI-Prolog supports the data type string. Strings are a time and space efficient mechanism to handle
text in Prolog. Atoms are under some circumstances not suitable because garbage collection on them
is next to impossible (Although it is possible: BIM prolog does it). Representing text as a list of
ASCII values is, from the logical point of view, the cleanest solution. It however has two drawbacks:
1) they cannot be distinguished from a list of (small) integers; and 2) they consume (in SWI-Prolog)
12 bytes for each character stored.

Within strings each character only requires 1 byte storage. Strings live on the global stack and
their storage is thus reclaimed on backtracking. Garbage collection can easily deal with strings.

The ISO standard proposes " ..." is transformed into a string object by read/1 and deriva-
tives. This poses problems as in the old convention " ..." is transformed into a list of ASCII

characters. For this reason the style check option ‘string ’ is available (see style check/1).
The set of predicates associated with strings is incomplete and tentative. Names and definitions

might change in the future to confirm to the emerging standard.

string to atom(?String, ?Atom)
Logical conversion between a string and an atom. At least one of the two arguments must be
instantiated. Atom can also be an integer or floating point number.

string to list(?String, ?List)
Logical conversion between a string and a list of ASCII characters. At least one of the two
arguments must be instantiated.

string length(+String, -Length)
Unify Length with the number of characters in String. This predicate is functionally equivalent
to atom length/2 and also accepts atoms, integers and floats as its first argument.

string concat(?String1, ?String2, ?String3)
Similar to concat/3 , but the unbound argument will be unified with a string object rather
than an atom. Also, if both String1 and String2 are unbound and String3 is bound to text, it
breaks String3, unifying the start with String1 and the end with String2 as append does with
lists. Note that this is not particularly fast on long strings as for each redo the system has to
create two entirely new strings, while the list equivalent only creates a single new list-cell and
moves some pointers around.

substring(+String, +Start, +Length, -Sub)
Create a substring of String that starts at character Start (1 base) and has Length characters.
Unify this substring with Sub.10

3.22 Operators

op(+Precedence, +Type, +Name)
Declare Name to be an operator of type Type with precedence Precedence. Name can also be
a list of names, in which case all elements of the list are declared to be identical operators.
Precedence is an integer between 0 and 1200. Precedence 0 removes the declaration. Type is

10Future versions probably will provide a more logical variant of this predicate.

SWI-Prolog 3.2 Reference Manual

76 CHAPTER 3. BUILT-IN PREDICATES

1200 - - >, :-
1200 :- , ?-
1150 dynamic , multifile , module transparent , discon-

tiguous , volatile , initialization
1100 ; , |
1050 - >
1000 ,

954 \
900 \+ , not
900 ˜
700 <, =, =.. , =@=, =:= , =< , ==, =\= , >, >=, @<, @=<, @>, @>=,

\= , \== , is
600 :
500 +, - , /\ , \/ , xor
500 +, - , ?, \
400 * , / , // , <<, >>, mod, rem
200 **
200 ˆ

Table 3.1: System operators

one of: xf , yf , xfx , xfy , yfx , yfy , fy or fx . The ‘f ’ indicates the position of the functor,
while x and y indicate the position of the arguments. ‘y ’ should be interpreted as “on this
position a term with precedence lower or equal to the precedence of the functor should occur”.
For ‘x ’ the precedence of the argument must be strictly lower. The precedence of a term is 0,
unless its principal functor is an operator, in which case the precedence is the precedence of this
operator. A term enclosed in brackets (...) has precedence 0.

The predefined operators are shown in table 3.1. Note that all operators can be redefined by the
user.

current op(?Precedence, ?Type, ?Name)
Succeeds when Name is currently defined as an operator of type Type with precedence Prece-
dence. See also op/3 .

3.23 Arithmetic

Arithmetic can be divided into some special purpose integer predicates and a series of general pred-
icates for floating point and integer arithmetic as appropriate. The integer predicates are as “logical”
as possible. Their usage is recommended whenever applicable, resulting in faster and more “logical”
programs.

The general arithmetic predicates are optionally compiled now (see set feature/2 and the
-O command line option). Compiled arithmetic reduces global stack requirements and improves
performance. Unfortunately compiled arithmetic cannot be traced, which is why it is optional.

The general arithmetic predicates all handle expressions. An expression is either a simple number
or a function. The arguments of a function are expressions. The functions are described in section 3.24.

SWI-Prolog 3.2 Reference Manual

3.24. ARITHMETIC FUNCTIONS 77

between(+Low, +High, ?Value)
Low and High are integers, High Low. If Value is an integer, Low Value High. When
Value is a variable it is successively bound to all integers between Low and High.

succ(?Int1, ?Int2)
Succeeds if Int2 Int1 . At least one of the arguments must be instantiated to an integer.

plus(?Int1, ?Int2, ?Int3)
Succeeds if Int3 Int1 Int2. At least two of the three arguments must be instantiated to
integers.

+Expr1 > +Expr2
Succeeds when expression Expr1 evaluates to a larger number than Expr2.

+Expr1 < +Expr2
Succeeds when expression Expr1 evaluates to a smaller number than Expr2.

+Expr1 =< +Expr2
Succeeds when expression Expr1 evaluates to a smaller or equal number to Expr2.

+Expr1 >= +Expr2
Succeeds when expression Expr1 evaluates to a larger or equal number to Expr2.

+Expr1 =\= +Expr2
Succeeds when expression Expr1 evaluates to a number non-equal to Expr2.

+Expr1 =:= +Expr2
Succeeds when expression Expr1 evaluates to a number equal to Expr2.

-Number is +Expr
Succeeds when Number has successfully been unified with the number Expr evaluates to. If
Expr evaluates to a float that can be represented using an integer (i.e. the value is integer and
within the range that can be described by Prolog’s integer representation), Expr is unified with
the integer value.

Note that normally, is/2 will be used with unbound left operand. If equality is to be tested,
=:=/2 should be used. For example:

?- 1.0 is sin(pi/2). Fails!. sin(pi/2) evaluates to 1.0, but
is/2 will represent this as the integer 1,
after which unify will fail.

?- 1.0 is float(sin(pi/2)) . Succeeds, as the float/1 function
forces the result to be float.

?- 1.0 =:= sin(pi/2). Succeeds as expected.

3.24 Arithmetic Functions

Arithmetic functions are terms which are evaluated by the arithmetic predicates described above.
SWI-Prolog tries to hide the difference between integer arithmetic and floating point arithmetic from
the Prolog user. Arithmetic is done as integer arithmetic as long as possible and converted to floating

SWI-Prolog 3.2 Reference Manual

78 CHAPTER 3. BUILT-IN PREDICATES

point arithmetic whenever one of the arguments or the combination of them requires it. If a function
returns a floating point value which is whole it is automatically transformed into an integer. There are
three types of arguments to functions:

Expr Arbitrary expression, returning either a floating point value or an
integer.

IntExpr Arbitrary expression that should evaluate into an integer.
Int An integer.

In case integer addition, subtraction and multiplication would lead to an integer overflow the
operands are automatically converted to floating point numbers. The floating point functions (sin/1 ,
exp/1 , etc.) form a direct interface to the corresponding C library functions used to compile SWI-
Prolog. Please refer to the C library documentation for details on precision, error handling, etc.

- +Expr
Result Expr

+Expr1 + +Expr2
Result Expr1 Expr2

+Expr1 - +Expr2
Result Expr1 Expr2

+Expr1 * +Expr2
Result Expr1 Expr2

+Expr1 / +Expr2

Result Expr1
Expr2

+IntExpr1 mod +IntExpr2
Modulo: Result = IntExpr1 - (IntExpr1 // IntExpr2) IntExpr2 The function mod/2 is imple-
mented using the C %operator. It’s behaviour with negtive values is illustrated in the table
below.

2 = 17 mod 5
2 = 17 mod -5

-2 = -17 mod 5
-2 = -17 mod 5

+IntExpr1 rem +IntExpr2
Remainder of division: Result = float fractional part(IntExpr1/IntExpr2)

+IntExpr1 // +IntExpr2
Integer division: Result = truncate(Expr1/Expr2)

abs(+Expr)
Evaluate Expr and return the absolute value of it.

sign(+Expr)
Evaluate to -1 if Expr , 1 if Expr and 0 if Expr .

SWI-Prolog 3.2 Reference Manual

3.24. ARITHMETIC FUNCTIONS 79

max(+Expr1, +Expr2)
Evaluates to the largest of both Expr1 and Expr2.

min(+Expr1, +Expr2)
Evaluates to the smallest of both Expr1 and Expr2.

. (+Int, [])
A list of one element evaluates to the element. This implies "a" evaluates to the ASCII
value of the letter ‘a’ (97). This option is available for compatibility only. It will not work
if ‘style check(+string) ’ is active as "a" will then be transformed into a string object.
The recommended way to specify the ASCII value of the letter ‘a’ is 0’a .

random(+Int)
Evaluates to a random integer i for which Int. The seed of this random generator is
determined by the system clock when SWI-Prolog was started.

round(+Expr)
Evaluates Expr and rounds the result to the nearest integer.

integer(+Expr)
Same as round/1 (backward compatibility).

float(+Expr)
Translate the result to a floating point number. Normally, Prolog will use integers whenever
possible. When used around the 2nd argument of is/2 , the result will be returned as a floating
point number. In other contexts, the operation has no effect.

float fractional part(+Expr)
Fractional part of a floating-point number. Negative if Expr is negative, 0 if Expr is integer.

float integer part(+Expr)
Integer part of floating-point number. Negative if Expr is negative, Expr if Expr is integer.

truncate(+Expr)
Truncate Expr to an integer. Same as float integer part/1 .

floor(+Expr)
Evaluates Expr and returns the largest integer smaller or equal to the result of the evaluation.

ceiling(+Expr)
Evaluates Expr and returns the smallest integer larger or equal to the result of the evaluation.

ceil(+Expr)
Same as ceiling/1 (backward compatibility).

+IntExpr >> +IntExpr
Bitwise shift IntExpr1 by IntExpr2 bits to the right.

+IntExpr << +IntExpr
Bitwise shift IntExpr1 by IntExpr2 bits to the left.

+IntExpr \/ +IntExpr
Bitwise ‘or’ IntExpr1 and IntExpr2.

SWI-Prolog 3.2 Reference Manual

80 CHAPTER 3. BUILT-IN PREDICATES

+IntExpr /\ +IntExpr
Bitwise ‘and’ IntExpr1 and IntExpr2.

+IntExpr xor +IntExpr
Bitwise ‘exclusive or’ IntExpr1 and IntExpr2.

\ +IntExpr
Bitwise negation.

sqrt(+Expr)
Result Expr

sin(+Expr)
Result Expr. Expr is the angle in radians.

cos(+Expr)
Result Expr. Expr is the angle in radians.

tan(+Expr)
Result Expr. Expr is the angle in radians.

asin(+Expr)
Result Expr. Result is the angle in radians.

acos(+Expr)
Result Expr. Result is the angle in radians.

atan(+Expr)
Result Expr. Result is the angle in radians.

atan(+YExpr, +XExpr)

Result YExpr
XExpr . Result is the angle in radians. The return value is in the range

. Used to convert between rectangular and polar coordinate system.

log(+Expr)
Result Expr

log10(+Expr)
Result Expr

exp(+Expr)
Result Expr

+Expr1 ** +Expr2
Result Expr1Expr2

+Expr1 ˆ +Expr2
Same as **/2. (backward compatibility).

pi
Evaluates to the mathematical constant (3.141593).

SWI-Prolog 3.2 Reference Manual

3.25. ADDING ARITHMETIC FUNCTIONS 81

e
Evaluates to the mathematical constant (2.718282).

cputime
Evaluates to a floating point number expressing the CPU time (in seconds) used by Prolog up
till now. See also statistics/2 and time/1 .

3.25 Adding Arithmetic Functions

Prolog predicates can be given the role of arithmetic function. The last argument is used to return
the result, the arguments before the last are the inputs. Arithmetic functions are added using the
predicate arithmetic function/1 , which takes the head as its argument. Arithmetic functions
are module sensitive, that is they are only visible from the module in which the function is defined and
declared. Global arithmetic functions should be defined and registered from module user . Global
definitions can be overruled locally in modules. The builtin functions described above can be redefined
as well.

arithmetic function(+Head)
Register a Prolog predicate as an arithmetic function (see is/2 , >/2 , etc.). The Prolog predi-
cate should have one more argument than specified by Head, which it either a term Name/Arity,
an atom or a complex term. This last argument is an unbound variable at call time and should
be instantiated to an integer or floating point number. The other arguments are the parameters.
This predicate is module sensitive and will declare the arithmetic function only for the context
module, unless declared from module user . Example:

1 ?- [user].
:- arithmetic_func ti on(mean/2).

mean(A, B, C) :-
C is (A+B)/2.

user compiled, 0.07 sec, 440 bytes.

Yes
2 ?- A is mean(4, 5).

A = 4.500000

current arithmetic function(?Head)
Successively unifies all arithmetic functions that are visible from the context module with Head.

3.26 List Manipulation

is list(+Term)
Succeeds if Term is bound to the empty list ([]) or a term with functor ‘. ’ and arity 2.

SWI-Prolog 3.2 Reference Manual

82 CHAPTER 3. BUILT-IN PREDICATES

proper list(+Term)
Equivalent to is list/1 , but also requires the tail of the list to be a list (recursively). Exam-
ples:

is_list([x|A]) % true
proper_list([x| A]) % false

append(?List1, ?List2, ?List3)
Succeeds when List3 unifies with the concatenation of List1 and List2. The predicate can be
used with any instantiation pattern (even three variables).

member(?Elem, ?List)
Succeeds when Elem can be unified with one of the members of List. The predicate can be used
with any instantiation pattern.

memberchk(?Elem, +List)
Equivalent to member/2 , but leaves no choice point.

delete(+List1, ?Elem, ?List2)
Delete all members of List1 that simultaneously unify with Elem and unify the result with List2.

select(?List1, ?Elem, ?List2)
Select an element of List1 that unifies with Elem. List2 is unified with the list remaining from
List1 after deleting the selected element. Normally used with the instantiation pattern +List1,
-Elem, -List2, but can also be used to insert an element in a list using -List1, +Elem, +List2.

nth0(?Index, ?List, ?Elem)
Succeeds when the Index-th element of List unifies with Elem. Counting starts at 0.

nth1(?Index, ?List, ?Elem)
Succeeds when the Index-th element of List unifies with Elem. Counting starts at 1.

last(?Elem, ?List)
Succeeds if Elem unifies with the last element of List. If List is a proper list last/2 is deter-
ministic. If List has an unbound tail, backtracking will cause List to grow.

reverse(+List1, -List2)
Reverse the order of the elements in List1 and unify the result with the elements of List2.

flatten(+List1, -List2)
Transform List1, possibly holding lists as elements into a ‘flat’ list by replacing each list with
its elements (recursively). Unify the resulting flat list with List2. Example:

?- flatten([a, [b, [c, d], e]], X).

X = [a, b, c, d, e]

length(?List, ?Int)
Succeeds if Int represents the number of elements of list List. Can be used to create a list holding
only variables.

SWI-Prolog 3.2 Reference Manual

3.27. SET MANIPULATION 83

merge(+List1, +List2, -List3)
List1 and List2 are lists, sorted to the standard order of terms (see section 3.5). List3 will be
unified with an ordered list holding both the elements of List1 and List2. Duplicates are not
removed.

3.27 Set Manipulation

is set(+Set)
Succeeds if Set is a proper list (see proper list/1) without duplicates.

list to set(+List, -Set)
Unifies Set with a list holding the same elements as List in the same order. If list contains
duplicates, only the first is retained. See also sort/2 . Example:

?- list_to_set([a, b, a] , X)

X = [a,b]

intersection(+Set1, +Set2, -Set3)
Succeeds if Set3 unifies with the intersection of Set1 and Set2. Set1 and Set2 are lists without
duplicates. They need not be ordered.

subtract(+Set, +Delete, -Result)
Delete all elements of set ‘Delete’ from ‘Set’ and unify the resulting set with ‘Result’.

union(+Set1, +Set2, -Set3)
Succeeds if Set3 unifies with the union of Set1 and Set2. Set1 and Set2 are lists without dupli-
cates. They need not be ordered.

subset(+Subset, +Set)
Succeeds if all elements of Subset are elements of Set as well.

merge set(+Set1, +Set2, -Set3)
Set1 and Set2 are lists without duplicates, sorted to the standard order of terms. Set3 is unified
with an ordered list without duplicates holding the union of the elements of Set1 and Set2.

3.28 Sorting Lists

sort(+List, -Sorted)
Succeeds if Sorted can be unified with a list holding the elements of List, sorted to the standard
order of terms (see section 3.5). Duplicates are removed. Implemented by translating the input
list into a temporary array, calling the C-library function qsort(3) using PL compare()
for comparing the elements, after which the result is translated into the result list.

msort(+List, -Sorted)
Equivalent to sort/2 , but does not remove duplicates.

SWI-Prolog 3.2 Reference Manual

84 CHAPTER 3. BUILT-IN PREDICATES

keysort(+List, -Sorted)
List is a list of Key- Value pairs (e.g. terms of the functor ‘- ’ with arity 2). keysort/2
sorts List like msort/2 , but only compares the keys. Can be used to sort terms not on standard
order, but on any criterion that can be expressed on a multi-dimensional scale. Sorting on more
than one criterion can be done using terms as keys, putting the first criterion as argument 1,
the second as argument 2, etc. The order of multiple elements that have the same Key is not
changed.

predsort(+Pred, +List, -Sorted)
Sorts similar to sort/2 , but determines the order of two terms by calling
Pred(-Delta, +E1, +E2). This call must unify Delta with one of <, const> or =. If built-in
predicate compare/3 is used, the result is the same as sort/2 . See also keysort/2 .11

3.29 Finding all Solutions to a Goal

findall(+Var, +Goal, -Bag)
Creates a list of the instantiations Var gets successively on backtracking over Goal and unifies
the result with Bag. Succeeds with an empty list if Goal has no solutions. findall/3 is
equivalent to bagof/3 with all free variables bound with the existence operator (ˆ), except
that bagof/3 fails when goal has no solutions.

bagof(+Var, +Goal, -Bag)
Unify Bag with the alternatives of Var, if Goal has free variables besides the one sharing with
Var bagof will backtrack over the alternatives of these free variables, unifying Bag with the
corresponding alternatives of Var. The construct +Varˆ Goal tells bagof not to bind Var in
Goal. bagof/3 fails if Goal has no solutions.

The example below illustrates bagof/3 and the ˆ operator. The variable bindings are printed
together on one line to save paper.

2 ?- listing(foo).

foo(a, b, c).
foo(a, b, d).
foo(b, c, e).
foo(b, c, f).
foo(c, c, g).

Yes
3 ?- bagof(C, foo(A, B, C), Cs).

A = a, B = b, C = G308, Cs = [c, d] ;
A = b, B = c, C = G308, Cs = [e, f] ;
A = c, B = c, C = G308, Cs = [g] ;

No

11Please note that the semantics have changed between 3.1.1 and 3.1.2

SWI-Prolog 3.2 Reference Manual

3.30. INVOKING PREDICATES ON ALL MEMBERS OF A LIST 85

4 ?- bagof(C, Aˆfoo(A, B, C), Cs).

A = G324, B = b, C = G326, Cs = [c, d] ;
A = G324, B = c, C = G326, Cs = [e, f, g] ;

No
5 ?-

setof(+Var, +Goal, -Set)
Equivalent to bagof/3 , but sorts the result using sort/2 to get a sorted list of alternatives
without duplicates.

3.30 Invoking Predicates on all Members of a List

All the predicates in this section call a predicate on all members of a list or until the predicate called
fails. The predicate is called via call/[2..], which implies common arguments can be put in front of
the arguments obtained from the list(s). For example:

?- maplist(plus(1), [0, 1, 2], X).

X = [1, 2, 3]

we will phrase this as “Predicate is applied on . . . ”

checklist(+Pred, +List)
Pred is applied successively on each element of List until the end of the list or Pred fails. In the
latter case the checklist/2 fails.

maplist(+Pred, ?List1, ?List2)
Apply Pred on all successive pairs of elements from List1 and List2. Fails if Pred can not be
applied to a pair. See the example above.

sublist(+Pred, +List1, ?List2)
Unify List2 with a list of all elements of List1 to which Pred applies.

3.31 Forall

forall(+Cond, +Action)
For all alternative bindings of Cond Action can be proven. The example verifies that all arith-
metic statements in the list L are correct. It does not say which is wrong if one proves wrong.

?- forall(member(R es ul t = Formula, [2 = 1 + 1, 4 = 2 * 2]),
Result =:= Formula).

SWI-Prolog 3.2 Reference Manual

86 CHAPTER 3. BUILT-IN PREDICATES

3.32 Formatted Write

The current version of SWI-Prolog provides two formatted write predicates. The first is
writef/[1,2] , which is compatible with Edinburgh C-Prolog. The second is format/[1,2] ,
which is compatible with Quintus Prolog. We hope the Prolog community will once define a standard
formatted write predicate. If you want performance use format/[1,2] as this predicate is defined
in C. Otherwise compatibility reasons might tell you which predicate to use.

3.32.1 Writef

write ln(+Term)
Equivalent to write(Term), nl.

writef(+Atom)
Equivalent to writef(Atom, []).

writef(+Format, +Arguments)
Formatted write. Format is an atom whose characters will be printed. Format may contain
certain special character sequences which specify certain formatting and substitution actions.
Arguments then provides all the terms required to be output.

Escape sequences to generate a single special character:

\n Output a nemline character (see also nl/[0,1])
\l Output a line separator (same as \n)
\r Output a carriage-return character (ASCII 13)
\t Output the ASCII character TAB (9)
\\ The character \ is output
\% The character %is output
\nnn where nnn is an integer (1-3 digits) the character with

ASCII code nnn is output (NB : nnn is read as deci-
mal)

Note that \l , \nnn and \\ are interpreted differently when character-escapes are in effect. See
section 2.14.1.

Escape sequences to include arguments from Arguments. Each time a % escape sequence is
found in Format the next argument from Arguments is formatted according to the specification.

SWI-Prolog 3.2 Reference Manual

3.32. FORMATTED WRITE 87

%t
print/1 the next item (mnemonic: term)

%w
write/1 the next item

%q
writeq/1 the next item

%d Write the term, ignoring operators. See also
write term/2 . Mnemonic: old Edinburgh
display/1 .

%p
print/1 the next item (identical to %t)

%n Put the next item as a character (i.e. it is an ASCII value)
%r Write the next item N times where N is the second item

(an integer)
%s Write the next item as a String (so it must be a list of char-

acters)
%f Perform a ttyflush/0 (no items used)
%Nc Write the next item Centered in columns.
%Nl Write the next item Left justified in columns.
%Nr Write the next item Right justified in columns. is a

decimal number with at least one digit. The item must be
an atom, integer, float or string.

swritef(-String, +Format, +Arguments)
Equivalent to writef/2 , but “writes” the result on String instead of the current output stream.
Example:

?- swritef(S, ’%15L%w’, [’Hello’, ’World’]).

S = "Hello World"

swritef(-String, +Format)
Equivalent to swritef(String , Format, []).

3.32.2 Format

format(+Format)
Defined as ‘format(Format) :- format(Format, []). ’

format(+Format, +Arguments)
Format is an atom, list of ASCII values, or a Prolog string. Arguments provides the arguments
required by the format specification. If only one argument is required and this is not a list of
ASCII values the argument need not be put in a list. Otherwise the arguments are put in a list.

Special sequences start with the tilde (˜), followed by an optional numeric argument, followed
by a character describing the action to be undertaken. A numeric argument is either a sequence
of digits, representing a positive decimal number, a sequence ‘ character , representing the
ASCII value of the character (only useful for ˜t) or a asterisk (*), in when the numeric argu-
ment is taken from the next argument of the argument list, which should be a positive integer.
Actions are:

SWI-Prolog 3.2 Reference Manual

88 CHAPTER 3. BUILT-IN PREDICATES

˜ Output the tilde itself.

a Output the next argument, which should be an atom. This option is equivalent to w.
Compatibility reasons only.

c Output the next argument as an ASCII value. This argument should be an integer in the
range [0, . . . , 255] (including 0 and 255).

d Output next argument as a decimal number. It should be an integer. If a numeric argument
is specified a dot is inserted argument positions from the right (useful for doing fixed point
arithmetic with integers, such as handling amounts of money).

D Same as d, but makes large values easier to read by inserting a comma every three digits
left to the dot or right.

e Output next argument as a floating point number in exponential notation. The numeric
argument specifies the precision. Default is 6 digits. Exact representation depends on the
C library function printf(). This function is invoked with the format %. precision e.

E Equivalent to e, but outputs a capital E to indicate the exponent.

f Floating point in non-exponential notation. See C library function printf().

g Floating point in e or f notation, whichever is shorter.

G Floating point in E or f notation, whichever is shorter.

i Ignore next argument of the argument list. Produces no output.

k Give the next argument to displayq/1 (canonical write).

n Output a newline character.

N Only output a newline if the last character output on this stream was not a newline. Not
properly implemented yet.

p Give the next argument to print/1 .

q Give the next argument to writeq/1 .

r Print integer in radix the numeric argument notation. Thus ˜16r prints its argument
hexadecimal. The argument should be in the range . Lower case letters are
used for digits above 9.

R Same as r, but uses upper case letters for digits above 9.

s Output a string of ASCII characters or a string (see string/1 and section 3.21) from
the next argument.

t All remaining space between 2 tabs tops is distributed equally over ˜t statements between
the tabs tops. This space is padded with spaces by default. If an argument is supplied this
is taken to be the ASCII value of the character used for padding. This can be used to do
left or right alignment, centering, distributing, etc. See also ˜| and ˜+ to set tab stops. A
tabs top is assumed at the start of each line.

| Set a tabs top on the current position. If an argument is supplied set a tabs top on the
position of that argument. This will cause all ˜t ’s to be distributed between the previous
and this tabs top.

+ Set a tabs top relative to the current position. Further the same as ˜| .

w Give the next argument to write/1 .

SWI-Prolog 3.2 Reference Manual

3.32. FORMATTED WRITE 89

Example:

simple_statisti cs :-
<obtain statistics> % left to the user
format(’˜tStatis ti cs ˜t ˜72 |˜ n˜ n’),
format(’Runtime: ˜‘.t ˜2f˜34| Inferences: ˜‘.t ˜D˜72|˜n’,

[RunT, Inf]),
....

Will output

Statistics

Runtime: 3.45 Inferences: 60,345

format(+Stream, +Format, +Arguments)
As format/2 , but write the output on the given Stream.

sformat(-String, +Format, +Arguments)
Equivalent to format/2 , but “writes” the result on String instead of the current output stream.
Example:

?- sformat(S, ’˜w˜t˜15|˜w’, [’Hello’, ’World’]).

S = "Hello World"

sformat(-String, +Format)
Equivalent to ‘sformat(String, Format, []). ’

3.32.3 Programming Format

format predicate(+Char, +Head)
If a sequence ˜c (tilde, followed by some character) is found, the format derivatives will first
check whether the user has defined a predicate to handle the format. If not, the built in format-
ting rules described above are used. Char is either an ASCII value, or a one character atom,
specifying the letter to be (re)defined. Head is a term, whose name and arity are used to de-
termine the predicate to call for the redefined formatting character. The first argument to the
predicate is the numeric argument of the format command, or the atom default if no argu-
ment is specified. The remaining arguments are filled from the argument list. The example
below redefines ˜n to produce Arg times return followed by linefeed (so a (Grr.) DOS machine
is happy with the output).

:- format_predicat e(n, dos_newline(_A rg)).

dos_newline(Arg) :-
between(1, Ar, _), put(13), put(10), fail ; true.

SWI-Prolog 3.2 Reference Manual

90 CHAPTER 3. BUILT-IN PREDICATES

current format predicate(?Code, ?:Head)
Enumerates all user-defined format predicates. Code is the character code of the format charac-
ter. Head is unified with a term with the same name and arity as the predicate. If the predicate
does not reside in module user , Head is qualified with the definition module of the predicate.

3.33 Terminal Control

The following predicates form a simple access mechanism to the Unix termcap library to provide
terminal independent I/O for screen terminals. These predicates are only available on Unix machines.
The SWI-Prolog Windows consoles accepts the ANSI escape sequences.

tty get capability(+Name, +Type, -Result)
Get the capability named Name from the termcap library. See termcap(5) for the capability
names. Type specifies the type of the expected result, and is one of string , number or
bool . String results are returned as an atom, number result as an integer and bool results as the
atom on or off . If an option cannot be found this predicate fails silently. The results are only
computed once. Successive queries on the same capability are fast.

tty goto(+X, +Y)
Goto position (X, Y) on the screen. Note that the predicates line count/2 and
line position/2 will not have a well defined behaviour while using this predicate.

tty put(+Atom, +Lines)
Put an atom via the termcap library function tputs(). This function decodes padding informa-
tion in the strings returned by tty get capability/3 and should be used to output these
strings. Lines is the number of lines affected by the operation, or 1 if not applicable (as in
almost all cases).

set tty(-OldStream, +NewStream)
Set the output stream, used by tty put/2 and tty goto/2 to a specific stream. Default is
user output.

3.34 Operating System Interaction

shell(+Command, -Status)
Execute Command on the operating system. Command is given to the Bourne shell (/bin/sh).
Status is unified with the exit status of the command.

On Win32 systems, shell/[1,2] executes the command using the CreateProcess() API and
waits for the command to terminate. If the command ends with a & sign, the command is
handed to the WinExec() API, which does not wait for the new task to terminate. See also
win exec/2 .

shell(+Command)
Equivalent to ‘shell(Command, 0) ’.

shell
Start an interactive Unix shell. Default is /bin/sh , the environment variable SHELLoverrides
this default. Not available for Win32 platforms.

SWI-Prolog 3.2 Reference Manual

3.34. OPERATING SYSTEM INTERACTION 91

win exec(+Command, +Show)
Win32 systems only. Spawns a Windows task without waiting for its completion. Show is
either iconic or normal and dictates the initial status of the window. The iconic option
is notably handy to start (DDE) servers.

getenv(+Name, -Value)
Get environment variable. Fails silently if the variable does not exist. Please note that environ-
ment variable names are case-sensitive on Unix systems and case-insensitive on Windows.

setenv(+Name, +Value)
Set environment variable. Name and Value should be instantiated to atoms or integers. The
environment variable will be passed to shell/[0-2] and can be requested using getenv/2 .
They also influence expand file name/2 .

unsetenv(+Name)
Remove environment variable from the environment.

unix(+Command)
This predicate comes from the Quintus compatibility library and provides a partial implementa-
tion thereof. It provides access to some operating system features and unlike the name suggests,
is not operating system specific. Currently it is the only way to fetch the Prolog command-line
arguments. Defined Command’s are below.

system(+Command)
Equivalent to calling shell/1 . Use for compatibility only.

shell(+Command)
Equivalent to calling shell/1 . Use for compatibility only.

shell
Equivalent to calling shell/0 . Use for compatibility only.

cd
Equivalent to calling chdir/1 as chdir(˜) . Use for compatibility only.

cd(+Directory)
Equivalent to calling chdir/1 . Use for compatibility only.

argv(-Argv)
Unify Argv with the list of commandline arguments provides to this Prolog run. Please
note that Prolog system-arguments and application arguments are separated by -- . In-
teger arguments are passed as Prolog integers, float arguments and Prolog floating point
numbers and all other arguments as Prolog atoms.

A stand-alone program could use the following skeleton to handle command-line argu-
ments. See also section 2.10.2.

main :-
unix(argv(Argv)) ,
append(_Prolog Ar gs , [--|AppArgs], Argv), !,
main(AppArgs).

SWI-Prolog 3.2 Reference Manual

92 CHAPTER 3. BUILT-IN PREDICATES

get time(-Time)
Return the number of seconds that elapsed since the epoch of Unix, 1 January 1970, 0 hours.
Time is a floating point number. Its granularity is system dependent. On SUN, this is 1/60 of a
second.

convert time(+Time, -Year, -Month, -Day, -Hour, -Minute, -Second, -MilliSeconds)
Convert a time stamp, provided by get time/1 , time file/2 , etc. Year is unified with
the year, Month with the month number (January is 1), Day with the day of the month (starting
with 1), Hour with the hour of the day (0–23), Minute with the minute (0–59). Second with the
second (0–59) and MilliSecond with the milliseconds (0–999). Note that the latter might not
be accurate or might always be 0, depending on the timing capabilities of the system. See also
convert time/2 .

convert time(+Time, -String)
Convert a time-stamp as obtained though get time/1 into a textual representation using the
C-library function ctime() . The value is returned as a SWI-Prolog string object (see sec-
tion 3.21). See also convert time/8 .

3.35 File System Interaction

access file(+File, +Mode)
Succeeds if File exists and can be accessed by this prolog process under mode Mode. Mode
is one of the atoms read , write , append , exist , none or execute . File may also
be the name of a directory. Fails silently otherwise. access file(File, none) simply
succeeds without testing anything.

If ‘Mode’ is write or append , this predicate also succeeds if the file does not exist and the
user has write-access to the directory of the specified location.

exists file(+File)
Succeeds when File exists. This does not imply the user has read and/or write permission for
the file.

file directory name(+File, -Directory)
Extracts the directory-part of File. The resulting Directory name ends with the directory sepa-
rator character / . If File is an atom that does not contain any directory separator characters, the
empty atom ’’ is returned. See also file base name/2 .

file base name(+File, -BaseName)
Extracts the filename part from a path specification. If File does not contain any directory
separators, File is returned.

same file(+File1, +File2)
Succeeds if both filenames refer to the same physical file. That is, if File1 and File2 are the
same string or both names exist and point to the same file (due to hard or symbolic links and/or
relative vs. absolute paths).

exists directory(+Directory)
Succeeds if Directory exists. This does not imply the user has read, search and or write permis-
sion for the directory.

SWI-Prolog 3.2 Reference Manual

3.35. FILE SYSTEM INTERACTION 93

delete file(+File)
Unlink File from the Unix file system.

rename file(+File1, +File2)
Rename File1 into File2. Currently files cannot be moved across devices.

size file(+File, -Size)
Unify Size with the size of File in characters.

time file(+File, -Time)
Unify the last modification time of File with Time. Time is a floating point number expressing
the seconds elapsed since Jan 1, 1970.

absolute file name(+File, -Absolute)
Expand Unix file specification into an absolute path. User home directory expansion (˜ and

user) and variable expansion is done. The absolute path is canonised: references to . and
.. are deleted. SWI-Prolog uses absolute file names to register source files independent of the
current working directory. See also absolute file name/3 .

absolute file name(+Spec, +Options, -Absolute)
Converts the given file specification into an absolute path. Option is a list of options to guide
the conversion:

extensions(ListOfExtensions)
List of file-extensions to try. Default is ’’ . For each extension,
absolute file name/3 will first add the extension and then verify the condi-
tions imposed by the other options. If the condition fails, the next extension of the list is
tried. Extensions may be specified both as ..ext or plain ext .

access(Mode)
Imposes the condition access file(File, Mode). Mode is on of read , write , append ,
exist or none . See also access file/2 .

file type(Type)
Defines extensions. Current mapping: txt implies [’’] , prolog implies [’.pl’,
’’] , executable implies [’.so’, ’’] , qlf implies [’.qlf’, ’’] and di-
rectory implies [’’] .

file errors(fail/error)
If error (default), throw and existence error exception if the file cannot be found.
If fail , stay silent.footnoteSilent operation was the default upto version 3.2.6.

solutions(first/all)
If first (default), the predicates leaves no choice-point. Otherwise a choice-point will
be left and backtracking may yield more solutions.

is absolute file name(+File)
True if File specifies and absolute path-name. On Unix systems, this implies the path starts
with a ‘/’. For Microsoft based systems this implies the path starts with letter : . This
predicate is intended to provide platform-independent checking for absolute paths. See also
absolute file name/2 and prolog to os filename/2 .

SWI-Prolog 3.2 Reference Manual

94 CHAPTER 3. BUILT-IN PREDICATES

file name extension(?Base, ?Extension, ?Name)
This predicate is used to add, remove or test filename extensions. The main reason for its
introduction is to deal with different filename properties in a portable manner. If the file system
is case-insensitive, testing for an extension will be done case-insensitive too. Extension may
be specified with or without a leading dot (.). If an Extension is generated, it will not have a
leading dot.

expand file name(+WildCard, -List)
Unify List with a sorted list of files or directories matching WildCard. The normal Unix wild-
card constructs ‘?’, ‘* ’, ‘[...] ’ and ‘ ... ’ are recognised. The interpretation of ‘ ... ’
is interpreted slightly different from the C shell (csh(1)). The comma separated argument can be
arbitrary patterns, including ‘ ... ’ patterns. The empty pattern is legal as well: ‘\{.pl, \} ’
matches either ‘.pl ’ or the empty string.

Before expanding wildchards, the construct $var is expanded to the value of the environment
variable var and a possible leading ˜ character is expanded to the user’s home directory.12.

prolog to os filename(?PrologPath, ?OsPath)
Converts between the internal Prolog pathname conventions and the operating-system pathname
conventions. The internal conventions are Unix and this predicates is equivalent to =/2 (unify)
on Unix systems. On DOS systems it will change the directory-separator, limit the filename
length map dots, except for the last one, onto underscores.

read link(+File, -Link, -Target)
If File points to a symbolic link, unify Link with the value of the link and Target to the file the
link is pointing to. Target points to a file, directory or non-existing entry in the file system, but
never to a link. Fails if File is not a link. Fails always on systems that do not support symbolic
links.

tmp file(+Base, -TmpName)
Create a name for a temporary file. Base is an identifier for the category of file. The TmpName is
guaranteed to be unique. If the system halts, it will automatically remove all created temporary
files.

chdir(+Path)
Change working directory to Path.13

3.36 Multi-threading (PRE-ALPHA: developers only!)

The features described in this section are only enabled on Unix systems providing POSIX
threads and if the system is configured using the --enable-mt option. SWI-Prolog multi-
theading support is very incomplete and for developers ONLY. This section however does pro-
vide an overview of the forthcoming functionality.

12On Windows, the home directory is determined as follows: if the environment variable HOMEexists, this is used. If
the variables HOMEDRIVEand HOMEPATHexist (Windows-NT), these are used. At initialisation, the system will set the
environment variable HOMEto point to the SWI-Prolog home directory if neither HOMEnor HOMEPATHand HOMEDRIVE
are defined

13BUG: Some of the file-I/O predicates use local filenames. Using chdir/1 while file-bound streams are open causes
wrong results on telling/1 , seeing/1 and current stream/3

SWI-Prolog 3.2 Reference Manual

3.36. MULTI-THREADING (PRE-ALPHA: DEVELOPERS ONLY!) 95

SWI-Prolog multithreading is based on standard C-language multithreading support. It is not like
ParLog or other paralel implementations of the Prolog language. Prolog threads have their own stacks
and only share the Prolog heap: predicates, records, flags and other global non-backtrackable data.
SWI-Prolog thread support is designed with the following goals in mind.

Multi-threaded server applications
Todays computing services often focus on (internet) server applications. Such applications of-
ten have need for communication between services and/or fast non-blocking service to multiple
concurrent clients. The shared heap provides fast communication and thread creation is rela-
tively cheap (A Pentium-II/450 can create and join approx. 10,000 threads per second on Linux
2.2).

Interactive applications
Interactive applications often need to perform extensive computation. If such computations are
executed in a new thread, the main thread can process events and allow the user to cancel the
ongoing computation. User interfaces can also use multiple threads, each thread dealing with
input from a distinct group of windows.

Natural integration with foreign code
Each Prolog thread runs in a C-thread, automatically making them cooperate with MT-safe
foreign-code. In addition, any foreign thread can create its own Prolog engine for dealing with
calling Prolog from C-code.

Below is the tentative and incomplete API for dealing with multiple Prolog threads. Forthcoming:
mutexes, semaphores, thread-suspend and cancel, foreign-language interface and debugger interface.

thread create(:Goal, -Id, +Options)
Create a new Prolog thread (and underlying C-thread) and start it by executing Goal. If the
thread is created succesfully, the thread-identifier of the created thread is unified to Id. Options
is a list of options. Currently defined options are:

local(K-Bytes)
Set the limit to which the local stack of this thread may grow. If omited, the limit of the
calling thread is used. See also the -L commandline option.

global(K-Bytes)
Set the limit to which the global stack of this thread may grow. If omited, the limit of the
calling thread is used. See also the -G commandline option.

trail(K-Bytes)
Set the limit to which the trail stack of this thread may grow. If omited, the limit of the
calling thread is used. See also the -T commandline option.

argument(K-Bytes)
Set the limit to which the argument stack of this thread may grow. If omited, the limit of
the calling thread is used. See also the -A commandline option.

The Goal argument is copied to the new Prolog engine. This implies further instantiation of
this term in either thread does not have consequences for the other thread: Prolog thread do not
share data from their stacks.

SWI-Prolog 3.2 Reference Manual

96 CHAPTER 3. BUILT-IN PREDICATES

current thread(?Id, ?Status)
Enumerates identifiers and status of all currently known threads. Calling
current thread/2 does not influence any thread. See also thread join/2 . Sta-
tus is one of:

running
The thread is running. This is the initial status of a thread. Please note that threats waiting
for something are considered running too.

false
The Goal of the thread has been completed and failed.

true
The Goal of the thread has been completed and succeeded.

exited(Term)
The Goal of the thread has been terminated using thread exit/1 with Term as argu-
ment.

exception(Term)
The Goal of the thread has been terminated due to an uncaught exception (see throw/1
and catch/3).

thread join(+Id, -Status)
Wait for the termination of thread with given Id. Then unify the result-status (see
thread exit/1) of the thread with Status. After this call, Id becomes invalid and all re-
sources associated with the thread are reclaimed. See also current thread/2 .

A thread that has been completed without thread join/2 being called on it is partly re-
claimed: the Prolog stacks are released and the C-thread is destroyed. A small data-structure
represening the exit-status of the thread is retained until thread join/2 is called on the
thread.

thread exit(+Term)
Terminates the thread immediately, leaving exited (Term) as result-state. The Prolog stacks
and C-thread are reclaimed.

3.37 User Toplevel Manipulation

break
Recursively start a new Prolog top level. This Prolog top level has its own stacks, but shares
the heap with all break environments and the top level. Debugging is switched off on entering a
break and restored on leaving one. The break environment is terminated by typing the system’s
end-of-file character (control-D). If the -t toplevel command line option is given this goal
is started instead of entering the default interactive top level (prolog/0).

abort
Abort the Prolog execution and start a new top level. If the -t toplevel command line
options is given this goal is started instead of entering the default interactive top level. Break

SWI-Prolog 3.2 Reference Manual

3.38. CREATING A PROTOCOL OF THE USER INTERACTION 97

environments are aborted as well. All open files except for the terminal related files are closed.
The input- and output stream again refers to user.14

halt
Terminate Prolog execution. Open files are closed and if the command line option -tty is not
active the terminal status (see Unix stty(1)) is restored. Hooks may be registered both in Prolog
and in foreign code. Prolog hooks are registered using at halt/1 . halt/0 is equivalent to
halt(0) .

halt(+Status)
Terminate Prolog execution with given status. Status is an integer. See also halt/0 .

prolog
This goal starts the default interactive top level. Queries are read from the stream user input .
See also the history feature (feature/2). The prolog/0 predicate is terminated (suc-
ceeds) by typing the end-of-file character (Unix: control-D).

The following two hooks allow for expanding queries and handling the result of a query. These
hooks are used by the toplevel variable expansion mechanism described in section 2.8.

expand query(+Query, -Expanded, +Bindings, -ExpandedBindings)
Hook in module user , normally not defined. Query and Bindings represents the query read
from the user and the names of the free variables as obtained using read term/3 . If this
predicate succeeds, it should bind Expanded and ExpandedBindings to the query and bindings
to be executed by the toplevel. This predicate is used by the toplevel (prolog/0). See also
expand answer/2 and term expansion/2 .

expand answer(+Bindings, -ExpandedBindings)
Hook in module user , normally not defined. Expand the result of a successfully executed
toplevel query. Bindings is the query Name Value binding list from the query. Expand-
edBindings must be unified with the bindings the toplevel should print.

3.38 Creating a Protocol of the User Interaction

SWI-Prolog offers the possibility to log the interaction with the user on a file.15 All Prolog interaction,
including warnings and tracer output, are written on the protocol file.

protocol(+File)
Start protocolling on file File. If there is already a protocol file open then close it first. If File
exists it is truncated.

protocola(+File)
Equivalent to protocol/1 , but does not truncate the File if it exists.

noprotocol
Stop making a protocol of the user interaction. Pending output is flushed on the file.

14BUG: Erased clauses which could not actually be removed from the database, because they are active in the interpreter,
will never be garbage collected after an abort.

15A similar facility was added to Edinburgh C-Prolog by Wouter Jansweijer.

SWI-Prolog 3.2 Reference Manual

98 CHAPTER 3. BUILT-IN PREDICATES

protocolling(-File)
Succeeds if a protocol was started with protocol/1 or protocola/1 and unifies File with
the current protocol output file.

3.39 Debugging and Tracing Programs

trace
Start the tracer. trace/0 itself cannot be seen in the tracer. Note that the Prolog toplevel treats
trace/0 special; it means ‘trace the next goal’.

tracing
Succeeds when the tracer is currently switched on. tracing/0 itself can not be seen in the
tracer.

notrace
Stop the tracer. notrace/0 itself cannot be seen in the tracer.

trace(+Pred)
Equivalent to trace(Pred, +all) .

trace(+Pred, +Ports)
Put a trace-point on all predicates satisfying the predicate specification Pred. Ports is a list
of portnames (call , redo , exit , fail). The atom all refers to all ports. If the port is
preceded by a - sign the trace-point is cleared for the port. If it is preceded by a + the trace-
point is set.

The predicate trace/2 activates debug mode (see debug/0). Each time a port (of the 4-
port model) is passed that has a trace-point set the goal is printed as with trace/0 . Unlike
trace/0 however, the execution is continued without asking for further information. Exam-
ples:

?- trace(hello). Trace all ports of hello with any arity in any mod-
ule.

?- trace(foo/2, +fail). Trace failures of foo/2 in any module.
?- trace(bar/1, -all). Stop tracing bar/1.

The predicate debugging/0 shows all currently defined trace-points.

notrace(+Goal)
Call Goal, but suspend the debugger while Goal is executing. The current implementation cuts
the choicepoints of Goal after successful completion. See once/1 . Later implementations
may have the same semantics as call/1 .

debug
Start debugger (stop at spy points).

nodebug
Stop debugger (do not trace, nor stop at spy points).

SWI-Prolog 3.2 Reference Manual

3.39. DEBUGGING AND TRACING PROGRAMS 99

debugging
Print debug status and spy points on current output stream.

spy(+Pred)
Put a spy point on all predicates meeting the predicate specification Pred. See section 3.3.

nospy(+Pred)
Remove spy point from all predicates meeting the predicate specification Pred.

nospyall
Remove all spy points from the entire program.

leash(?Ports)
Set/query leashing (ports which allow for user interaction). Ports is one of +Name, -Name,
?Name or a list of these. +Name enables leashing on that port, -Name disables it and ?Name
succeeds or fails according to the current setting. Recognised ports are: call , redo , exit ,
fail and unify . The special shorthand all refers to all ports, full refers to all ports except
for the unify port (default). half refers to the call , redo and fail port.

visible(+Ports)
Set the ports shown by the debugger. See leash/1 for a description of the port specification.
Default is full .

unknown(-Old, +New)
Unify Old with the current value of the unknown system flag. On success New will be used to
specify the new value. New should be instantiated to either fail or trace and determines the
interpreters action when an undefined predicate which is not declared dynamic is encountered
(see dynamic/1). fail implies the predicate just fails silently. trace implies the tracer
is started. Default is trace . The unknown flag is local to each module and unknown/2 is
module transparent. Using it as a directive in a module file will only change the unknown flag
for that module. Using the :/2 construct the behaviour on trapping an undefined predicate can
be changed for any module. Note that if the unknown flag for a module equals fail the system
will not call exception/3 and will not try to resolve the predicate via the dynamic library
system. The system will still try to import the predicate from the public module.

style check(+Spec)
Set style checking options. Spec is either + option , - option , ? option or a list of such
options. + option sets a style checking option, - option clears it and ? option succeeds or
fails according to the current setting. consult/1 and derivatives resets the style checking
options to their value before loading the file. If—for example—a file containing long atoms
should be loaded the user can start the file with:

:- style_check(-at om).

Currently available options are:

SWI-Prolog 3.2 Reference Manual

100 CHAPTER 3. BUILT-IN PREDICATES

cputime (User) CPU time since Prolog was started in seconds
inferences Total number of passes via the call and redo ports since Prolog was

started.
heap Estimated total size of the heap (see section 2.15.1)
heapused Bytes heap in use by Prolog.
heaplimit Maximum size of the heap (see section 2.15.1)
local Allocated size of the local stack in bytes.
localused Number of bytes in use on the local stack.
locallimit Size to which the local stack is allowed to grow
global Allocated size of the global stack in bytes.
globalused Number of bytes in use on the global stack.
globallimit Size to which the global stack is allowed to grow
trail Allocated size of the trail stack in bytes.
trailused Number of bytes in use on the trail stack.
traillimit Size to which the trail stack is allowed to grow
atoms Total number of defined atoms.
functors Total number of defined name/arity pairs.
predicates Total number of predicate definitions.
modules Total number of module definitions.
codes Total amount of byte codes in all clauses.

Table 3.2: Keys for statistics/2

Name Default Description
singleton on

read clause/1 (used by consult/1) warns on vari-
ables only appearing once in a term (clause) which have a
name not starting with an underscore.

atom on
read/1 and derivatives will produce an error message on
quoted atoms or strings longer than 5 lines.

dollar off Accept dollar as a lower case character, thus avoiding the
need for quoting atoms with dollar signs. System mainte-
nance use only.

discontiguous on Warn if the clauses for a predicate are not together in the
same source file.

string off Read and derivatives transform "..." into a prolog string
instead of a list of ASCII characters.

3.40 Obtaining Runtime Statistics

statistics(+Key, -Value)
Unify system statistics determined by Key with Value. The possible keys are given in the ta-
ble 3.2.

statistics
Display a table of system statistics on the current output stream.

SWI-Prolog 3.2 Reference Manual

3.41. FINDING PERFORMANCE BOTTLENECKS 101

time(+Goal)
Execute Goal just like once/1 (i.e. leaving no choice points), but print used time, number of
logical inferences and the average number of lips (logical inferences per second). Note that
SWI-Prolog counts the actual executed number of inferences rather than the number of passes
through the call- and redo ports of the theoretical 4-port model.

3.41 Finding Performance Bottlenecks

SWI-Prolog offers a statistical program profiler similar to Unix prof(1) for C and some other lan-
guages. A profiler is used as an aid to find performance pigs in programs. It provides information on
the time spent in the various Prolog predicates.

The profiler is based on the assumption that if we monitor the functions on the execution stack on
time intervals not correlated to the program’s execution the number of times we find a procedure on
the environment stack is a measure of the time spent in this procedure. It is implemented by calling a
procedure each time slice Prolog is active. This procedure scans the local stack and either just counts
the procedure on top of this stack (plain profiling) or all procedures on the stack (cumulative
profiling). To get accurate results each procedure one is interested in should have a reasonable number
of counts. Typically a minute runtime will suffice to get a rough overview of the most expensive
procedures.

profile(+Goal, +Style, +Number)
Execute Goal just like time/1 . Collect profiling statistics according to style (see
profiler/2) and show the top Number procedures on the current output stream (see
show profile/1). The results are kept in the database until reset profiler/0 or
profile/3 is called and can be displayed again with show profile/1 . profile/3
is the normal way to invoke the profiler. The predicates below are low-level predicates that can
be used for special cases.

show profile(+Number)
Show the collected results of the profiler. Stops the profiler first to avoid interference from
show profile/1 . It shows the top Number predicates according the percentage CPU-time
used.16

profiler(-Old, +New)
Query or change the status of the profiler. The status is one of off , plain or cumulative .
plain implies the time used by children of a predicate is not added to the time of the predicate.
For status cumulative the time of children is added (except for recursive calls). Cumulative
profiling implies the stack is scanned up to the top on each time slice to find all active predicates.
This implies the overhead grows with the number of active frames on the stack. Cumulative
profiling starts debugging mode to disable tail recursion optimisation, which would otherwise
remove the necessary parent environments. Switching status from plain to cumulative
resets the profiler. Switching to and from status off does not reset the collected statistics, thus
allowing to suspend profiling for certain parts of the program.

reset profiler
Switches the profiler to off and clears all collected statistics.

16show profile/1 is defined in Prolog and takes a considerable amount of memory.

SWI-Prolog 3.2 Reference Manual

102 CHAPTER 3. BUILT-IN PREDICATES

profile count(+Head, -Calls, -Promilage)
Obtain profile statistics of the predicate specified by Head. Head is an atom for predi-
cates with arity 0 or a term with the same name and arity as the predicate required (see
current predicate/2). Calls is unified with the number of ‘calls’ and ‘redos’ while the
profiler was active. Promilage is unified with the relative number of counts the predicate was
active (cumulative) or on top of the stack (plain). Promilage is an integer between 0 and
1000.

3.42 Memory Management

Note: limit stack/2 and trim stacks/0 have no effect on machines that do not offer dynamic
stack expansion. On these machines these predicates simply succeed to improve portability.

garbage collect
Invoke the global- and trail stack garbage collector. Normally the garbage collector is in-
voked automatically if necessary. Explicit invocation might be useful to reduce the need
for garbage collections in time critical segments of the code. After the garbage collection
trim stacks/0 is invoked to release the collected memory resources.

limit stack(+Key, +Kbytes)
Limit one of the stack areas to the specified value. Key is one of local , global or trail .
The limit is an integer, expressing the desired stack limit in K bytes. If the desired limit is
smaller than the currently used value, the limit is set to the nearest legal value above the cur-
rently used value. If the desired value is larger than the maximum, the maximum is taken.
Finally, if the desired value is either 0 or the atom unlimited the limit is set to its maximum.
The maximum and initial limit is determined by the command line options -L , -G and -T .

trim stacks
Release stack memory resources that are not in use at this moment, returning them to the oper-
ating system. Trim stack is a relatively cheap call. It can be used to release memory resources in
a backtracking loop, where the iterations require typically seconds of execution time and very
different, potentially large, amounts of stack space. Such a loop should be written as follows:

loop :-
generator,

trim_stacks,
potentially_ex pensi ve _operat io n,

stop_condition , !.

The prolog top level loop is written this way, reclaiming memory resources after every user
query.

stack parameter(+Stack, +Key, -Old, +New)
Query/set a parameter for the runtime stacks. Stack is one of local , global , trail or
argument . The table below describes the Key/Value pairs. Old is first unified with the current
value.

SWI-Prolog 3.2 Reference Manual

3.43. WINDOWS DDE INTERFACE 103

limit Maximum size of the stack in bytes
min free Minimum free space at entry of foreign predicate

This predicate is currently only available on versions that use the stack-shifter to enlarge the
runtime stacks when necessary. It’s definition is subject to change.

3.43 Windows DDE interface

The predicates in this section deal with MS-Windows ‘Dynamic Data Exchange’ or DDE protocol.17

A Windows DDE conversation is a form of interprocess communication based on sending reserved
window-events between the communicating processes.

See also section 5.4 for loading Windows DLL’s into SWI-Prolog.

3.43.1 DDE client interface

The DDE client interface allows Prolog to talk to DDE server programs. We will demonstrate the use
of the DDE interface using the Windows PROGMAN (Program Manager) application:

1 ?- open_dde_conve rs ati on(p ro gman, progman, C).

C = 0
2 ?- dde_request(0, groups, X)

--> Unifies X with description of groups

3 ?- dde_execute(0, ’[CreateGroup(" DDE Demo")]’).

Yes

4 ?- close_dde_conv er sat io n(0) .

Yes

For details on interacting with progman , use the SDK online manual section on the Shell DDE
interface. See also the Prolog library(progma n) , which may be used to write simple Windows
setup scripts in Prolog.

open dde conversation(+Service, +Topic, -Handle)
Open a conversation with a server supporting the given service name and topic (atoms). If
successful, Handle may be used to send transactions to the server. If no willing server is found
this predicate fails silently.

close dde conversation(+Handle)
Close the conversation associated with Handle. All opened conversations should be closed
when they’re no longer needed, although the system will close any that remain open on process
termination.

17This interface is contributed by Don Dwiggins.

SWI-Prolog 3.2 Reference Manual

104 CHAPTER 3. BUILT-IN PREDICATES

dde request(+Handle, +Item, -Value)
Request a value from the server. Item is an atom that identifies the requested data, and Value will
be a string (CF TEXTdata in DDE parlance) representing that data, if the request is successful.
If unsuccessful, Value will be unified with a term of form error(Reason) , identifying the
problem. This call uses SWI-Prolog string objects to return the value rather then atoms to
reduce the load on the atom-space. See section 3.21 for a discussion on this data type.

dde execute(+Handle, +Command)
Request the DDE server to execute the given command-string. Succeeds if the command could
be executed and fails with error message otherwise.

dde poke(+Handle, +Item, +Command)
Issue a POKEcommand to the server on the specified Item. Command is passed as data of type
CF TEXT.

3.43.2 DDE server mode

The (autoload) library(dde) defines primitives to realise simple DDE server applications in SWI-
Prolog. These features are provided as of version 2.0.6 and should be regarded prototypes. The C-part
of the DDE server can handle some more primitives, so if you need features not provided by this
interface, please study library(dde) .

dde register service(+Template, +Goal)
Register a server to handle DDE request or DDE execute requests from other applications. To
register a service for a DDE request, Template is of the form:

+Service(+Topic, +Item, +Value)

Service is the name of the DDE service provided (like progman in the client example above).
Topic is either an atom, indicating Goal only handles requests on this topic or a variable that
also appears in Goal. Item and Value are variables that also appear in Goal.

The example below registers the Prolog feature/2 predicate to be accessible from other ap-
plications. The request may be given from the same Prolog as well as from another application.

?- dde_register_se rv ic e(pr olo g(fe at ur e, F, V),
feature(F, V)).

?- open_dde_conver sa ti on(p rol og, feature, Handle),
dde_request(Han dl e, home, Home),
close_dde_conve rs at io n(Handl e) .

Home = ’/usr/local/lib /p l- 2.0 .6 /’

Handling DDE execute requests is very similar. In this case the template is of the form:

+Service(+Topic, +Item)

Passing a Value argument is not needed as execute requests either succeed or fail. If Goal fails,
a ‘not processed’ is passed back to the caller of the DDE request.

SWI-Prolog 3.2 Reference Manual

3.44. MISCELLANEOUS 105

dde unregister service(+Service)
Stop responding to Service. If Prolog is halted, it will automatically call this on all open ser-
vices.

dde current service(-Service, -Topic)
Find currently registered services and the topics served on them.

dde current connection(-Service, -Topic)
Find currently open conversations.

3.44 Miscellaneous

dwim match(+Atom1, +Atom2)
Succeeds if Atom1 matches Atom2 in ‘Do What I Mean’ sense. Both Atom1 and Atom2 may
also be integers or floats. The two atoms match if:

They are identical
They differ by one character (spy spu)
One character is inserted/deleted (debug deug)
Two characters are transposed (trace tarce)
‘Sub-words’ are glued differently (existsfile existsFile exists file)
Two adjacent sub words are transposed (existsFile fileExists)

dwim match(+Atom1, +Atom2, -Difference)
Equivalent to dwim match/2 , but unifies Difference with an atom identifying the the differ-
ence between Atom1 and Atom2. The return values are (in the same order as above): equal ,
mismatched char , inserted char , transposed char , separated and trans-
posed word .

wildcard match(+Pattern, +String)
Succeeds if String matches the wildcard pattern Pattern. Pattern is very similar the the Unix
csh pattern matcher. The patterns are given below:

? Matches one arbitrary character.
* Matches any number of arbitrary characters.
[...] Matches one of the characters specified between the brackets. char1 - char2 indicates a range.
... Matches any of the patterns of the comma separated list between the braces.

Example:

?- wildcard_match(’[a- z] *. {pr o, pl }[%˜]’, ’a_hello.pl%’) .

Yes.

gensym(+Base, -Unique)
Generate a unique atom from base Base and unify it with Unique. Base should be an atom. The
first call will return base 1, the next base 2, etc. Note that this is no warrant that the atom is
unique in the system.18

18BUG: I plan to supply a real gensym/2 which does give this warrant for future versions.

SWI-Prolog 3.2 Reference Manual

106 CHAPTER 3. BUILT-IN PREDICATES

sleep(+Time)
Suspend execution Time seconds. Time is either a floating point number or an integer. Gran-
ularity is dependent on the system’s timer granularity. A negative time causes the timer to
return immediately. On most non-realtime operating systems we can only ensure execution is
suspended for at least Time seconds.

SWI-Prolog 3.2 Reference Manual

4.1 Why Using Modules?

In traditional Prolog systems the predicate space was flat. This approach is not very suitable for
the development of large applications, certainly not if these applications are developed by more than
one programmer. In many cases, the definition of a Prolog predicate requires sub-predicates that are
intended only to complete the definition of the main predicate. With a flat and global predicate space
these support predicates will be visible from the entire program.

For this reason, it is desirable that each source module has it’s own predicate space. A module
consists of a declaration for it’s name, it’s public predicates and the predicates themselves. This
approach allow the programmer to use short (local) names for support predicates without worrying
about name conflicts with the support predicates of other modules. The module declaration also makes
explicit which predicates are meant for public usage and which for private purposes. Finally, using
the module information, cross reference programs can indicate possible problems much better.

4.2 Name-based versus Predicate-based Modules

Two approaches to realize a module system are commonly used in Prolog and other languages. The
first one is the name based module system. In these systems, each atom read is tagged (normally
prefixed) with the module name, with the exception of those atoms that are defined public. In the
second approach, each module actually implements its own predicate space.

A critical problem with using modules in Prolog is introduced by the meta-predicates that trans-
form between Prolog data and Prolog predicates. Consider the case where we write:

:- module(extend, [add_extension /3]).

add_extension(E xt ensi on, Plain, Extended) :-
maplist(extend_a to m(Exte nsi on), Plain, Extended).

extend_atom(Ext ensi on, Plain, Extended) :-
concat(Plain, Extension, Extended).

In this case we would like maplist to call extend atom/3 in the module extend . A name based
module system will do this correctly. It will tag the atom extend atom with the module and maplist
will use this to construct the tagged term extend atom/3. A name based module however, will not only
tag the atoms that will eventually be used to refer to a predicate, but all atoms that are not declared
public. So, with a name based module system also data is local to the module. This introduces another
serious problem:

SWI-Prolog 3.2 Reference Manual

108 CHAPTER 4. USING MODULES

:- module(action, [action/3]).

action(Object, sleep, Arg) :-
action(Object, awake, Arg) :-

:- module(process , [awake_process/2]) .

awake_process(P ro ce ss , Arg) :-
action(Process, awake, Arg).

This code uses a simple object-oriented implementation technique were atoms are used as method
selectors. Using a name based module system, this code will not work, unless we declare the selectors
public atoms in all modules that use them. Predicate based module systems do not require particular
precautions for handling this case.

It appears we have to choose either to have local data, or to have trouble with meta-predicates.
Probably it is best to choose for the predicate based approach as novice users will not often write
generic meta-predicates that have to be used across multiple modules, but are likely to write programs
that pass data around across modules. Experienced Prolog programmers should be able to deal with
the complexities of meta-predicates in a predicate based module system.

4.3 Defining a Module

Modules normally are created by loading a module file. A module file is a file holding a module/2
directive as its first term. The module/2 directive declares the name and the public (i.e. externally
visible) predicates of the module. The rest of the file is loaded into the module. Below is an example
of a module file, defining reverse/2 .

:- module(reverse , [reverse/2]).

reverse(List1, List2) :-
rev(List1, [], List2).

rev([], List, List).
rev([Head|List1], List2, List3) :-

rev(List1, [Head|List2], List3).

4.4 Importing Predicates into a Module

As explained before, in the predicate based approach adapted by SWI-Prolog, each module has it’s
own predicate space. In SWI-Prolog, a module initially is completely empty. Predicates can be added
to a module by loading a module file as demonstrated in the previous section, using assert or by
importing them from another module.

Two mechanisms for importing predicates explicitly from another module exist. The
use module/[1,2] predicates load a module file and import (part of the) public predicates of
the file. The import/1 predicate imports any predicate from any module.

SWI-Prolog 3.2 Reference Manual

4.5. USING THE MODULE SYSTEM 109

use module(+File)
Load the file(s) specified with File just like ensure loaded/1 . The files should all be mod-
ule files. All exported predicates from the loaded files are imported into the context module. The
difference between this predicate and ensure loaded/1 becomes apparent if the file is al-
ready loaded into another module. In this case ensure loaded/1 does nothing; use module
will import all public predicates of the module into the current context module.

use module(+File, +ImportList)
Load the file specified with File (only one file is accepted). File should be a module file.
ImportList is a list of name/arity pairs specifying the predicates that should be imported from
the loaded module. If a predicate is specified that is not exported from the loaded module a
warning will be printed. The predicate will nevertheless be imported to simplify debugging.

import(+Head)
Import predicate Head into the current context module. Head should specify the source module
using the module : term construct. Note that predicates are normally imported using one of
the directives use module/[1,2] . import/1 is meant for handling imports into dynami-
cally created modules.

It would be rather inconvenient to have to import each predicate referred to by the module, includ-
ing the system predicates. For this reason each module is assigned a default module. All predicates
in the default module are available without extra declarations. Their definition however can be over-
ruled in the local module. This schedule is implemented by the exception handling mechanism of
SWI-Prolog: if an undefined predicate exception is raised for a predicate in some module, the excep-
tion handler first tries to import the predicate from the module’s default module. On success, normal
execution is resumed.

4.4.1 Reserved Modules

SWI-Prolog contains two special modules. The first one is the module system . This module contains
all built-in predicates described in this manual. Module system has no default module assigned to
it. The second special module is the module user . This module forms the initial working space of
the user. Initially it is empty. The default module of module user is system , making all built-in
predicate definitions available as defaults. Built-in predicates thus can be overruled by defining them
in module user before they are used.

All other modules default to module user . This implies they can use all predicates imported into
user without explicitly importing them.

4.5 Using the Module System

The current structure of the module system has been designed with some specific organisations for
large programs in mind. Many large programs define a basic library layer on top of which the actual
program itself is defined. The module user , acting as the default module for all other modules of
the program can be used to distribute these definitions over all program module without introducing
the need to import this common layer each time explicitly. It can also be used to redefine built-in
predicates if this is required to maintain compatibility to some other Prolog implementation. Typically,
the loadfile of a large application looks like this:

SWI-Prolog 3.2 Reference Manual

110 CHAPTER 4. USING MODULES

:- use_module(com pati bil it y) . % load XYZ prolog compatibility

:- use_module(% load generic parts
[error % errors and warnings
, goodies % general goodies (li-

brary extensions)
, debug % application specific debugging
, virtual_machine % virtual machine of application
, ... % more generic stuff
]).

:- ensure_loaded(
[... % the application itself
]).

The ‘use module’ declarations will import the public predicates from the generic modules into the
user module. The ‘ensure loaded’ directive loads the modules that constitute the actual application.
It is assumed these modules import predicates from each other using use module/[1,2] as far as
necessary.

In combination with the object-oriented schema described below it is possible to define a neat
modular architecture. The generic code defines general utilities and the message passing predicates
(invoke/3 in the example below). The application modules define classes that communicate using the
message passing predicates.

4.5.1 Object Oriented Programming

Another typical way to use the module system is for defining classes within an object oriented
paradigm. The class structure and the methods of a class can be defined in a module and the explicit
module-boundary overruling describes in section 4.6.2 can by used by the message passing code to
invoke the behaviour. An outline of this mechanism is given below.

% Define class point

:- module(point, []). % class point, no exports

% name type, default access
% value

variable(x, integer, 0, both).
variable(y, integer, 0, both).

% method name predicate name arguments

behaviour(mirro r, mirror, []).

mirror(P) :-
fetch(P, x, X),

SWI-Prolog 3.2 Reference Manual

4.6. META-PREDICATES IN MODULES 111

fetch(P, y, Y),
store(P, y, X),
store(P, x, Y).

The predicates fetch/3 and store/3 are predicates that change instance variables of instances. The
figure below indicates how message passing can easily be implemented:

% invoke(+Instance , +Selector, ?ArgumentList)
% send a message to an instance

invoke(I, S, Args) :-
class_of_instanc e(I, Class),
Class:behaviour(S, P, ArgCheck), !,
convert_argument s(Ar gCheck, Args, ConvArgs),
Goal =.. [P|ConvArgs],
Class:Goal.

The construct Module : Goal explicitly calls Goal in module Module. It is discussed in more detail
in section 3.7.

4.6 Meta-Predicates in Modules

As indicated in the introduction, the problem with a predicate based module system lies in the dif-
ficulty to find the correct predicate from a Prolog term. The predicate ‘solution(Solution)’ can exist
in more than one module, but ‘assert(solution(4))’ in some module is supposed to refer to the correct
version of solution/1.

Various approaches are possible to solve this problem. One is to add an extra argument to all
predicates (e.g. ‘assert(Module, Term)’). Another is to tag the term somehow to indicate which mod-
ule is desired (e.g. ‘assert(Module:Term)’). Both approaches are not very attractive as they make the
user responsible for choosing the correct module, inviting unclear programming by asserting in other
modules. The predicate assert/1 is supposed to assert in the module it is called from and should
do so without being told explicitly. For this reason, the notion context module has been introduced.

4.6.1 Definition and Context Module

Each predicate of the program is assigned a module, called it’s definition module. The definition
module of a predicate is always the module in which the predicate was originally defined. Each active
goal in the Prolog system has a context module assigned to it.

The context module is used to find predicates from a Prolog term. By default, this module is the
definition module of the predicate running the goal. For meta-predicates however, this is the context
module of the goal that invoked them. We call this module transparent in SWI-Prolog. In the ‘using
maplist’ example above, the predicate maplist/3 is declared module transparent. This implies the
context module remains extend , the context module of add extension/3. This way maplist/3
can decide to call extend atom in module extend rather than in it’s own definition module.

All built-in predicates that refer to predicates via a Prolog term are declared module transparent.
Below is the code defining maplist.

SWI-Prolog 3.2 Reference Manual

112 CHAPTER 4. USING MODULES

:- module(maplist , maplist/3).

:- module_transpa re nt maplist/3.

% maplist(+Goal, +List1, ?List2)
% True if Goal can successfully be applied to all succes-
sive pairs
% of elements of List1 and List2.

maplist(_, [], []).
maplist(Goal, [Elem1|Tail1], [Elem2|Tail2]) :-

apply(Goal, [Elem1, Elem2]),
maplist(Goal, Tail1, Tail2).

4.6.2 Overruling Module Boundaries

The mechanism above is sufficient to create an acceptable module system. There are however cases
in which we would like to be able to overrule this schema and explicitly call a predicate in some
module or assert explicitly in some module. The first is useful to invoke goals in some module from
the user’s toplevel or to implement a object-oriented system (see above). The latter is useful to create
and modify dynamic modules (see section 4.7).

For this purpose, the reserved term :/2 has been introduced. All built-in predicates that transform
a term into a predicate reference will check whether this term is of the form ‘ Module : Term ’. If so,
the predicate is searched for in Module instead of the goal’s context module. The : operator may be
nested, in which case the inner-most module is used.

The special calling construct Module : Goal pretends Goal is called from Module instead of the
context module. Examples:

?- assert(world:d one) . % asserts done/0 into module world
?- world:assert(d one) . % the same
?- world:done. % calls done/0 in module world

4.7 Dynamic Modules

So far, we discussed modules that were created by loading a module-file. These modules have been
introduced on facilitate the development of large applications. The modules are fully defined at load-
time of the application and normally will not change during execution. Having the notion of a set of
predicates as a self-contained world can be attractive for other purposes as well. For example, assume
an application that can reason about multiple worlds. It is attractive to store the data of a particular
world in a module, so we extract information from a world simply by invoking goals in this world.

Dynamic modules can easily be created. Any built-in predicate that tries to locate a predicate in a
specific module will create this module as a side-effect if it did not yet exist. Example:

?- assert(world_a :c onsis te nt),
world_a:unknow n(_, fail).

SWI-Prolog 3.2 Reference Manual

4.8. MODULE HANDLING PREDICATES 113

These calls create a module called ‘world a’ and make the call ‘world a:consistent’ succeed. Unde-
fined predicates will not start the tracer or autoloader for this module (see unknown/2).

Import and export from dynamically created world is arranged via the predicates import/1 and
export/1 :

?- world_b:export (s ol ve(_, _)). % exports solve/2 from world_b
?- world_c:import (w or ld_ b: so lv e(_,_)) . % and import it to world_c

4.8 Module Handling Predicates

This section gives the predicate definitions for the remaining built-in predicates that handle modules.

:- module(+Module, +PublicList)
This directive can only be used as the first term of a source file. It declares the file to be a
module file, defining Module and exporting the predicates of PublicList. PublicList is a list of
name/arity pairs.

module transparent +Preds
Preds is a comma separated list of name/arity pairs (like dynamic/1). Each goal associated
with a transparent declared predicate will inherit the context module from its parent goal.

meta predicate +Heads
This predicate is defined in library(quintus) and provides a partial emulation of the Quintus
predicate. See section 4.9.1 for details.

current module(-Module)
Generates all currently known modules.

current module(?Module, ?File)
Is true if File is the file from which Module was loaded. File is the internal canonical filename.
See also source file/[1,2] .

context module(-Module)
Unify Module with the context module of the current goal. context module/1 itself is
transparent.

export(+Head)
Add a predicate to the public list of the context module. This implies the predicate will be
imported into another module if this module is imported with use module/[1,2] . Note
that predicates are normally exported using the directive module/2 . export/1 is meant to
handle export from dynamically created modules.

export list(+Module, ?Exports)
Unifies Exports with a list of terms. Each term has the name and arity of a pub-
lic predicate of Module. The order of the terms in Exports is not defined. See also
predicate property/2 .

SWI-Prolog 3.2 Reference Manual

114 CHAPTER 4. USING MODULES

default module(+Module, -Default)
Succesively unifies Default with the module names from which a call in Module attempts to
use the definition. For the module user , this will generate user and system . For any other
module, this will generate the module itself, followed by user and system .

module(+Module)
The call module(Module) may be used to switch the default working module for the inter-
active toplevel (see prolog/0). This may be used to when debugging a module. The example
below lists the clauses of file of label/2 in the module tex .

1 ?- module(tex).

Yes
tex: 2 ?- listing(file_o f_ lab el /2).
...

4.9 Compatibility of the Module System

The principles behind the module system of SWI-Prolog differ in a number of aspects from the Quin-
tus Prolog module system.

The SWI-Prolog module system allows the user to redefine system predicates.

All predicates that are available in the system and user modules are visible in all other
modules as well.

Quintus has the ‘meta predicate/1 ’ declaration were SWI-Prolog has the
module transparent/1 declaration.

The meta predicate/1 declaration causes the compiler to tag arguments that pass module
sensitive information with the module using the :/2 operator. This approach has some disadvantages:

Changing a meta predicate declaration implies all predicates calling the predicate need to be
reloaded. This can cause serious consistency problems.

It does not help for dynamically defined predicates calling module sensitive predicates.

It slows down the compiler (at least in the SWI-Prolog architecture).

At least within the SWI-Prolog architecture the run-time overhead is larger than the overhead
introduced by the transparent mechanism.

Unfortunately the transparent predicate approach also has some disadvantages. If a predicate
passes module sensitive information to a predicate , passing the same information to a module

sensitive system predicate both and should be declared transparent. Using the Quintus approach
only needs to be treated special (i.e. declared with meta predicate/1)1. A second problem
arises if the body of a transparent predicate uses module sensitive predicates for which it wants to refer
to its own module. Suppose we want to define findall/3 using assert/1 and retract/1 2.
The example in figure 4.1 gives the solution.

1Although this would make it impossible to call directly.
2The system version uses recordz/2 and recorded/3 .

SWI-Prolog 3.2 Reference Manual

4.9. COMPATIBILITY OF THE MODULE SYSTEM 115

:- module(findall , [findall/3]).

:- dynamic
solution/1.

:- module_transpa re nt
findall/3,
store/2.

findall(Var, Goal, Bag) :-
assert(findall:s ol ut io n(’$m ar k’)) ,
store(Var, Goal),
collect(Bag).

store(Var, Goal) :-
Goal, % refers to context module of

% caller of findall/3
assert(findall:s ol ut io n(Var)) ,
fail.

store(_, _).

collect(Bag) :-
...,

Figure 4.1: findall/3 using modules

SWI-Prolog 3.2 Reference Manual

116 CHAPTER 4. USING MODULES

4.9.1 Emulating meta predicate/1

The Quintus meta predicate/1 directive can in many cases be replaced by the transparent dec-
laration. Below is the definition of meta predicate/1 as available from library(quintus).

:- op(1150, fx, (meta_predicat e)).

meta_predicate((H ead, More)) :- !,
meta_predicate1(Head),
meta_predicate(M or e) .

meta_predicate(Head) :-
meta_predicate1(Head).

meta_predicate1 (H ead) :-
Head =.. [Name|Arguments],
member(Arg, Arguments),
module_expansion _arg ument(A rg), !,
functor(Head, Name, Arity),
module_transpare nt (N ame/ Ari ty).

meta_predicate1 (_). % just a mode declaration

module_expansio n_ar gument(:) .
module_expansio n_ar gument(N) :- integer(N).

The discussion above about the problems with the transparent mechanism show the two cases in which
this simple transformation does not work.

SWI-Prolog 3.2 Reference Manual

SWI-Prolog offers a powerful interface to C [Kernighan & Ritchie, 1978]. The main design objectives
of the foreign language interface are flexibility and performance. A foreign predicate is a C-function
that has the same number of arguments as the predicate represented. C-functions are provided to
analyse the passed terms, convert them to basic C-types as well as to instantiate arguments using
unification. Non-deterministic foreign predicates are supported, providing the foreign function with a
handle to control backtracking.

C can call Prolog predicates, providing both an query interface and an interface to extract multiple
solutions from an non-deterministic Prolog predicate. There is no limit to the nesting of Prolog calling
C, calling Prolog, etc. It is also possible to write the ‘main’ in C and use Prolog as an embedded logical
engine.

5.1 Overview of the Interface

A special include file called SWI- Prolog.h should be included with each C-source file that is to be
loaded via the foreign interface. The installation process installs this file in the directory include
in the SWI-Prolog home directory (?- feature(home, Home).). This C-header file defines
various data types, macros and functions that can be used to communicate with SWI-Prolog. Functions
and macros can be divided into the following categories:

Analysing Prolog terms

Constructing new terms

Unifying terms

Returning control information to Prolog

Registering foreign predicates with Prolog

Calling Prolog from C

Recorded database interactions

Global actions on Prolog (halt, break, abort, etc.)

5.2 Linking Foreign Modules

Foreign modules may be linked to Prolog in three ways. Using static linking, the extensions, a small
description file and the basic SWI-Prolog object file are linked together to form a new executable.
Using dynamic linking, the extensions are linked to a shared library (.so file on most Unix systems)

SWI-Prolog 3.2 Reference Manual

118 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

or dynamic-link library (.DLL file on Microsoft platforms) and loaded into the the running Prolog
process.1.

5.2.1 What linking is provided?

The static linking schema can be used on all versions of SWI-Prolog. The feature/2 predicate
may be used to find out what other linking methods are provided for this version.

feature(open shared object, true)
If this succeeds the system provides the open shared object/2 and related predicates that
allow for handling Unix shared object files based on the Unix library functions dlopen(2)
and friends. See section 5.4.

feature(dll, true)
If this succeeds the system provides an interface for loading .DLL files by means of
open dll/2 and friends. See section 5.4.

If either the feature open shared object or dll is true, the library library(shlib)
provides a common interface for loading foreign files from Prolog.

5.2.2 What kind of loading should I be using?

All described approaches have their advantages and disadvantages. Static linking is portable and
allows for debugging on all platforms. It is relatively cumbersome and the libraries you need to pass
to the linker may vary from system to system.

Loading shared objects or DLL files provides sharing and protection and is generally the best
choice. If a saved-state is created using qsave program/[1,2] , an initialization/1 di-
rective may be used to load the appropriate library at startup.

Note that the definition of the foreign predicates is the same, regardless of the linking type used.

5.3 Dynamic Linking of shared libraries

The interface defined in this section allows the user to load shared libraries (.so files on most Unix
systems). This interface is portable to all machines providing the function dlopen(2) or an equiva-
lent, normally from the library -ldl . These functions provide the basic interface layer. It is advised
to use the predicates from section 5.4 in your application.

open shared object(+File, -Handle)
File is the name of a .so file (see your C programmers documentation on how to create a
.so file). This file is attached to the current process and Handle is unified with a handle to
the shared object. Equivalent to open shared object(File, [global], Handle) .
See also load foreign library/[1,2] .

1The system also contains code to load .o files directly for some operating systems, notably Unix systems using the
BSD a.out executable format. As the number of Unix platforms supporting this gets quickly smaller and this interface is
difficult to port and slow, it is no longer described in this manual. The best alternatively would be to use the dld package on
machines do not have shared libraries

SWI-Prolog 3.2 Reference Manual

5.4. USING THE LIBRARY SHLIB FOR .DLL AND .SO FILES 119

open shared object(+File, +Options, -Handle)
As open shared object/2 , but allows for additional flags to be passed. Options is a list of
atoms. now implies the symbols are resolved immediately rather than lazy (default). global
implies symbols of the loaded object are visible while loading other shared objects (by default
they are local). Note that these flags may not be supported by your operating system. Check the
documentation of dlopen() or equivalent on your operating system.

close shared object(+Handle)
Detach the shared object identified by Handle.

call shared object function(+Handle, +Function)
Call the named function in the loaded shared library. The function is called without arguments
and the return-value is ignored. Normally this function installs foreign language predicates
using calls to PL register foreign() .

5.4 Using the library shlib for .DLL and .so files

This section discusses the functionality of the (autoload) library shlib.pl , providing an interface
to shared libraries. Currently it supports MS-Windows DLL (.DLL) libraries and Unix .so (shared
object) files.

load foreign library(+Lib)
Equivalent to load foreign library(Lib, install).

load foreign library(+Lib, +Entry)
Search for the given foreign library and link it to the current SWI-Prolog instance. The library
may be specified with or without the extension. First, absolute file name/3 is used to lo-
cate the file. If this succeeds, the full path is passed to the low-level function to open the library.
Otherwise, the plain library name is passed, exploiting the operating-system defined search
mechanism for the shared library. The file search path/2 alias mechanism defines the
alias foreign , which refers to the directories plhome /lib/ arch and plhome /lib , in
this order.

If the library can be loaded, the function called Entry will be called without arguments. The
return value of the function is ignored.

The Entry function will normally call PL register foreign() to declare functions in the
library as foreign predicates.

unload foreign library(+Lib)
If the foreign library defines the function uninstall(), this function will be called without argu-
ments and its return value is ignored. Next, abolish/2 is used to remove all known foreign
predicates defined in the library. Finally the library itself is detached from the process.

current foreign library(-Lib, -Predicates)
Query the currently loaded foreign libraries and their predicates. Predicates is a
list with elements of the form Module:Head, indicating the predicates installed with
PL register foreign() when the entry-point of the library was called.

Figure 5.1 connects a Windows message-box using a foreign function. This example was tested
using Windows NT and Microsoft Visual C++ 2.0.

SWI-Prolog 3.2 Reference Manual

120 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

#include <windows.h>
#include <SWI-Prolog.h>

static foreign_t
pl_say_hello(te rm_t to)
{ char *a;

if (PL_get_atom_ch ars (t o, &a))
{ MessageBox(NULL , a, "DLL test", MB_OK|MB_TASKMODAL);

PL_succeed;
}

PL_fail;
}

install_t
install()
{ PL_register_for ei gn("s ay _hel lo ", 1, pl_say_hello, 0);
}

Figure 5.1: MessageBox() example in Windows NT

5.4.1 Static Linking

Below is an outline of the files structure required for statically linking SWI-Prolog with foreign ex-
tensions. \ldots/pl refers to the SWI-Prolog home directory (see feature/2). arch refers to
the architecture identifier that may be obtained using feature/2 .

.../pl/runtime/ arch /libpl.a SWI-Library
\ldots/pl/inclu de/S WI- Pr ol og. h Include file
\ldots/pl/inclu de/S WI- St re am.h Stream I/O include file
\ldots/pl/inclu de/S WI- Exports Export declarations (AIX only)
\ldots/pl/inclu de/s tub .c Extension stub

The definition of the foreign predicates is the same as for dynamic linking. Unlike with dynamic
linking however, there is no initialisation function. Instead, the file \ldots/pl/includ e/ st ub.
c may be copied to your project and modified to define the foreign extensions. Below is stub.c,
modified to link the lowercase example described later in this chapter:

/* Copyright (c) 1991 Jan Wielemaker. All rights reserved.
jan@swi.psy.uva .n l

Purpose: Skeleton for extensions
*/

#include <stdio.h>

SWI-Prolog 3.2 Reference Manual

5.4. USING THE LIBRARY SHLIB FOR .DLL AND .SO FILES 121

#include <SWI-Prolog.h>

extern foreign_t pl_lowercase(te rm, term);

PL_extension predicates[] =
{
/*{ "name", arity, function, PL_FA_<flags> },*/

{ "lowercase", 2 pl_lowercase, 0 },
{ NULL, 0, NULL, 0 } /* terminat-

ing line */
};

int
main(int argc, char **argv)
{ PL_register_ext ensi ons (p re di ca tes);

if (!PL_initialise (ar gc , argv))
PL_halt(1);

PL_install_read li ne(); /* delete if not re-
quired */

PL_halt(PL_topl ev el () ? 0 : 1);
}

Now, a new executable may be created by compiling this file and linking it to libpl.a from the runtime
directory and the libraries required by both the extensions and the SWI-Prolog kernel. This may be
done by hand, or using the plld utility described in secrefplld.

5.4.2 Dynamic Linking based on load foreign/[2,5]

The predicates below are considered obsolete. They are briefly described here for compatibility pur-
poses. New code should use the predicates from the library(shlib) .

load foreign(+File, +Entry)
Load a foreign file or list of files specified by File. The files are searched for similar to
consult/1 . Except that the ‘.o ’ extension is used rather than ‘.pl ’.

Entry defines the entry point of the resulting executable. The entry point will be called by
Prolog to install the foreign predicates.

load foreign(+File, +Entry, +Options, +Libraries, +Size)
The first two arguments are identical to those of load foreign/2 . Options is (a list of) ad-
ditional option to be given to the loader. The options are inserted just before the files. Libraries
is (a list of) libraries to be passed to the loader. They are inserted just after the files. If Size
is specified Prolog first assumes that the resulting executable will fit in Size bytes and do the
loading in one pass.

SWI-Prolog 3.2 Reference Manual

122 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

foreign file(?File)
Is true if File is the absolute path name of a file loaded as foreign file.

5.5 Interface Data types

5.5.1 Type term t : a reference to a Prolog term

The principal data-type is term t . Type term t is what Quintus calls QPterm ref . This name
indicates better what the type represents: it is a handle for a term rather than the term itself. Terms
can only be represented and manipulated using this type, as this is the only safe way to ensure the
Prolog kernel is aware of all terms referenced by foreign code and thus allows the kernel to perform
garbage-collection and/or stack-shifts while foreign code is active, for example during a callback from
C.

A term reference is a C unsigned long, representing the offset of a variable on the
Prolog environment-stack. A foreign function is passed term references for the predicate-
arguments, one for each argument. If references for intermediate results are needed,
such references may be created using PL new term ref() or PL new term refs() .
These references normally live till the foreign function returns control back to Pro-
log. Their scope can be explicitly limited using PL open foreign frame() and
PL close foreign frame() /PL discard foreign frame() .

A term t always refers to a valid Prolog term (variable, atom, integer, float or compound term). A
term lives either until backtracking takes us back to a point before the term was created, the garbage
collector has collected the term or the term was created after a PL open foreign frame() and
PL discard foreign frame() has been called.

The foreign-interface functions can either read, unify or write to term-references. In the this
document we use the following notation for arguments of type term t:

term t +t Accessed in read-mode. The ‘+’ indicates the argument is
‘input’.

term t -t Accessed in write-mode.
term t ?t Accessed in unify-mode.

Term references are obtained in any of the following ways.

Passed as argument
The C-functions implementing foreign predicates are passed their arguments as term-references.
These references may be read or unified. Writing to these variables causes undefined behaviour.

Created by PL new term ref()
A term created by PL new term ref() is normally used to build temporary terms or be
written by one of the interface functions. For example, PL get arg() writes a reference to
the term-argument in its last argument.

Created by PL new term refs(int n)
This function returns a set of term refs with the same characteristics as PL new term ref() .
See PL open query() .

Created by PL copy term ref(term t t)
Creates a new term-reference to the same term as the argument. The term may be written to.
See figure 5.3.

SWI-Prolog 3.2 Reference Manual

5.5. INTERFACE DATA TYPES 123

Term-references can safely be copied to other C-variables of type term t, but all copies will always
refer to the same term.

term t PL new term ref()
Return a fresh reference to a term. The reference is allocated on the local stack. Allocating a
term-reference may trigger a stack-shift on machines that cannot use sparse-memory manage-
ment for allocation the Prolog stacks. The returned reference describes a variable.

term t PL new term refs(int n)
Return n new term references. The first term-reference is returned. The others are t , t ,
etc. There are two reasons for using this function. PL open query() expects the arguments
as a set of consecutive term references and very time-critical code requiring a number of term-
references can be written as:

pl_mypredicate(ter m_t a0, term_t a1)
{ term_t t0 = PL_new_term_ref s(2) ;

term_t t1 = t0+1;

...
}

term t PL copy term ref(term t from)
Create a new term reference and make it point initially to the same term as from. This function
is commonly used to copy a predicate argument to a term reference that may be written.

void PL reset term refs(term t after)
Destroy all term references that have been created after after, including after itself. Any refer-
ence to the invalidated term references after this call results in undefined behaviour.

Note that returning from the foreign context to Prolog will reclaim all references used in the
foreign context. This call is only necessary if references are created inside a loop that never exits
back to Prolog. See also PL open foreign frame() , PL close foreign frame()
and PL discard foreign frame() .

Interaction with the garbage collector and stack-shifter

Prolog implements two mechanisms for avoiding stack overflow: garbage collection and stack ex-
pansion. On machines that allow for it, Prolog will use virtual memory management to detect stack
overflow and expand the runtime stacks. On other machines Prolog will reallocate the stacks and up-
date all pointers to them. To do so, Prolog needs to know which data is referenced by C-code. As all
Prolog data known by C is referenced through term references (term t), Prolog has all information
necessary to perform its memory management without special precautions from the C-programmer.

5.5.2 Other foreign interface types

atom t An atom in Prologs internal representation. Atoms are pointers to an opaque structure. They
are a unique representation for represented text, which implies that atom represents the same
text as atom if-and-only-if and are the same pointer.

SWI-Prolog 3.2 Reference Manual

124 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

Atoms are the central representation for textual constants in Prolog The transformation of C a
character string to an atom implies a hash-table lookup. If the same atom is needed often, it is
advised to store its reference in a global variable to avoid repeated lookup.

functor t A functor is the internal representation of a name/arity pair. They are used to find the name
and arity of a compound term as well as to construct new compound terms. Like atoms they
live for the whole Prolog session and are unique.

predicate t Handle to a Prolog predicate. Predicate handles live forever (although they can loose
their definition).

qid t Query Identifier. Used by PL open query() /PL next solution() /PL close query()
to handle backtracking from C.

fid t Frame Identifier. Used by PL open foreign frame() /PL close foreign frame() .

module t A module is a unique handle to a Prolog module. Modules are used only to call predicates
in a specific module.

foreign t Return type for a C-function implementing a Prolog predicate.

control t Passed as additional argument to non-deterministic foreign functions. See PL retry*() and
PL foreign context*().

install t Type for the install() and uninstall() functions of shared or dynamic link libraries. See se-
crefshlib.

5.6 The Foreign Include File

5.6.1 Argument Passing and Control

If Prolog encounters a foreign predicate at run time it will call a function specified in the predicate
definition of the foreign predicate. The arguments arity pass the Prolog arguments to the goal
as Prolog terms. Foreign functions should be declared of type foreign t . Deterministic foreign
functions have two alternatives to return control back to Prolog:

void PL succeed()
Succeed deterministically. PL succeed is defined as return TRUE.

void PL fail()
Fail and start Prolog backtracking. PL fail is defined as return FALSE.

Non-deterministic Foreign Predicates

By default foreign predicates are deterministic. Using the PL FA NONDETERMINISTIC attribute
(see PL register foreign()) it is possible to register a predicate as a non-deterministic predi-
cate. Writing non-deterministic foreign predicates is slightly more complicated as the foreign function
needs context information for generating the next solution. Note that the same foreign function should
be prepared to be simultaneously active in more than one goal. Suppose the natural number below n/2
is a non-deterministic foreign predicate, backtracking over all natural numbers lower than the first ar-
gument. Now consider the following predicate:

SWI-Prolog 3.2 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 125

quotient_below_ n(Q, N) :-
natural_number_b el ow_n(N , N1),
natural_number_b el ow_n(N , N2),
Q =:= N1 / N2, !.

In this predicate the function natural number below n/2 simultaneously generates solutions for both
its invocations.

Non-deterministic foreign functions should be prepared to handle three different calls from Prolog:

Initial call (PL FIRST CALL)
Prolog has just created a frame for the foreign function and asks it to produce the first answer.

Redo call (PL REDO)
The previous invocation of the foreign function associated with the current goal indicated it was
possible to backtrack. The foreign function should produce the next solution.

Terminate call (PL CUTTED)
The choice point left by the foreign function has been destroyed by a cut. The foreign function
is given the opportunity to clean the environment.

Both the context information and the type of call is provided by an argument of type
control t appended to the argument list for deterministic foreign functions. The macro
PL foreign control() extracts the type of call from the control argument. The foreign func-
tion can pass a context handle using the PL retry*() macros and extract the handle from the extra
argument using the PL foreign context*() macro.

void PL retry(long)
The foreign function succeeds while leaving a choice point. On backtracking over this goal the
foreign function will be called again, but the control argument now indicates it is a ‘Redo’ call
and the macro PL foreign context() will return the handle passed via PL retry() .
This handle is a 30 bits signed value (two bits are used for status indication).

void PL retry address(void *)
As PL retry() , but ensures an address as returned by malloc() is correctly recovered by
PL foreign context address() .

int PL foreign control(control t)
Extracts the type of call from the control argument. The return values are described above. Note
that the function should be prepared to handle the PL CUTTEDcase and should be aware that
the other arguments are not valid in this case.

long PL foreign context(control t)
Extracts the context from the context argument. In the call type is PL FIRST CALL the context
value is 0L. Otherwise it is the value returned by the last PL retry() associated with this goal
(both if the call type is PL REDOas PL CUTTED).

void * PL foreign context address(control t)
Extracts an address as passed in by PL retry address() .

SWI-Prolog 3.2 Reference Manual

126 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

typedef struct /* define a context structure */
{ ...
} context;

foreign_t
my_function(ter m_t a0, term_t a1, foreign_t handle)
{ struct context * ctxt;

switch(PL_foreign_contr ol (h andle))
{ case PL_FIRST_CALL:

ctxt = malloc(sizeof(s tr uct context));
...
PL_retry_address (c tx t) ;

case PL_REDO:
ctxt = PL_foreign_cont ex t_a ddre ss (h and le);
...
PL_retry_address (c tx t) ;

case PL_CUTTED:
free(ctxt);
PL_succeed;

}
}

Figure 5.2: Skeleton for non-deterministic foreign functions

Note: If a non-deterministic foreign function returns using PL succeed or PL fail, Prolog assumes
the foreign function has cleaned its environment. No call with control argument PL CUTTEDwill
follow.

The code of figure 5.2 shows a skeleton for a non-deterministic foreign predicate definition.

5.6.2 Atoms and functors

The following functions provide for communication using atoms and functors.

atom t PL new atom(const char *)
Return an atom handle for the given C-string. This function always succeeds. The returned
handle is valid for the entire session.

const char * PL atom chars(atom t atom)
Return a C-string for the text represented by the given atom. The returned text will not be
changed by Prolog. It is not allowed to modify the contents, not even ‘temporary’ as the string
may reside in read-only memory.

functor t PL new functor(atom t name, int arity)
Returns a functor identifier, a handle for the name/arity pair. The returned handle is valid for
the entire Prolog session.

SWI-Prolog 3.2 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 127

atom t PL functor name(functor t f)
Return an atom representing the name of the given functor.

int PL functor arity(functor t f)
Return the arity of the given functor.

5.6.3 Analysing Terms via the Foreign Interface

Each argument of a foreign function (except for the control argument) is of type term t , an opaque
handle to a Prolog term. Three groups of functions are available for the analysis of terms. The first
just validates the type, like the Prolog predicates var/1 , atom/1 , etc and are called PL is *() .
The second group attempts to translate the argument into a C primitive type. These predicates take a
term t and a pointer to the appropriate C-type and return TRUEor FALSEdepending on successful
or unsuccessful translation. If the translation fails, the pointed-to data is never modified.

Testing the type of a term

int PL term type(term t)
Obtain the type of a term, which should be a term returned by one of the other interface pred-
icates or passed as an argument. The function returns the type of the Prolog term. The type
identifiers are listed below. Note that the extraction functions PL ge t*() also validate the
type and thus the two sections below are equivalent.

if (PL_is_atom(t))
{ char *s;

PL_get_atom_ch ar s(t , &s);
...;

}

or

char *s;
if (PL_get_atom_char s(t, &s))
{ ...;
}

PL VARIABLE An unbound variable. The value of term as such is a
unique identifier for the variable.

PL ATOM A Prolog atom.
PL STRING A Prolog string.
PL INTEGER A Prolog integer.
PL FLOAT A Prolog floating point number.
PL TERM A compound term. Note that a list is a compound term

./2 .

The functions PL is type are an alternative to PL term type() . The test
PL is variable(term) is equivalent to PL term type(term) == PL VARIABLE, but

SWI-Prolog 3.2 Reference Manual

128 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

the first is considerably faster. On the other hand, using a switch over PL term type() is faster
and more readable then using an if-then-else using the functions below. All these functions return
either TRUEor FALSE.

int PL is variable(term t)
Returns non-zero if term is a variable.

int PL is atom(term t)
Returns non-zero if term is an atom.

int PL is string(term t)
Returns non-zero if term is a string.

int PL is integer(term t)
Returns non-zero if term is an integer.

int PL is float(term t)
Returns non-zero if term is a float.

int PL is compound(term t)
Returns non-zero if term is a compound term.

int PL is functor(term t, functor t)
Returns non-zero if term is compound and its functor is functor. This test is equivalent to
PL get functor() , followed by testing the functor, but easier to write and faster.

int PL is list(term t)
Returns non-zero if term is a compound term with functor ./2 or the atom [] .

int PL is atomic(term t)
Returns non-zero if term is atomic (not variable or compound).

int PL is number(term t)
Returns non-zero if term is an integer or float.

Reading data from a term

The functions PL get *() read information from a Prolog term. Most of them take two arguments.
The first is the input term and the second is a pointer to the output value or a term-reference.

int PL get atom(term t +t, atom t *a)
If t is an atom, store the unique atom identifier over a. See also PL atom chars() and
PL new atom() . If there is no need to access the data (characters) of an atom, it is advised to
manipulate atoms using their handle.

int PL get atom chars(term t +t, char **s)
If t is an atom, store a pointer to a 0-terminated C-string in s. It is explicitly not allowed to
modify the contents of this string. Some built-in atoms may have the string allocated in read-
only memory, so ‘temporary manipulation’ can cause an error.

SWI-Prolog 3.2 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 129

int PL get string(term t +t, char **s, int *len)
If t is a string object, store a pointer to a 0-terminated C-string in s and the length of the string
in len. Note that this pointer is invalidated by backtracking, garbage-collection and stack-shifts,
so generally the only save operations are to pass it immediately to a C-function that doesn’t
involve Prolog.

int PL get chars(term t +t, char **s, unsigned flags)
Convert the argument term t to a 0-terminated C-string. flags is a bitwise disjunction from two
groups of constants. The first specifies which term-types should converted and the second how
the argument is stored. Below is a specification of these constants. BUF RING implies, if the
data is not static (as from an atom), the data is copied to the next buffer from a ring of four (4)
buffers. This is a convenient way of converting multiple arguments passed to a foreign predicate
to C-strings. If BUF MALLOC is used, the data must be freed using free() when not needed
any longer.

CVT ATOM Convert if term is an atom
CVT STRING Convert if term is a string
CVT LIST Convert if term is a list of integers between 1 and 255
CVT INTEGER Convert if term is an integer (using %d)
CVT FLOAT Convert if term is a float (using %f)
CVT NUMBER Convert if term is a integer or float
CVT ATOMIC Convert if term is atomic
CVT VARIABLE Convert variable to print-name
CVT ALL Convert if term is any of the above, except for variables
BUF DISCARDABLE Data must copied immediately
BUF RING Data is stored in a ring of buffers
BUF MALLOC Data is copied to a new buffer returned by malloc(3)

int PL get list chars(+term t l, char **s, unsigned flags)
Same as PL get chars(l, s, CVT LIST—flags) , provided flags contains no of the CVT *
flags.

int PL get integer(+term t t, int *i)
If t is a Prolog integer, assign its value over i. On 32-bit machines, this is the same as
PL get long() , but avoids a warning from the compiler. See also PL get long() .

int PL get long(term t +t, long *i)
If t is a Prolog integer, assign its value over i. Note that Prolog integers have limited value-
range. If t is a floating point number that can be represented as a long, this function succeeds as
well.

int PL get pointer(term t +t, void **ptr)
In the current system, pointers are represented by Prolog integers, but need some manip-
ulation to make sure they do not get truncated due to the limited Prolog integer range.
PL put pointer() /PL get pointer() guarantees pointers in the range of malloc() are
handled without truncating.

int PL get float(term t +t, double *f)
If t is a float or integer, its value is assigned over f.

SWI-Prolog 3.2 Reference Manual

130 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

int PL get functor(term t +t, functor t *f)
If t is compound or an atom, the Prolog representation of the name-arity pair will be assigned
over f. See also PL get name arity() and PL is functor() .

int PL get name arity(term t +t, atom t *name, int *arity)
If t is compound or an atom, the functor-name will be assigned over name and the arity over
arity. See also PL get functor() and PL is functor() .

int PL get module(term t +t, module t *module)
If t is an atom, the system will lookup or create the corresponding module and assign an opaque
pointer to it over module,.

int PL get arg(int index, term t +t, term t -a)
If t is compound and index is between 1 and arity (including), assign a with a term-reference to
the argument.

int PL get arg(int index, term t +t, term t -a)
Same as PL get arg() , but no checking is performed, nor whether t is actually a term, nor
whether index is a valid argument-index.

Reading a list

The functions from this section are intended to read a Prolog list from C. Suppose we expect a list of
atoms, the following code will print the atoms, each on a line:

foreign_t
pl_write_atoms(te rm_t l)
{ term_t head = PL_new_term_re f(); /* variable for the ele-
ments */

term_t list = PL_copy_term_r ef (l) ; /* copy as we need to write */

while(PL_get_list(lis t, head, list))
{ char *s;

if (PL_get_atom_cha rs (h ead, &s))
Sprintf("%s\n", s);

else
PL_fail;

}

return PL_get_nil(list); /* test end for [] */
}

int PL get list(term t +l, term t -h, term t -t)
If l is a list and not [] assign a term-reference to the head to h and to the tail to t.

int PL get head(term t +l, term t -h)
If l is a list and not [] assign a term-reference to the head to h.

SWI-Prolog 3.2 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 131

int PL get tail(term t +l, term t -t)
If l is a list and not [] assign a term-reference to the tail to t.

int PL get nil(term t +l)
Succeeds if represents the atom [] .

An example: defining write/1 in C

Figure 5.3 shows a simplified definition of write/1 to illustrate the described functions. This sim-
plified version does not deal with operators. It is called display/1 , because it mimics closely the
behaviour of this Edinburgh predicate.

5.6.4 Constructing Terms

Terms can be constructed using functions from the PL put *() and PL cons *() families. This
approach builds the term ‘inside-out’, starting at the leaves and subsequently creating compound
terms. Alternatively, terms may be created ‘top-down’, first creating a compound holding only vari-
ables and subsequently unifying the arguments. This section discusses functions for the first approach.
This approach is generally used for creating arguments for PL call() and PL open query.

void PL put variable(term t -t)
Put a fresh variable in the term. The new variable lives on the global stack. Note that the initial
variable lives on the local stack and is lost after a write to the term-references. After using this
function, the variable will continue to live.

void PL put atom(term t -t, atom t a)
Put an atom in the term reference from a handle. See also PL new atom() and
PL atom chars() .

void PL put atom chars(term t -t, const char *chars)
Put an atom in the term-reference constructed from the 0-terminated string. The string itself
will never be references by Prolog after this function.

void PL put string chars(term t -t, const char *chars)
Put a zero-terminated string in the term-reference. The data will be copied. See also
PL put string nchars() .

void PL put string nchars(term t -t, unsigned int len, const char *chars)

Put a string, represented by a length/start pointer pair in the term-reference. The data will be
copied. This interface can deal with 0-bytes in the string. See also section 5.6.17.

void PL put list chars(term t -t, const char *chars)
Put a list of ASCII values in the term-reference.

void PL put integer(term t -t, long i)
Put a Prolog integer in the term reference.

void PL put pointer(term t -t, void *ptr)
Put a Prolog integer in the term-reference. Provided ptr is in the ‘malloc()-area’,
PL get pointer() will get the pointer back.

SWI-Prolog 3.2 Reference Manual

132 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

foreign_t
pl_display(term _t t)
{ functor_t functor;

int arity, len, n;
char *s;

switch(PL_term_type(t))
{ case PL_VARIABLE:

case PL_ATOM:
case PL_INTEGER:
case PL_FLOAT:

PL_get_chars(t, &s, CVT_ALL);
Sprintf("%s", s);
break;

case PL_STRING:
PL_get_string_c har s(t, &s, &len);
Sprintf("\"%s\" ", s);
break;

case PL_TERM:
{ term_t a = PL_new_term_ref ();

PL_get_name_ari ty(t, &name, &arity);
Sprintf("%s(", PL_atom_chars(na me)) ;
for(n=1; n<=arity; n++)
{ PL_get_arg(n, t, a);

if (n > 1)
Sprintf(", ");

pl_display(a);
}
Sprintf(")");
break;

default:
PL_fail; /* should not happen */

}

PL_succeed;
}

Figure 5.3: A Foreign definition of display/1

SWI-Prolog 3.2 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 133

void PL put float(term t -t, double f)
Put a floating-point value in the term-reference.

void PL put functor(term t -t, functor t functor)
Create a new compound term from functor and bind t to this term. All arguments of the term
will be variables. To create a term with instantiated arguments, either instantiate the arguments
using the PL unify *() functions or use PL cons functor() .

void PL put list(term t -l)
Same as PL put functor(l, PL new functor(PL new atom(”.”), 2)) .

void PL put nil(term t -l)
Same as PL put atom chars(”[]”) .

void PL put term(term t -t1, term t +t2)
Make t1 point to the same term as t2.

void PL cons functor(term t -h, functor t f, . . .)
Create a term, whose arguments are filled from variable argument list holding the same number
of term t objects as the arity of the functor. To create the term animal(gnu, 50) , use:

term_t a1 = PL_new_term_ref () ;
term_t a2 = PL_new_term_ref () ;
term_t t = PL_new_term_ref () ;

PL_put_atom_ch ar s(a1, "gnu");
PL_put_integer (a 2, 50);
PL_cons_functo r(t, PL_new_functor(PL_new_at om(" anim al"), 2),

a1, a2);

After this sequence, the term-references a1 and a2 may be used for other purposes.

void PL cons functor v(term t -h, functor t f, term t a0)
Creates a compound term like PL cons functor() , but a0 is an array of term references
as returned by PL new term refs() . The length of this array should match the number of
arguments required by the functor.

void PL cons list(term t -l, term t +h, term t +t)
Create a list (cons-) cell in l from the head and tail. The code below creates a list of atoms from
a char ** . The list is built tail-to-head. The PL unify *() functions can be used to build
a list head-to-tail.

void
put_list(term_t l, int n, char **words)
{ term_t a = PL_new_term_ref();

PL_put_nil(l);
while(--n >= 0)
{ PL_put_atom_char s(a, words[n]);

SWI-Prolog 3.2 Reference Manual

134 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

PL_cons_list(l, a, l);
}

}

Note that l can be redefined within a PL cons list call as shown here because operationally
its old value is consumed before its new value is set.

5.6.5 Unifying data

The functions of this sections unify terms with other terms or translated C-data structures. Except for
PL unify() , the functions of this section are specific to SWI-Prolog. They have been introduced
to make translation of old code easier, but also because they provide for a faster mechanism for
returning data to Prolog that requires less term-references. Consider the case where we want a foreign
function to return the host name of the machine Prolog is running on. Using the PL get *() and
PL put *() functions, the code becomes:

foreign_t
pl_hostname(ter m_t name)
{ char buf[100];

if (gethostname(bu f, sizeof(buf)))
{ term_t tmp = PL_new_term_ref ();

PL_put_atom_cha rs (tm p, buf);
return PL_unify(name, buf);

}

PL_fail;
}

Using PL unify atom chars() , this becomes:

foreign_t
pl_hostname(ter m_t name)
{ char buf[100];

if (gethostname(bu f, sizeof(buf)))
return PL_unify_atom_c hars (n ame, buf);

PL_fail;
}

int PL unify(term t ?t1, term t ?t2)
Unify two Prolog terms and return non-zero on success.

int PL unify atom(term t ?t, atom t a)
Unify t with the atom a and return non-zero on success.

SWI-Prolog 3.2 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 135

int PL unify atom chars(term t ?t, const char *chars)
Unify t with an atom created from chars and return non-zero on success.

int PL unify list chars(term t ?t, const char *chars)
Unify t with a list of ASCII characters constructed from chars.

void PL unify string chars(term t ?t, const char *chars)
Unify t with a Prolog string object created from the zero-terminated string chars. The data will
be copied. See also PL unify string nchars() .

void PL unify string nchars(term t ?t, unsigned int len, const char *chars)
Unify t with a Prolog string object created from the string created from the len/chars pair. The
data will be copied. This interface can deal with 0-bytes in the string. See also section 5.6.17.

int PL unify integer(term t ?t, long n)
Unify t with a Prolog integer from n.

int PL unify float(term t ?t, double f)
Unify t with a Prolog float from f.

int PL unify pointer(term t ?t, void *ptr)
Unify t with a Prolog integer describing the pointer. See also PL put pointer() and
PL get pointer() .

int PL unify functor(term t ?t, functor t f)
If t is a compound term with the given functor, just succeed. If it is unbound, create a term
and bind the variable, else fails. Not that this function does not create a term if the argument is
already instantiated.

int PL unify list(term t ?l, term t -h, term t -t)
Unify l with a list-cell (./2). If successful, write a reference to the head of the list to h and
a reference to the tail of the list in t. This reference may be used for subsequent calls to this
function. Suppose we want to return a list of atoms from a char ** . We could use the
example described by PL put list() , followed by a call to PL unify() , or we can use
the code below. If the predicate argument is unbound, the difference is minimal (the code based
on PL put list() is probably slightly faster). If the argument is bound, the code below
may fail before reaching the end of the word-list, but even if the unification succeeds, this code
avoids a duplicate (garbage) list and a deep unification.

foreign_t
pl_get_environ(ter m_t env)
{ term_t l = PL_copy_term_ref (e nv);

term_t a = PL_new_term_ref();
extern char **environ;
char **e;

for(e = environ; *e; e++)
{ if (!PL_unify_list(l, a, l) ||

!PL_unify_atom_ ch ars (a , *e))

SWI-Prolog 3.2 Reference Manual

136 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

PL_fail;
}

return PL_unify_nil(l) ;
}

int PL unify nil(term t ?l)
Unify l with the atom [] .

int PL unify arg(int index, term t ?t, term t ?a)
Unifies the index-th argument (1-based) of t with a.

int PL unify term(term t ?t, . . .)
Unify t with a (normally) compound term. The remaining arguments is a sequence of a type
identifier, followed by the required arguments. This predicate is an extension to the Quintus
and SICStus foreign interface from which the SWI-Prolog foreign interface has been derived,
but has proved to be a powerful and comfortable way to create compound terms from C. Due to
the vararg packing/unpacking and the required type-switching this interface is slightly slower
than using the primitives. Please note that some bad C-compilers have fairly low limits on the
number of arguments that may be passed to a function.

The type identifiers are:

PL VARIABLE none
No op. Used in arguments of PL FUNCTOR.

PL ATOMatom t
Unify the argument with an atom, as in PL unify atom() .

PL INTEGERlong
Unify the argument with an integer, as in PL unify integer() .

PL FLOATdouble
Unify the argument with a float, as in PL unify float() . Note that, as the argument
is passed using the C vararg conventions, a float must be casted to a double explicitly.

PL STRINGconst char *
Unify the argument with a string object, as in PL unify string chars() .

PL TERMterm t
Unify a subterm. Note this may the return value of a PL new term ref() call to get
access to a variable.

PL CHARSconst char *
Unify the argument with an atom, constructed from the C char * , as in
PL unify atom chars() .

PL FUNCTORfunctor t, . . .
Unify the argument with a compound term. This specification should be followed by
exactly as many specifications as the number of arguments of the compound term.

PL LIST int length, . . .
Create a list of the indicated length. The following arguments contain the elements of the
list.

SWI-Prolog 3.2 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 137

For example, to unify an argument with the term language(dutch) , the following skeleton
may be used:

static functor_t FUNCTOR_language1;

static void
init_constants()
{ FUNCTOR_language1 = PL_new_functor(PL_new_at om("l anguage"), 1);
}

foreign_t
pl_get_lang(ter m_t r)
{ return PL_unify_term(r ,

PL_FUNCTOR, FUNCTOR_language1,
PL_CHARS, "dutch");

}

install_t
install()
{ PL_register_fore ig n("g et _la ng", 1, pl_get_lang, 0);

init_constants() ;
}

5.6.6 Calling Prolog from C

The Prolog engine can be called from C. There are to interfaces for this. For the first, a term is created
that could be used as an argument to call/1 and next PL call() is used to call Prolog. This
system is simple, but does not allow to inspect the different answers to a non-deterministic goal and
is relatively slow as the runtime system needs to find the predicate. The other interface is based on
PL open query() , PL next solution() and PL cut query() or PL close query() .
This mechanism is more powerful, but also more complicated to use.

Predicate references

This section discusses the functions used to communicate about predicates. Though a Prolog predicate
may defined or not, redefined, etc., a Prolog predicate has a handle that is not destroyed, nor moved.
This handle is known by the type predicate t .

predicate t PL pred(functor t f, module t m)
Return a handle to a predicate for the specified name/arity in the given module. This function
always succeeds, creating a handle for an undefined predicate if no handle was available.

predicate t PL predicate(const char *name, int arity, const char* module)
Same a PL pred() , but provides a more convenient interface to the C-programmer.

void PL predicate info(predicate t p, atom t *n, int *a, module t *m)
Return information on the predicate p. The name is stored over n, the arity over a, while

SWI-Prolog 3.2 Reference Manual

138 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

m receives the definition module. Note that the latter need not be the same as speci-
fied with PL predicate() . If the predicate was imported into the module given to
PL predicate() , this function will return the module where the predicate was defined.

Initiating a query from C

This section discusses the functions for creating and manipulating queries from C. Note that a foreign
context can have at most one active query. This implies it is allowed to make strictly nested calls
between C and Prolog (Prolog calls C, calls Prolog, calls C, etc., but it is not allowed to open multiple
queries and start generating solutions for each of them by calling PL next solution() . Be sure
to call PL cut query() or PL close query() on any query you opened before opening the
next or returning control back to Prolog.

qid t PL open query(module t ctx, int flags, predicate t p, term t +t0)

Opens a query and returns an identifier for it. This function always succeeds, regardless whether
the predicate is defined or not. ctx is the context module of the goal. When NULL, the context
module of the calling context will be used, or user if there is no calling context (as may happen
in embedded systems). Note that the context module only matters for module transparent pred-
icates. See context module/1 and module transparent/1 . The p argument specifies
the predicate, and should be the result of a call to PL pred() or PL predicate() . Note
that it is allowed to store this handle as global data and reuse it for future queries. The term-
reference t0 is the first of a vector of term-references as returned by PL new term refs(n) .

The flags arguments provides some additional options concerning debugging and exception
handling. It is a bitwise or of the following values:

PL Q NORMAL
Normal operation. The debugger inherits its settings from the environment. If an excep-
tion occurs that is not handled in Prolog, a message is printed and the tracer is started to
debug the error.2

PL Q NODEBUG
Switch off the debugger while executing the goal. This option is used by many
calls to hook-predicates to avoid tracing the hooks. An example is print/1 calling
portray/1 from foreign code.

PL Q CATCHEXCEPTION
If an exception is raised while executing the goal, do not report it, but make it available
for PL exception() .

PL Q PASSEXCEPTION
As PL Q CATCHEXCEPTION, but do not invalidate the exception-term while calling
PL close query() . This option is experimental.

The example below opens a query to the predicate is a/2 to find the ancestor of for some name.

2Do not pass the integer 0 for normal operation, as this is interpreted as PL Q NODEBUGfor backward compatibility
reasons.

SWI-Prolog 3.2 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 139

char *
ancestor(const char *me)
{ term_t a0 = PL_new_term_ref s(2) ;

static predicate_t p;

if (!p)
p = PL_predicate(" is _a", 2, "database");

PL_put_atom_char s(a0, me);
PL_open_query(NU LL, PL_Q_NORMAL,p, a0);
...

}

int PL next solution(qid t qid)
Generate the first (next) solution for the given query. The return value is TRUEif a solution
was found, or FALSE to indicate the query could not be proven. This function may be called
repeatedly until it fails to generate all solutions to the query.

void PL cut query(qid)
Discards the query, but does not delete any of the data created by the query. It just invalidate
qid, allowing for a new call to PL open query() in this context.

void PL close query(qid)
As PL cut query() , but all data and bindings created by the query are destroyed.

int PL call predicate(module t m, int flags, predicate t pred, term t +t0)
Shorthand for PL open query() , PL next solution() , PL cut query() , generat-
ing a single solution. The arguments are the same as for PL open query() , the return value
is the same as PL next solution() .

int PL call(term t, module t)
Call term just like the Prolog predicate once/1 . Term is called in the specified module, or in
the context module if module t = NULL. Returns TRUEif the call succeeds, FALSEotherwise.
Figure 5.4 shows an example to obtain the number of defined atoms. All checks are omitted to
improve readability.

5.6.7 Discarding Data

The Prolog data created and term-references needed to setup the call and/or analyse the result can in
most cases be discarded right after the call. PL close query() allows for destructing the data,
while leaving the term-references. The calls below may be used to destroy term-references and data.
See figure 5.4 for an example.

fid t PL open foreign frame()
Created a foreign frame, holding a mark that allows the system to undo bindings and destroy
data created after it as well as providing the environment for creating term-references. This
function is called by the kernel before calling a foreign predicate.

SWI-Prolog 3.2 Reference Manual

140 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

int
count_atoms()
{ fid_t fid = PL_open_foreig n_fr ame() ;

term_t goal = PL_new_term_ref ();
term_t a1 = PL_new_term_ref ();
term_t a2 = PL_new_term_ref ();
functor_t s2 = PL_new_functor(PL_new_at om("s ta ti st ic s") , 2);
int atoms;

PL_put_atom_cha rs (a 1, "atoms");
PL_cons_functor (g oal, s2, a1, a2);
PL_call(goal, NULL); /* call it in current module */

PL_get_integer(a2, &atoms);
PL_discard_fore ig n_fra me(f id);

return atoms;
}

Figure 5.4: Calling Prolog

void PL close foreign frame(fid t id)
Discard all term-references created after the frame was opened. All other Prolog data is retained.
This function is called by the kernel whenever a foreign function returns control back to Prolog.

void PL discard foreign frame(fid t id)
Same as PL close foreign frame() , but also undo all bindings made since the open and
destroy all Prolog data.

It is obligatory to call either of the two closing functions to discard a foreign frame. Foreign
frames may be nested.

5.6.8 Foreign Code and Modules

Modules are identified via a unique handle. The following functions are available to query and ma-
nipulate modules.

module t PL context()
Return the module identifier of the context module of the currently active foreign predicate.

int PL strip module(term t +raw, module t *m, term t -plain)
Utility function. If raw is a term, possibly holding the module construct module : rest this
function will make plain a reference to rest and fill module * with module . For further
nested module constructs the inner most module is returned via module *. If raw is not a
module construct arg will simply be put in plain. If module * is NULL it will be set to the
context module. Otherwise it will be left untouched. The following example shows how to
obtain the plain term and module if the default module is the user module:

SWI-Prolog 3.2 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 141

{ module m = PL_new_module(PL _new_ato m(" us er "));
term_t plain = PL_new_term_re f();

PL_strip_module(te rm, &m, plain);
...

atom t PL module name(module t)
Return the name of module as an atom.

module t PL new module(atom t name)
Find an existing or create a new module with name specified by the atom name.

5.6.9 Prolog exceptions in foreign code

This section discusses PL exception() , PL throw() and PL raise exception() , the
interface functions to detect and generate Prolog exceptions from C-code. PL throw()
and PL raise exception() from the C-interface to raise an exception from foreign
code. PL throw() exploits the C-function longjmp() to return immediately to the innermost
PL next solution() . PL raise exception() registers the exception term and returns
FALSE. If a foreign predicate returns FALSE, while and exception-term is registered a Prolog ex-
ception will be raised by the virtual machine.

Calling these functions outside the context of a function implementing a foreign predicate results
in undefined behaviour.

PL exception() may be used after a call to PL next solution() fails, and returns a term
reference to an exception term if an exception was raised, and 0 otherwise.

If a C-function, implementing a predicate calls Prolog and detects an exception us-
ing PL exception() , it can handle this exception, or return with the exception.
Some caution is required though. It is not allowed to call PL close query() or
PL discard foreign frame() afterwards, as this will invalidate the exception term. Below
is the code that calls a Prolog defined arithmetic function (see arithmethic function/1).

If PL next solution() succeeds, the result is analysed and translated to a number, after
which the query is closed and all Prolog data created after PL open foreign frame() is de-
stroyed. On the other hand, if PL next solution() fails and if an exception was raised, just
pass it. Otherwise generate an exception (PL error() is an internal call for building the standard
error terms and calling PL raise exception()). After this, the Prolog environment should be
discarded using PL cut query() and PL close foreign frame() to avoid invalidating the
exception term.

static int
prologFunction(Ar it hFunc ti on f, term_t av, Number r)
{ int arity = f->proc->defin it io n-> fu nc to r- >ar it y;

fid_t fid = PL_open_foreig n_fr ame() ;
qid_t qid;
int rval;

qid = PL_open_query(NU LL, PL_Q_NORMAL, f->proc, av);

SWI-Prolog 3.2 Reference Manual

142 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

if (PL_next_soluti on(qi d))
{ rval = valueExpression (a v+ar ity -1 , r);

PL_close_query(qi d);
PL_discard_fore ig n_f ra me(f id);

} else
{ term_t except;

if ((except = PL_exception(qid)))
{ rval = PL_throw(except); /* pass exception */
} else
{ char *name = stringAtom(f->pr oc -> defi nit io n- >f uncto r- >name) ;

/* generate exception */
rval = PL_error(name, arity-1, NULL, ERR_FAILED, f->proc);

}

PL_cut_query(qi d) ; /* donot destroy data */
PL_close_foreig n_fra me(f id); /* same */

}

return rval;
}

int PL raise exception(term t exception)
Generate an exception (as throw/1) and return FALSE. Below is an example returning an
exception from foreign predicate:

foreign_t
pl_hello(term_t to)
{ char *s;

if (PL_get_atom_cha rs (t o, &s))
{ Sprintf("Hello \"%s\"\n", s);

PL_succeed;
} else
{ term_t except = PL_new_term_ref () ;

PL_unify_term(ex ce pt ,
PL_FUNCTOR, PL_new_functor (P L_new_ato m("t ype _err or ") , 2),

PL_CHARS, "atom",
PL_TERM, to);

return PL_raise_except ion (e xc ept) ;
}

}

SWI-Prolog 3.2 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 143

int PL throw(term t exception)
Similar to PL raise exception() , but returns using the C longjmp() function to the in-
nermost PL next solution() .

term t PL exception(qid t qid)
If PL next solution() fails, this can be due to normal failure of the Prolog call, or because
an exception was raised using throw/1 . This function returns a handle to the exception term
if an exception was raised, or 0 if the Prolog goal simply failed.3.

5.6.10 Miscellaneous

Term Comparison

int PL compare(term t t1, term t t2)
Compares two terms using the standard order of terms and returns -1, 0 or 1. See also
compare/3 .

Recorded database

The interface functions below provide for efficient management of Prolog terms in the Prolog
database. They provide an alternative to calling asserta/1 or recorda/3 or friends.

record t PL record(term t +t)
Record the term t into the Prolog database as recorda/3 and return an opaque handle to the
term. The returned handle remains valid until PL erase() is called on it. PL recorded()
is used to copy recorded terms back to the Prolog stack.

void PL recorded(record t record, term t -t)
Copy a recorded term back to the Prolog stack. The same record may be used to copy multiple
instances at any time to the Prolog stack. See also PL record() and PL erase() .

void PL erase(record t record)
Remove the recorded term from the Prolog database, reclaiming all associated memory re-
sources.

5.6.11 Catching Signals (Software Interrupts)

SWI-Prolog offers both a C and Prolog interface to deal with software interrupts (signals). The Prolog
mapping is defined in section 3.9. This subsection deals with handling signals from C.

If a signal is not used by Prolog and the handler does not call Prolog in any way, the native signal
interface routines may be used.

Some versions of SWI-Prolog, notably running on popular Unix platforms, handle SIG SEGV
for guarding the Prolog stacks. If the application whishes to handle this signal too, it should use
PL signal() to install its handler after initialisating Prolog. SWI-Prolog will pass SIG SEGVto
the user code if it detected the signal is not related to a Prolog stack overflow.

Any handler that wishes to call one of the Prolog interface functions should call PL signal()
for its installation.

3This interface differs in two ways from Quintus. The calling predicates simp,y signal failure if an exception was raised,
and a term referenced is returned, rather passed and filled with the error term. Exceptions can only be handled using the
PL next solution() interface, as a handle to the query is required

SWI-Prolog 3.2 Reference Manual

144 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

void (*)() PL signal(sig, func)
This function is equivalent to the BSD-Unix signal() function, regardless of the platform used.
The signal handler is blocked while the signal routine is active, and automatically reactivated
after the handler returns.

After a signal handler is registered using this function, the native signal interface redirects the
signal to a generic signal handler inside SWI-Prolog. This generic handler validates the en-
vironment, creates a suitable environment for calling the interface functions described in this
chapter and finally calls the registered user-handler.

5.6.12 Errors and warnings

PL warning() prints a standard Prolog warning message to the standard error (user error)
stream. Please note that new code should consider using PL raise exception() to raise a Prolog
exception. See also section 3.8.

int PL warning(format, a1, . . .)
Print an error message starting with ‘[WARNING: ’, followed by the output from format,
followed by a ‘] ’ and a newline. Then start the tracer. format and the arguments are the
same as for printf(2) . Always returns FALSE.

5.6.13 Environment Control from Foreign Code

int PL action(int, ...)
Perform some action on the Prolog system. int describes the action, Remaining arguments
depend on the requested action. The actions are listed in table 5.1.

5.6.14 Querying Prolog

C type PL query(int)
Obtain status information on the Prolog system. The actual argument type depends on the infor-
mation required. int describes what information is wanted. The options are given in table 5.2.

5.6.15 Registering Foreign Predicates

int PL register foreign(name, arity, function, flags)
Register a C-function to implement a Prolog predicate. After this call returns successfully a
predicate with name name (a char *) and arity arity (a C int) is created. When called in Prolog,
Prolog will call function. flags forms bitwise or’ed list of options for the installation. These are:

PL FA NOTRACE Predicate cannot be seen in the tracer
PL FA TRANSPARENT Predicate is module transparent
PL FA NONDETERMINISTIC Predicate is non-deterministic. See also PL retry() .

void PL register extensions(PL extension *e)
Register foreign predicates from a table of structures. The type PL extension is defined as:

typedef struct _PL_extension
{ char *predicate_name ; /* Name of the predicate */

short arity; /* Arity of the predicate */

SWI-Prolog 3.2 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 145

PL ACTION TRACE Start Prolog tracer (trace/0). Requires no arguments.
PL ACTION DEBUG Switch on Prolog debug mode (debug/0). Requires no

arguments.
PL ACTION BACKTRACE Print backtrace on current output stream. The argument

(an int) is the number of frames printed.
PL ACTION HALT Halt Prolog execution. This action should be called rather

than Unix exit() to give Prolog the opportunity to clean up.
This call does not return. The argument (an int) is the exit
code. See halt/1 .

PL ACTION ABORT Generate a Prolog abort (abort/0). This call does not
return. Requires no arguments.

PL ACTION BREAK Create a standard Prolog break environment (break/0).
Returns after the user types the end-of-file character. Re-
quires no arguments.

PL ACTION GUIAPP Win32: Used to indicate the kernel that the application is
a GUI application if the argument is not 0 and a console
application if the argument is 0. If a fatal error occurs,
the system uses a windows messagebox to report this on
a GUI application and simply prints the error and exits
otherwise.

PL ACTION WRITE Write the argument, a char * to the current output
stream.

PL ACTION FLUSH Flush the current output stream. Requires no arguments.

Table 5.1: PL action() options

PL QUERYARGC Return an integer holding the number of arguments given
to Prolog from Unix.

PL QUERYARGV Return a char ** holding the argument vector given to Pro-
log from Unix.

PL QUERYSYMBOLFILE Return a char * holding the current symbol file of the run-
ning process.

PL MAXINTEGER Return a long, representing the maximal integer value rep-
resented by a Prolog integer.

PL MIN INTEGER Return a long, representing the minimal integer value.
PL QUERYVERSION Return a long, representing the version as

, where is the major, the minor version
number and the patch-level. For example, 20717 means
2.7.17 .

Table 5.2: PL query() options

SWI-Prolog 3.2 Reference Manual

146 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

pl_function_t function; /* Implementing functions */
short flags; /* Or of PL_FA_... */

} PL_extension;

Here is an example of its usage:

static PL_extension predicates[] = {
{ "foo", 1, pl_foo, 0 },
{ "bar", 2, pl_bar, PL_FA_NONDETERMINISTI C },
{ NULL, 0, NULL, 0 }
};

main(int argc, char **argv)
{ PL_register_exte ns io ns (p red ic at es);

if (!PL_initialise(ar gc , argv))
PL_halt(1);

...
}

The function PL register extensions() is the only PL * function that may be called
before PL initialise() . The functions are registered after registration of the SWI-
Prolog builtin foreign predicates and before loading the initial saved state. This implies that
initialization/ 1 directives can refer to them.

5.6.16 Foreign Code Hooks

For various specific applications some hooks re provided.

PL dispatch hook t PL dispatch hook(PL dispatch hook t)
If this hook is not NULL, this function is called when reading from the terminal. It is sup-
posed to dispatch events when SWI-Prolog is connected to a window environment. It can re-
turn two values: PL DISPATCHINPUT indicates Prolog input is available on file descriptor
0 or PL DISPATCHTIMEOUTto indicate a timeout. The old hook is returned. The type
PL dispatch hook t is defined as:

typedef int (*PL_dispatch_ho ok _t)(vo id) ;

void PL abort hook(PL abort hook t)
Install a hook when abort/0 is executed. SWI-Prolog abort/0 is implemented using C
setjmp()/longjmp() construct. The hooks are executed in the reverse order of their registra-
tion after the longjmp() took place and before the Prolog toplevel is reinvoked. The type
PL abort hook t is defined as:

typedef void (*PL_abort_hook_ t) (v oi d) ;

SWI-Prolog 3.2 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 147

int PL abort unhook(PL abort hook t)
Remove a hook installed with PL abort hook() . Returns FALSE if no such hook is found,
TRUEotherwise.

5.6.17 Storing foreign data

This section provides some hints for handling foreign data in Prolog. With foreign data, we refer to
data that is used by foreign language predicates and needs to be passed around in Prolog. Excluding
combinations, there are three principal options for storing such data

Natural Prolog data
E.i. using the representation one would choose if there was no foreign interface required.

Opaque packed Prolog data
Data can also be represetented in a foreign structure and stored on the Prolog stacks using
PL put string nchars() and retrieved using PL get string chars() . It is gener-
ally good practice to wrap the string in a compound term with arity 1, so Prolog can identify the
type. portray/1 rules may be used to streamline printing such terms during development.

Natural foreign data, passing a pointer
An alternative is to pass a pointer to the foreign data. Again, this functor may be wrapped in a
compound term.

The choice may be guided using the following distinctions

Is the data opaque to Prolog
With ‘opaque’ data, we refer to data handled in foreign functions, passed around in Prolog, but
of which Prolog never examines the contents of the data itself. If the data is opaque to Prolog,
the choosen representation does not depend on simple analysis by Prolog, and the selection will
be driven solely by simplicity of the interface and performance (both in time and space).

How big is the data
Is effient encoding required? For examine, a boolean aray may be expressed as a compound
term, holding integers each of which contains a number of bits, or as a list of true and false .

What is the nature of the data
For examples in C, constants are often expressed using ‘enum’ or #define’d integer values. If
prolog needs to handle this data, atoms are a more logical choice. Whether or not this mapping
is used depends on whether Prolog needs to interpret the data, how important debugging is and
how important performance is.

What is the lifetime of the data
We can distinguish three cases.

1. The lifetime is dictated by the accesibility of the data on the Prolog stacks. Their is no
way by which the foreign code when the data becomes ‘garbage’, and the data thus needs
to be represented on the Prolog stacks using Prolog data-types. (2),

2. The data lives on the ‘heap’ and is explicitly allocated and deallocated. In this case,
representing the data using native foreign representation and passing a pointer to it is a
sensible choice.

SWI-Prolog 3.2 Reference Manual

148 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

3. The data lives as during the lifetime of a foreign predicate. If the predicate is deterministic,
foreign automatic variables are suitable. if the predicate is non-deterministic, the data may
be allocated using malloc() and a pointer may be passed. See section 5.6.1.

Examples for storing foreign data

In this section, we wull outline some examples, covering typical cases. In the first example, we will
deal with extending Prolog’s data representation with integer-sets, represented as bit-vectors. In the
second example, we look at handling a ‘netmask’. Finally, we discuss the outline of the DDE interface.

Integer sets with not-to-far-apart upper- and lower-bounds can be represented using bit-vectors.
Common set operations, such as union, intersection, etc. are reduced to simple and’ing and or’ing the
bitvectors. This can be done in Prolog, using a compound term holding integer arguments. Especially
if the integers are kept below the maximum tagged integer value (see feature/2), this representa-
tion is fairly space-efficient (wasting 1 word for the functor and and 7 bits per integer for the tags).
Arithmetic can all be performed in Prolog too.

For really demanding applications, foreign representation will perform better, especially time-
wise. Bit-vectors are natrually expressed using string objects. If the string is wrapped in
bitvector/1 , lower-bound of the vector is 0, and the upperbound is not defined, an implemen-
tation for getting and putting the setes as well as the union predicate for it is below.

#include <SWI-Prolog.h>

#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))

static functor_t FUNCTOR_bitvect or1 ;

static int
get_bitvector(t er m_t in, int *len, unsigned char **data)
{ if (PL_is_functor(in, FUNCTOR_bitvec to r1))

{ term_t a = PL_new_term_ref () ;

PL_get_arg(1, in, a);
return PL_get_string(a , (char **)data, len);

}

PL_fail;
}

static int
unify_bitvector (t er m_t out, int len, const unsigned char *data)
{ if (PL_unify_funct or(out, FUNCTOR_bitvec tor 1))

{ term_t a = PL_new_term_ref () ;

PL_get_arg(1, out, a);

SWI-Prolog 3.2 Reference Manual

5.6. THE FOREIGN INCLUDE FILE 149

return PL_unify_string _nch ar s(a , len, (const char *)data);
}

PL_fail;
}

static foreign_t
pl_bitvector_un io n(te rm_t t1, term_t t2, term_t u)
{ unsigned char *s1, *s2;

int l1, l2;

if (get_bitvector(t1, &l1, &s1) &&
get_bitvector(t2, &l2, &s2))

{ int l = max(l1, l2);
unsigned char *s3 = alloca(l);

if (s3)
{ int n;

int ml = min(l1, l2);

for(n=0; n<ml; n++)
s3[n] = s1[n] | s2[n];

for(; n < l1; n++)
s3[n] = s1[n];

for(; n < l2; n++)
s3[n] = s2[n];

return unify_bitvector (u , l, s3);
}

return PL_warning("Not enough memory");
}

PL_fail;
}

install_t
install()
{ PL_register_for ei gn("b it ve ct or _un io n" , 3, pl_bitvector_un io n, 0);

FUNCTOR_bitvect or 1 = PL_new_functor (P L_new_ato m("b it vec to r"), 1);
}

Netmask’s are used with TCP/IP configuration. Suppose we have an application dealing with rea-
soning about a network configuration. Such an application requires communicating netmask struc-

SWI-Prolog 3.2 Reference Manual

150 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

tures from the operating system, reasoning about them and possibly communicate them to the user.
A netmask consists of 4 bitmasks between 0 and 255. C-application normally see them as an 4-byte
wide unsigned integer. SWI-Prolog cannot do that, as integers are always signed.

We could use the string approach outlined above, but this makes it hard to handle these terms
in Prolog. A better choice is a compound term netmask/4 , holding the 4 submasks as integer
arguments.

As the implementation is trivial, we will omit this here.

The DDE interface (see section 3.43) represents another common usage of the foreign interface:
providing communication to new operating system features. The DDE interface requires knowledge
about active DDE server and client channels. These channels contains various foreign data-types.
Such an interface is normally achieved using an open/close protocol that creates and destroys a handle.
The handle is a reference to a foreign data-structure containing the relevant information.

There are a couple of possibilities for representing the handle. The choice depends on respon-
sibilities and debugging facilities. The simplest aproach is to using PL unify pointer() and
PL get pointer() . This approach is fast and easy, but has the drawbacks of (untyped) point-
ers: there is no reliable way to detect the validity of the pointer, not to verify it is pointing to a
structure of the desired type. The pointer may be wrapped into a compound term with arity 1 (i.e.
dde channel(Pointer)), making the type-problem less serious.

Alternatively (used in the DDE interface), the interface code can maintain a (preferably variable
length) array of pointers and return the index in this array. This provides better protection. Especially
for debugging purposes, wrapping the handle in a compound is a good suggestion.

5.6.18 Embedding SWI-Prolog in a C-program

As of version 2.1.0, SWI-Prolog may be embedded in a C-program. To reach at a compiled C-program
with SWI-Prolog as an embedded application is very similar to creating a statically linked SWI-Prolog
executable as described in section 5.4.1.

The file \ldots/pl/inclu de/s tub .c defines SWI-Prologs default main program:

int
main(int argc, char **argv)
{ if (!PL_initialise (ar gc , argv))

PL_halt(1);

PL_install_read li ne(); /* delete if you don’t want read-
line */

PL_halt(PL_topl ev el () ? 0 : 1);
}

This may be replaced with your own main C-program. The interface function PL initialise()
must be called before any of the other SWI-Prolog foreign language functions described in this chap-
ter. PL initialise() interprets all the command-line arguments, except for the -t toplevel

flag that is interpreted by PL toplevel() .

int PL initialise(int argc, char **argv, char **environ)
Initialises the SWI-Prolog heap and stacks, restores the boot QLF file, loads the system and

SWI-Prolog 3.2 Reference Manual

5.7. LINKING EMBEDDED APPLICATIONS USING PLLD 151

personal initialisation files, runs the at initialization /1 hooks and finally runs the
-g goal hook.

PL initialise() returns 1 if all initialisation succeeded and 0 otherwise. Various fatal
errors may cause PL initialise to call PL halt(1) , preventing it from returning at all.

void PL install readline()
Installs the GNU-readline line-editor. Embedded applications that do not use the Prolog toplevel
should normally delete this line, shrinking the Prolog kernel significantly.

int PL toplevel()
Runs the goal of the -t toplevel switch (default prolog/0) and returns 1 if successful,
0 otherwise.

void PL halt(int status)
Cleanup the Prolog environment and calls exit() with the status argument.

5.7 Linking embedded applications using plld

The utility program plld (Win32: plld.exe) may be used to link a combination of C-files and Prolog
files into a stand-alone executable. plld automates most of what is described in the previous sections.

In the normal usage, a copy is made of the default embedding template \ldots/pl/inclu de/
stub.c . The main() routine is modified to suit your application. PL initialise() must
be passed the program-name (argv[0]) (Win32: the executing program can be obtained using
GetModuleFileNa me()). The other elements of the command-line may be modified. Next, plld
is typically invoked as:

plld -o output stubfile.c [other-c-or-o-f il es] [plfiles]

plld will first split the options into various groups for both the C-compiler and the Prolog compiler.
Next, it will add various default options to the C-compiler and call it to create an executable holding
the user’s C-code and the Prolog kernel. Then, it will call the SWI-Prolog compiler to create a saved
state from the provided Prolog files and finally, it will attach this saved state to the created emulator
to create the requested executable.

Below, it is described how the options are split and which additional options are passed.

-help
Print brief synopsis.

-pl prolog
Select the prolog to use. This prolog is used for two purposes: get the home-directory as well
as the compiler/linker options and create a saved state of the Prolog code.

-ld linker
Linker used to link the raw executable. Default is to use the C-compiler (Win32: link.exe).

-cc C-compiler
Compiler for .c files found on the commandline. Default is the compiler used to build SWI-
Prolog (see feature/2) (Win32: cl.exe).

SWI-Prolog 3.2 Reference Manual

152 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

-c++ C++-compiler
Compiler for C++ sources (extensions .cpp , .cxx , .cc or .C) files found on the command-
line. Default is c++ or g++ if the C-compiler is gcc) (Win32: cl.exe).

-nostate
Just relink the kernel, do not add any Prolog code to the new kernel. This is used to create a
new kernel holding additional foreign predicates on machines that do not support the shared-
library (DLL) interface, or if building the state cannot be handled by the default procedure used
by plld . In the latter case the state is created seperately and appended to the kernel using
cat kernel state > out (Win32: copy /b kernel + state out)

-pl-options ,. . .
Additional options passed to Prolog when creating the saved state. The first character immedi-
ately following pl-options is used as separator and translated to spaces when the argument
is built. Example: -pl-options,-F, xp ce passed -F xpce as additional flags to Prolog.

-ld-options ,. . .
Passes options to the linker, similar to -pl-options .

-cc-options ,. . .
Passes options to the C/C++ compiler, similar to -pl-options .

-v
Select verbose operation, showing the various programs and their options.

-o outfile
Reserved to specify the final output file.

-llibrary
Specifies a library for the C-compiler. By default, -lpl (Win32: libpl.lib) and the libraries
needed by the Prolog kernel are given.

-Llibrary-directory
Specifies a library directory for the C-compiler. By default the directory containing the Prolog
C-library for the current architecture is passed.

-g -I include-directory -Ddefinition

These options are passed to the C-compiler. By default, the include directory containing
SWI- Prolog.h is passed. plld adds two additional * -Ddef flags:

-D SWI PROLOG
Indicates the code is to be connected to SWI-Prolog.

-D SWI EMBEDDED
Indicates the creation of an embedded program.

*.o *.c *.C *.cxx *.cpp
Passed as input files to the C-compiler

*.pl *.qlf
Passed as input files to the Prolog compiler to create the saved-state.

SWI-Prolog 3.2 Reference Manual

5.8. EXAMPLE OF USING THE FOREIGN INTERFACE 153

*

I.e. all other options. These are passed as linker options to the C-compiler.

5.7.1 A simple example

The following is a very simple example going through all the steps outlined above. It provides an
arithmetic expression evaluator. We will call the application calc and define it in the files calc.c
and calc.pl . The Prolog file is simple:

calc(Atom) :-
term_to_atom(Exp r, Atom),
A is Expr,
write(A),
nl.

The C-part of the application parses the command-line options, initialises the Prolog engine, locates
the calc/1 predicate and calls it. The coder is in figure 5.5.
The application is now created using the following command-line:

% plld -o calc calc.c calc.pl

The following indicates the usage of the application:

% calc pi/2
1.5708

5.8 Example of Using the Foreign Interface

Below is an example showing all stages of the declaration of a foreign predicate that transforms atoms
possibly holding uppercase letters into an atom only holding lower case letters. Figure 5.6 shows the
C-source file, figure 5.7 illustrates compiling and loading of foreign code.

SWI-Prolog 3.2 Reference Manual

154 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

#include <stdio.h>
#include <SWI-Prolog.h>

#define MAXLINE 1024

int
main(int argc, char **argv)
{ char expression[MAX LIN E] ;

char *e = expression;
char *program = argv[0];
char *plav[2];
int n;

/* combine all the arguments in a single string */

for(n=1; n<argc; n++)
{ if (n != 1)

*e++ = ’ ’;
strcpy(e, argv[n]);
e += strlen(e);

}

/* make the argument vector for Prolog */

plav[0] = program;
plav[1] = NULL;

/* initialise Prolog */

if (!PL_initialise (1, plav))
PL_halt(1);

/* Lookup calc/1 and make the arguments and call */

{ predicate_t pred = PL_predicate(" ca lc ", 1, "user");
term_t h0 = PL_new_term_re fs (1) ;
int rval;

PL_put_atom_cha rs (h0 , expression);
rval = PL_call_predica te (N ULL, PL_Q_NORMAL,pred, h0);

PL_halt(rval ? 0 : 1);
}

return 0;
}

Figure 5.5: C-source for the calc application
SWI-Prolog 3.2 Reference Manual

5.8. EXAMPLE OF USING THE FOREIGN INTERFACE 155

/* Include file depends on local installation */
#include <SWI-Prolog.h>
#include <stdlib.h>
#include <ctype.h>

foreign_t
pl_lowercase(te rm_t u, term_t l)
{ char *copy;

char *s, *q;
int rval;

if (!PL_get_atom_c har s(u, &s))
return PL_warning("low er ca se /2: instantiation fault");

copy = malloc(strlen(s)+ 1) ;

for(q=copy; *s; q++, s++)
*q = (isupper(*s) ? tolower(*s) : *s);

*q = ’\0’;

rval = PL_unify_atom_c hars (l , copy);
free(copy);

return rval;
}

install_t
install()
{ PL_register_for ei gn("l ower ca se ", 2, pl_lowercase, 0);
}

Figure 5.6: Lowercase source file

SWI-Prolog 3.2 Reference Manual

156 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

% gcc -I/usr/local/li b/p l- \p lv er sio n/ in cl ude -fpic -c lowercase.c
% gcc -shared -o lowercase.so lowercase.o
% pl
Welcome to SWI-Prolog (Version \plversion)
Copyright (c) 1993-1996 University of Amsterdam. All rights reserved.

For help, use ?- help(Topic). or ?- apropos(Word).

1 ?- load_foreign_l ib rar y(lo werc ase).

Yes
2 ?- lowercase(’Hel lo World!’, L).

L = ’hello world!’

Yes

Figure 5.7: Compiling the C-source and loading the object file

SWI-Prolog 3.2 Reference Manual

5.9. NOTES ON USING FOREIGN CODE 157

5.9 Notes on Using Foreign Code

5.9.1 Memory Allocation

SWI-Prolog’s memory allocation is based on the malloc(3) library routines. Foreign applications
can safely use malloc(3) , realloc(3) and free(3) . Memory allocation using brk(2) or
sbrk(2) is not allowed as these calls conflict with malloc(3) .

5.9.2 Debugging Foreign Code

Statically linked foreign code or embedded systems can be debugged normally. Most modern envi-
ronments provide debugging tools for dynamically loaded shared objects or dynamic load libraries.
The following example traces the code of lowercase using gdb(1) in a Unix environment.

% gcc -I/usr/local/li b/p l- 2. 2. 0/ inc lu de -fpic -c -g lowercase.c
% gcc -shared -o lowercase.so lowercase.o
% gdb pl
(gdb) r
Welcome to SWI-Prolog (Version \plversion)
Copyright (c) 1993-1996 University of Amsterdam. All rights reserved.

For help, use ?- help(Topic). or ?- apropos(Word).

?- load_foreign_l ib ra ry(lo werc as e).
<type Control-C>
(gdb) shared % loads symbols for shared objects
(gdb) break pl_lowercase
(gdb) continue
?- lowercase(’HEL LO’, X).

5.9.3 Name Conflicts in C modules

In the current version of the system all public C functions of SWI-Prolog are in the symbol table.
This can lead to name clashes with foreign code. Someday I should write a program to strip all these
symbols from the symbol table (why does Unix not have that?). For now I can only suggest to give
your function another name. You can do this using the C preprocessor. If—for example—your foreign
package uses a function warning(), which happens to exist in SWI-Prolog as well, the following macro
should fix the problem.

#define warning warning_

Note that shared libraries do not have this problem as the shared library loader will only look for
symbols in the main executable for symbols that are not defined in the library itself.

5.9.4 Compatibility of the Foreign Interface

The term-reference mechanism was first used by Quintus Prolog version 3. SICStus Prolog version 3
is strongly based on the Quintus interface. The described SWI-Prolog interface is similar to using the

SWI-Prolog 3.2 Reference Manual

158 CHAPTER 5. FOREIGN LANGUAGE INTERFACE

Quintus or SICStus interfaces, defining all foreign-predicate arguments of type +term . SWI-Prolog
explicitly uses type functor t , while Quintus and SICStus uses name and arity . As the names
of the functions differ from Prolog to Prolog, a simple macro layer dealing with the names can also
deal with this detail. For example:

#define QP_put_functor(t , n, a) PL_put_functor(t , PL_new_functor(n, a))

The PL unify *() functions are lacking from the Quintus and SICStus interface. They can easily
be emulated or the put/unify approach should be used to write compatible code.

The PL open foreign frame() /PL close foreign frame() combination is
lacking from both other Prologs. SICStus has PL new term refs(0) , followed by
PL reset term refs() that allows for discarding term references.

The Prolog interface for the graphical user interface package XPCE shares about 90% of the code
using a simple macro layer to deal with different naming and calling conventions of the interfaces.

SWI-Prolog 3.2 Reference Manual

This chapter describes the features of SWI-Prolog for delivering applications that can run without the
development version of the system installed.

A SWI-Prolog runtime executable is a file consisting of two parts. The first part is the emulator,
which is machine dependent. The second part is the resource archive, which contains the compiled
program in a machine-independent format, startup options and possibly user-defined resources, see
resource/3 and open resource/3 .

These two parts can be connected in various different ways. The most common way for distributed
runtime applications is to concatenate the two parts. This can be achieved using external commands
(Unix: cat , Windows: copy), or using the stand alone option to qsave program/2 . The
second option is to attach a startup script in front of the resource that starts the emulator with the
proper options. This is the default under Unix. Finally, an emulator can be told to use a specified
resource file using the -x commandline switch.

qsave program(+File, +ListOfOptions)
Saves the current state of the program to the file File. The result is a resource archive contain-
ing a saved-state that expresses all Prolog data from the running program and all user-defined
resources. Depending on the stand alone option, the resource is headed by the emulator, a
Unix shell-script or nothing.

ListOfOptions is a list of Key Value or Key Value pairs. The available keys are
described in table 6.1.

Before writing the data to file, qsave program/2 will run autoload/0 to all required
autoloading the system can discover. See autoload/0 .

Provided the application does not require any of the Prolog libraries to be loaded at runtime, the
only file from the SWI-Prolog development environment required is the emulator itself. The
emulator may be built in two flavours. The default is the development emulator. The runtime
emulator is similar, but lacks the tracer.

If the option stand alone(on) is present, the emulator is the first part of the state. If the
emulator is started it will test whether a boot-file (state) is attached to the emulator itself and
load this state. Provided the application has all libraries loaded, the resulting executable is
completely independent of the runtime environment or location where it was build.

See also section 2.10.2.

qsave program(+File)
Equivalent to qsave program(File, []) .

autoload
Check the current Prolog program for predicates that are referred to, are undefined and have a
definition in the Prolog library. Load the appropriate libraries.

SWI-Prolog 3.2 Reference Manual

160 CHAPTER 6. GENERATING RUNTIME APPLICATIONS

Key Option Type Description
local -L K-bytes Size (Limit) of local stack
global -G K-bytes Size (Limit) of global stack
trail -T K-bytes Size (Limit) of trail stack
argument -A K-bytes Size (Limit) of argument stack
goal -g atom Initialisation goal
toplevel -t atom Prolog toplevel goal
init file -f atom Personal initialisation file
class atom If runtime , only read resources from the state

(default). If kernel , lock all predicates as sys-
tem predicates If development , change the
predicates in their current state and keep reading
resources from their source (if present). See also
resource/3 .

autoload bool If true, run autoload/0 first
map file File to write info on dump
op save/standard Save operator declarations?
stand alone bool Include the emulator in the state
emulator file Emulator attached to the (stand-alone) executable.

Default is the running emulator.

Table 6.1: Key = Value pairs for qsave program/2

This predicate is used by qsave program/[1,2] to ensure the saved state will not depend
on one of the libraries. The predicate autoload/0 will find all direct references to predicates.
It does not find predicates referenced via meta-predicates. The predicate log/2 is defined in the
library(quintus) to provide a quintus compatible means to compute the natural logarithm of a
number. The following program will behave correctly if its state is executed in an environment
where the library(quintus) is not available:

logtable(From, To) :-
From > To, !.

logtable(From, To) :-
log(From, Value),
format(’˜d˜t˜8 |˜ 2f ˜n’ , [From, Value]),
F is From + 1,
logtable(F, To).

However, the following implementation refers to log/2 through the meta-predicate
maplist/3 . Autoload will not be able to find the reference. This problem may be fixed
either by loading the module libtary(quintus) explicitly or use require/1 to tell the system
that the predicate log/2 is required by this module.

logtable(From, To) :-
findall(X, between(From, To, X), Xlist),

SWI-Prolog 3.2 Reference Manual

6.1. LIMITATIONS OF QSAVE PROGRAM 161

maplist(log, Xlist, SineList),
write_table(Xl is t, SineList).

write_table([], []).
write_table([I| IT] , [V|VT]) :-

format(’˜d˜t˜8 |˜ 2f ˜n’ , [I, V]),
write_table(IT , VT).

volatile +Name/Arity, . . .
Declare that the clauses of specified predicates should not be saved to the program. The volatile
declaration is normally used to avoid that the clauses of dynamic predicates that represent data
for the current session is saved in the state file.

6.1 Limitations of qsave program

There are three areas that require special attention when using qsave program/[1,2] .

If the program is an embedded Prolog application or uses the foreign language interface, care
has to be taken to restore the appropriate foreign context. See section 6.2 for details.

If the program uses directives (:- goal. lines) that perform other actions then setting predi-
cate attributes (dynamic, volatile, etc.) or loading files (consult, etc.), the directive may need to
be prefixed with initialization/1 .

Database references as returned by clause/3 , recorded/3 , etc. are not preserved and may
thus not be part of the database when saved.

6.2 Runtimes and Foreign Code

Some applications may need to use the foreign language interface. Object code is by definition
machine-dependent and thus cannot be part of the saved program file.

To complicate the matter even further there are various ways of loading foreign code:

Using the library(shlib) predicates
This is the preferred way of dealing with foreign code. It loads quickly and ensures an accept-
able level of independence between the versions of the emulator and the foreign code loaded. It
works on Unix machines supporting shared libraries and library functions to load them. Most
modern Unixes, as well as Win32 (Windows 95/NT) satisfy this constraint.

Static linking
This mechanism works on all machines, but generally requires the same C-compiler and linker
to be used for the external code as is used to build SWI-Prolog itself.

To make a runtime executable that can run on multiple platforms one must make runtime checks
to find the correct way of linking. Suppose we have a source-file myextension defining the instal-
lation function install() .

If this file is compiled into a shared library, load foreign library/1 will load this library
and call the installation function to initialise the foreign code. If it is loaded as a static extension,
define install() as the predicate install/0 :

SWI-Prolog 3.2 Reference Manual

162 CHAPTER 6. GENERATING RUNTIME APPLICATIONS

static foreign_t
pl_install()
{ install();

PL_succeed;
}

PL_extension PL_extensions [] =
{
/*{ "name", arity, function, PL_FA_<flags> },*/

{ "install", 0, pl_install, 0 },
{ NULL, 0, NULL, 0 } /* terminat-

ing line */
};

Now, use the following Prolog code to load the foreign library:

load_foreign_ex te ns io ns :-
current_predicat e(in st al l, install), !, % static loaded
install.

load_foreign_ex te ns io ns :- % shared library
load_foreign_lib ra ry (f or eig n(myex te nsi on)) .

:- initialization load_foreign_e xte ns io ns .

The path alias foreign is defined by file search path/2 . By default it searches the di-
rectories home /lib/ arch and home /lib . The application can specify additional rules for
file search path/2 .

6.3 Using program resources

A resource is very similar to a file. Resources however can be represented in two different formats:
on files, as well as part of the resource archive of a saved-state (see qsave program/2).

A resource has a name and a class. The source data of the resource is a file. Resources
are declared by declaring the predicate resource/3 . They are accessed using the predicate
open resource/3 .

Before going into details, let us start with an example. Short texts can easily be expressed in
Prolog sourcecode, but long texts are cumbersome. Assume our application defines a command ‘help’
that prints a helptext to the screen. We put the content of the helptext into a file called help.txt .
The following code implements our help command such that help.txt is incorperated into the runtime
executable.

resource(help, text, ’help.txt’).

help :-
open_resource(he lp , text, In),

SWI-Prolog 3.2 Reference Manual

6.3. USING PROGRAM RESOURCES 163

copy_stream(In, user_output),
close(In).

copy_stream(In, Out) :-
get0(In, C),
copy_stream(C, In, Out).

copy_stream(-1, _, _) :- !.
copy_stream(C, In, Out) :-

put(Out, C),
get0(In, C2),
copy_stream(C2, In, Out).

The predicate help/0 opens the resource as a Prolog stream. If we are executing this from the
development environment, this will actually return a stream to the gelp.txt itself. When executed
from the saved-state, the stream will actually be a stream opened on the program resource file, taking
care of the offset and length of the resource.

6.3.1 Predicates Definitions

resource(+Name, +Class, +FileSpec)
This predicate is defined as a dynamic predicate in the module user . Clauses for it may be
defined in any module, including the user module. Name is the name of the resource (an atom).
A resource name may contain all characters, except for $ and :, which are reserved for internal
usage by the resource library. Class describes the what kind of object we are dealing with. In
the current implementation, it is just an atom. FileSpec is a file specification that may exploit
file search path/2 (see absolute file name/2).

Normally, resources are defined as unit clauses (facts), but the definition of this predicate can
also imply rules. For proper generation of the saved state generation, it must be possible to
enumerate the available resources by calling this predicate with all its arguments unbound.

Dynamic rules can be useful to turn all files in a certain directory into resources, without spec-
ifying a resources for each file. For example, assume the file search path/2 icons
refers to the resource directory containing (XPM) icons. The following definition makes all
these images available as resources:

resource(Name, image, icons(XpmName)) :-
atom(Name), !,
file_name_exte ns io n(N ame, xpm, XpmName).

resource(Name, image, XpmFile) :-
var(Name),
absolute_file_ name(ic ons(.) , [type(directory)], Dir)
concat(Dir, ’/*.xpm’, Pattern),
expand_file_na me(P att er n, XpmFiles),
member(XpmFile , XpmFiles).

SWI-Prolog 3.2 Reference Manual

164 CHAPTER 6. GENERATING RUNTIME APPLICATIONS

open resource(+Name, ?Class, -Stream)
Opens the resource specified by Name and Class. If the latter is a variable, it will be unified to
the class of the first resource found that has tehe specified Name. If successful, Stream becomes
a handle to a binary input stream, providing access to the content of the resource.

The predicate open resource/3 first checks resource/3 . When succesful it will open
the returned resource source-file. Otherwise it will look in the programs resource database.
When creating a saved-state, the system normally saves the resource contents into the resource
archive, but does not save the resource clauses.

This way, the development environment uses the files (and modifications to the resource/3
declarations and/or files containing resource info thus immediately affect the running environ-
ment, while the runtime system quickly accesses the system resources.

6.3.2 The plrc program

The utility program plrc can be used to examine and manipulate the contents of a SWI-Prolog
resource file. The options are inspired by the Unix ar program. The basic command is:

% plrc option resource-file member ...

The options are described below.

l
List contents of the archive.

x
Extract named (or all) members of the archive into the current directory.

a
Add files to the archive. If the archive already contains a member with the same name, the
contents is replaced. Anywhere in the sequence of members, the options --class= class and
--encoding= encoding may appear. They affect the class and encoding of subsequent files.
The initial class is data and encoding none .

d
Delete named members from the archive.

This command is also described in the pl(1) Unix manual page.

6.4 Finding Application files

If your application uses files that are not part of the saved program such as database files, configuration
files, etc., the runtime version has to be able to locate these files. The file search path/2
mechanism in combination with the -p alias command-line argument is the preferred way to locate
runtime files. The first step is to define an alias for the toplevel directory of your application. We will
call this directory gnatdir in our examples.

A good place for storing data associated with SWI-Prolog runtime systems is below the emulator’s
home-directory. swi is a predefined alias for this directory. The following is a useful default definition
for the search path.

SWI-Prolog 3.2 Reference Manual

6.5. THE RUNTIME ENVIRONMENT 165

user:file_searc h_path (gn at di r, swi(gnat)).

The application should locate all files using absolute file name. Suppose gnatdir contains a file con-
fig.pl to define local configuration. Then use the code below to load this file:

configure_gnat :-
(absolute_file_ name(g nat di r(’c onfig .p l’), ConfigFile)

-> consult(Config Fi le)
; format(user_er ro r, ’gnat: Cannot lo-

cate config.pl˜n’),
halt(1)
).

6.4.1 Passing a path to the application

Suppose the system administrator has installed the SWI-Prolog runtime environment in /usr/
local/lib/rt- pl - 3. 2. 0. A user wants to install gnat , but gnat will look for its configuration
in /usr/local/lib/r t- pl- 3. 2. 0/ gna t where the user cannot write.

The user decides to install the gnat runtime files in /users/bob/lib/g nat . For one-time
usage, the user may decide to start gnat using the command:

% gnat -p gnatdir=/users/b ob/l ib /gn at

6.5 The Runtime Environment

6.5.1 The Runtime Emulator

The sources may be used to built two versions of the emulator. By default, the development emulator
is built. This emulator contains all features for interactive development of Prolog applications. If the
system is configured using --enable-runti me, make(1) will create a runtime version of the
emulator. This emulator is equivalent to the development version, except for the following features:

No input editing
The GNU library -lreadline that provides EMACS compatible editing of input lines will
not be linked to the system.

No tracer
The tracer and all its options are removed, making the system a little faster too.

No profiler
profile/3 and friends are not supported. This saves some space and provides better perfor-
mance.

No interrupt
Keyboard interrupt (Control-C normally) is not rebound and will normally terminate the appli-
cation.

SWI-Prolog 3.2 Reference Manual

166 CHAPTER 6. GENERATING RUNTIME APPLICATIONS

feature(runtime, true) succeeds
This may be used to verify your application is running in the runtime environment rather than
the development environment.

clause/[2,3] do not work on static predicates
This feature inhibits listing your program. It is only a very limited protection however.

The following fragment is an example for building the runtime environment in \env{HOME}/
lib/rt- pl- 3.2.0 . If possible, the shared-library interface should be configured to ensure it can
serve a large number of applications.

% cd pl-3.2.0
% mkdir runtime
% cd runtime
% ../src/configur e --enable-runtime --prefix=$HOME
% make
% make rt-install

The runtime directory contains the components listed below. This directory may be tar’ed and shipped
with your application.

README.RT Info on the runtime environment
bin/ arch /pl The emulator itself
man/pl.1 Manual page for pl
swipl pointer to the home directory (.)
lib/ directory for shared libraries
lib/ arch / machine-specific shared libraries

SWI-Prolog 3.2 Reference Manual

This appendix describes a number of predicates which enable the Prolog user to inspect the Prolog
environment and manipulate (or even redefine) the debugger. They can be used as entry points for
experiments with debugging tools for Prolog. The predicates described here should be handled with
some care as it is easy to corrupt the consistency of the Prolog system by misusing them.

A.1 Examining the Environment Stack

prolog current frame(-Frame)
Unify Frame with an integer providing a reference to the parent of the current local stack frame.
A pointer to the current local frame cannot be provided as the predicate succeeds deterministi-
cally and therefore its frame is destroyed immediately after succeeding.

prolog frame attribute(+Frame, +Key, -Value)
Obtain information about the local stack frame Frame. Frame is a frame reference as obtained
through prolog current frame/1 , prolog trace interception/4 or this predi-
cate. The key values are described below.

alternative
Value is unified with an integer reference to the local stack frame in which execution is
resumed if the goal associated with Frame fails. Fails if the frame has no alternative frame.

has alternatives
Value is unified with true if Frame still is a candidate for backtracking. false other-
wise.

goal
Value is unified with the goal associated with Frame. If the definition module of the active
predicate is not user the goal is represented as module : goal . Do not instantiate
variables in this goal unless you know what you are doing!

clause
Value is unified with a reference to the currently running clause. Fails if the current
goal is associated with a foreign (C) defined predicate. See also nth clause/3 and
clause property/2 .

level
Value is unified with the recursion level of Frame. The top level frame is at level ‘0’.

parent
Value is unified with an integer reference to the parent local stack frame of Frame. Fails
if Frame is the top frame.

SWI-Prolog 3.2 Reference Manual

168 APPENDIX A. HACKERS CORNER

context module
Value is unified with the name of the context module of the environment.

top
Value is unified with true if Frame is the top Prolog goal from a recursive call back from
the foreign language. false otherwise.

hidden
Value is unified with true if the frame is hidden from the user, either because a parent has
the hide-childs attribute (all system predicates), or the system has no trace-me attribute.

pc
Value is unified with the program-pointer saved on behalve of the parent-goal if the parent-
goal is not owned by a foreign predicate.

argument(N)
Value is unified with the N-th slot of the frame. Argument 1 is the first argument of the
goal. Arguments above the arity refer to local variables. Fails silently if N is out of range.

A.2 Intercepting the Tracer

prolog trace interception(+Port, +Frame, +PC, -Action)
Dynamic predicate, normally not defined. This predicate is called from the SWI-Prolog debug-
ger just before it would show a port. If this predicate succeeds the debugger assumes the trace
action has been taken care of and continues execution as described by Action. Otherwise the
normal Prolog debugger actions are performed.

Port is one of call , redo , exit , fail or unify . Frame is an integer reference to the
current local stack frame. PC is the current value of the program-counter, relative to the start
of the current clause, or 0 if it is invalid, for example because the current frame runs a for-
eign predicate, or no clause has been selected yet. Action should be unified with one of the
atoms continue (just continue execution), retry (retry the current goal) or fail (force the
current goal to fail). Leaving it a variable is identical to continue .

Together with the predicates described in section 3.39 and the other predicates of this chapter
this predicate enables the Prolog user to define a complete new debugger in Prolog. Besides
this it enables the Prolog programmer monitor the execution of a program. The example below
records all goals trapped by the tracer in the database.

prolog_trace_in ter ce pt io n(Por t, Frame, _PC, continue) :-
prolog_frame_a tt ri but e(Fr ame, goal, Goal),
prolog_frame_a tt ri but e(Fr ame, level, Level),
recordz(trace, trace(Port, Level, Goal)).

To trace the execution of ‘go’ this way the following query should be given:

?- trace, go, notrace.

SWI-Prolog 3.2 Reference Manual

A.3. EXCEPTION HANDLING 169

prolog skip level(-Old, +New)
Unify Old with the old value of ‘skip level’ and than set this level according to New. New is
an integer, or the special atom very deep (meaning don’t skip). The ‘skip level’ is a global
variable of the Prolog system that disables the debugger on all recursion levels deeper than the
level of the variable. Used to implement the trace options ‘skip’ (sets skip level to the level of
the frame) and ‘up’ (sets skip level to the level of the parent frame (i.e. the level of this frame
minus 1).

user:prolog list goal(:Goal)
Hook, normally not defined. This hook is called by the ’L’ command of the tracer to list
the currently called predicate. This hook may be defined to list only relevant clauses of the
indicated Goal and/or show the actual source-code in an editor. See also portray/1 and
multifile/1 .

A.3 Exception Handling

A start has been made to make exception handling available to the Prolog user. On exceptions a
dynamic and multifile defined predicate exception/3 is called. If this user defined predicate suc-
ceeds Prolog assumes the exception has been taken care of. Otherwise the system default exception
handler is called.

exception(+Exception, +Context, -Action)
Dynamic predicate, normally not defined. Called by the Prolog system on run-time exceptions.
Currently exception/3 is only used for trapping undefined predicates. Future versions might
handle signal handling, floating exceptions and other runtime errors via this mechanism. The
values for Exception are described below.

undefined predicate
If Exception is undefined predicate Context is instantiated to a term Name/Arity.
Name refers to the name and Arity to the arity of the undefined predicate. If
the definition module of the predicate is not user, Context will be of the form
Module : Name / Arity . If the predicate fails Prolog will print the default error warn-

ing and start the tracer. If the predicate succeeds it should instantiate the last argument
either to the atom fail to tell Prolog to fail the predicate or the atom retry to tell Pro-
log to retry the predicate. This only makes sense if the exception handler has defined the
predicate. Otherwise it will lead to a loop.

warning
If prolog wants to give a warning while reading a file, it will first raise
the exception warning. The context argument is a term of the form
warning(Path , LineNo , Message) , where Path is the absolute filename
of the file prolog is reading; LineNo is an estimate of the line number where the error
occurred and Message is a Prolog string indicating the message. The Action argument
is ignored. The error is supposed to be presented to the user if the exception handler
succeeds. Otherwise the standard Prolog warning message is printed.

This exception is used by the library(emacs_ in te rfa ce) , that integrates error
handling with GNU Emacs.

SWI-Prolog 3.2 Reference Manual

170 APPENDIX A. HACKERS CORNER

A.4 Readline Interaction

The following predicates are available if feature(readline , true) succeeds. They allow for
direct interaction with the GNU readline library. See also readline(3)

rl read init file(+File)
Read a readline initialisation file. Readline by default reads ˜/.inputrc . This predicate may
be used to read alternative readline initialisation files.

rl add history(+Line)
Add a line to the Control-P/Control-N history system of the readline library.

SWI-Prolog 3.2 Reference Manual

B.1 Predicates

The predicate summary is used by the Prolog predicate apropos/1 to suggest predicates from a
keyword.

! /0 Cut (discard choicepoints)
! /1 Cut block. See block/3
, /2 Conjunction of goals
- >/2 If-then-else
*- >/2 Soft-cut
. /2 Consult. Also list constructor
; /2 Disjunction of goals. Same as |/2
</2 Arithmetic smaller
=/2 Unification
=.. /2 “Univ.” Term to list conversion
=:= /2 Arithmetic equal
=< /2 Arithmetic smaller or equal
==/2 Identical
=@=/2 Structural identical
=\= /2 Arithmetic not equal
>/2 Arithmetic larger
>=/2 Arithmetic larger or equal
@</2 Standard order smaller
@=</2 Standard order smaller or equal
@>/2 Standard order larger
@>=/2 Standard order larger or equal
\+ /1 Negation by failure. Same as not/1
\= /2 Not unifyable
\== /2 Not identical
\=@=/2 Not structural identical
ˆ /2 Existential quantification (bagof/3 , setof/3)
| /2 Disjunction of goals. Same as ;/2
abolish/1 Remove predicate definition from the database
abolish/2 Remove predicate definition from the database
abort/0 Abort execution, return to top level
absolute file name/2 Get absolute path name
absolute file name/3 Get absolute path name with options
access file/2 Check access permissions of a file

SWI-Prolog 3.2 Reference Manual

172 APPENDIX B. SUMMARY

append/1 Append to a file
append/3 Concatenate lists
apply/2 Call goal with additional arguments
apropos/1 library(online help) Show related predicates and manual sections
arg/3 Access argument of a term
arithmetic function/1 Register an evaluable function
assert/1 Add a clause to the database
assert/2 Add a clause to the database, give reference
asserta/1 Add a clause to the database (first)
asserta/2 Add a clause to the database (first)
assertz/1 Add a clause to the database (last)
assertz/2 Add a clause to the database (last)
at end of stream/0 Test for end of file on input
at end of stream/1 Test for end of file on stream
at halt/1 Register goal to run at halt/1
at initialization/1 Register goal to run at start-up
atom/1 Type check for an atom
atom char/2 Convert between atom and ASCII value
atom chars/2 Convert between atom and list of ASCII values
atom length/2 Determine length of an atom
atom prefix/2 Test for start of atom
atom to term/3 Convert between atom and term
atomic/1 Type check for primitive
autoload/0 Autoload all predicates now
bagof/3 Find all solutions to a goal
between/3 Integer range checking/generating
block/3 Start a block (‘catch’/‘throw’)
break/0 Start interactive toplevel
call/1 Call a goal
call/[2..] Call with additional arguments
call dll function/2 Win32: Call function in dynamic link library (.dll file)
call shared object function/2 UNIX: Call C-function in shared (.so) file
call with depth limit/3 Prove goal with bounded depth
catch/3 Call goal, watching for exceptions
character count/2 Get character index on a stream
chdir/1 Change working directory
checklist/2 Invoke goal on all members of a list
clause/2 Get clauses of a predicate
clause/3 Get clauses of a predicate
clause property/2 Get properties of a clause
close/1 Close stream
close dde conversation/1 Win32: Close DDE channel
close dll/1 Win32: Close dynamic link library (.dll file)
close shared object/1 UNIX: Close shared library (.so file)
compare/3 Compare, using a predicate to determine the order
compiling/0 Is this a compilation run?
compound/1 Test for compound term

SWI-Prolog 3.2 Reference Manual

B.1. PREDICATES 173

concat/3 Append two atoms
concat atom/2 Append a list of atoms
concat atom/3 Append a list of atoms with separator
consult/1 Read (compile) a Prolog source file
context module/1 Get context module of current goal
convert time/8 Break time stamp into fields
convert time/2 Convert time stamp to string
copy term/2 Make a copy of a term
current arithmetic function/1 Examine evaluable functions
current atom/1 Examine existing atoms
current flag/1 Examine existing flags
current foreign library/2 library(shlib) Examine loaded shared libraries (.so files)
current format predicate/2 Enumerate user-defined format codes
current functor/2 Examine existing name/arity pairs
current input/1 Get current input stream
current key/1 Examine existing database keys
current module/1 Examine existing modules
current module/2 Examine existing modules
current op/3 Examine current operator declarations
current output/1 Get the current output stream
current predicate/2 Examine existing predicates
current signal/3 Current software signal mapping
current stream/3 Examine open streams
current thread/2 Examine Prolog threads
dde current connection/2 Win32: Examine open DDE connections
dde current service/2 Win32: Examine DDE services provided
dde execute/2 Win32: Execute command on DDE server
dde register service/2 Win32: Become a DDE server
dde request/3 Win32: Make a DDE request
dde poke/3 Win32: POKE operation on DDE server
dde unregister service/1 Win32: Terminate a DDE service
debug/0 Test for debugging mode
debugging/0 Show debugger status
default module/2 Get the default modules of a module
delete/3 Delete all matching members from a list
delete file/1 Remove a file from the file system
discontiguous/1 Indicate distributed definition of a predicate
dup stream/2 Duplicate I/O streams
dwim match/2 Atoms match in “Do What I Mean” sense
dwim match/3 Atoms match in “Do What I Mean” sense
dwim predicate/2 Find predicate in “Do What I Mean” sense
dynamic/1 Indicate predicate definition may change
edit/1 Edit a file
ensure loaded/1 Consult a file if that has not yet been done
erase/1 Erase a database record or clause
exception/3 (hook) Handle runtime exceptions
exists directory/1 Check existence of directory

SWI-Prolog 3.2 Reference Manual

174 APPENDIX B. SUMMARY

exists file/1 Check existence of file
exit/2 Exit from named block. See block/3
expand answer/2 Expand answer of query
expand file name/2 Wildcard expansion of file names
expand file search path/2 Wildcard expansion of file paths
expand goal/2 Compiler: expand goal in clause-body
expand query/4 Expanded entered query
expand term/2 Compiler: expand read term into clause(s)
explain/1 library(explain) Explain argument
explain/2 library(explain) 2nd argument is explanation of first
export/1 Export a predicate from a module
export list/2 List of public predicates of a module
fail/0 Always false
fail/1 Immediately fail named block. See block/3
feature/2 Get system configuration parameters
file base name/2 Get file part of path
file directory name/2 Get directory part of path
file name extension/3 Add, remove or test file extensions
file search path/2 Define path-aliases for locating files
fileerrors/2 Do/Don’t warn on file errors
findall/3 Find all solutions to a goal
flag/3 Simple global variable system
flatten/2 Transform nested list into flat list
float/1 Type check for a floating point number
flush/0 Output pending characters on current stream
flush output/1 Output pending characters on specified stream
forall/2 Prove goal for all solutions of another goal
foreign file/1 Examine loaded foreign files
format/1 Formatted output
format/2 Formatted output with arguments
format/3 Formatted output on a stream
format predicate/2 Program format/[1,2]
free variables/2 Find unbound variables in a term
functor/3 Get name and arity of a term or construct a term
garbage collect/0 Invoke the garbage collector
gensym/2 Generate unique atoms from a base
get/1 Read first non-blank character
get/2 Read first non-blank character from a stream
get0/1 Read next character
get0/2 Read next character from a stream
get single char/1 Read next character from the terminal
get time/1 Get current time
getenv/2 Get shell environment variable
goal expansion/2 Hook for macro-expanding goals
ground/1 Verify term holds no unbound variables
halt/0 Exit from Prolog
halt/1 Exit from Prolog with status

SWI-Prolog 3.2 Reference Manual

B.1. PREDICATES 175

hash term/2 Hash-value of ground term
help/0 Give help on help
help/1 Give help on predicates and show parts of manual
ignore/1 Call the argument, but always succeed
import/1 Import a predicate from a module
index/1 Change clause indexing
initialization/1 Initialization directive
int to atom/2 Convert from integer to atom
int to atom/3 Convert from integer to atom (non-decimal)
integer/1 Type check for integer
intersection/3 Set intersection
is/2 Evaluate arithmetic expression
is absolute file name/1 True if arg defines an absolute path
is list/1 Type check for a list
is set/1 Type check for a set
keysort/2 Sort, using a key
last/2 Last element of a list
leash/1 Change ports visited by the tracer
length/2 Length of a list
library directory/1 (hook) Directories holding Prolog libraries
limit stack/2 Limit stack expansion
line count/2 Line number on stream
line position/2 Character position in line on stream
list to set/2 Remove duplicates
listing/0 List program in current module
listing/1 List predicate
load files/2 Load source files with options
load foreign/2 Load foreign (C) module
load foreign/5 Load foreign (C) module
load foreign library/1 library(shlib) Load shared library (.so file)
load foreign library/2 library(shlib) Load shared library (.so file)
make/0 Reconsult all changed source files
make fat filemap/1 Win32: Create file containing non-FAT filenames
make library index/1 Create autoload file INDEX.pl
maplist/3 Transform all elements of a list
member/2 Element is member of a list
memberchk/2 Deterministic member/2
merge/3 Merge two sorted lists
merge set/3 Merge two sorted sets
message hook/3 Intercept print message/2
meta predicate/1 Quintus compatibility
module/1 Query/set current type-in module
module/2 Declare a module
module transparent/1 Indicate module based meta predicate
msort/2 Sort, do not remove duplicates
multifile/1 Indicate distributed definition of predicate
name/2 Convert between atom and list of ASCII characters

SWI-Prolog 3.2 Reference Manual

176 APPENDIX B. SUMMARY

nl/0 Generate a newline
nl/1 Generate a newline on a stream
nodebug/0 Disable debugging
nonvar/1 Type check for bound term
noprotocol/0 Disable logging of user interaction
nospy/1 Remove spy point
nospyall/0 Remove all spy points
not/1 Negation by failure (argument not provable). Same as \+/1
notrace/0 Stop tracing
notrace/1 Do not debug argument goal
nth0/3 N-th element of a list (0-based)
nth1/3 N-th element of a list (1-based)
nth clause/3 N-th clause of a predicate
number/1 Type check for integer or float
number chars/2 Convert between number and atom
numbervars/4 Enumerate unbound variables of a term using a given base
on signal/3 Handle a software signal
once/1 Call a goal deterministically
op/3 Declare an operator
open/3 Open a file (creating a stream)
open/4 Open a file (creating a stream)
open dde conversation/3 Win32: Open DDE channel
open null stream/1 Open a stream to discard output
open resource/3 Open a program resource as a stream
open shared object/2 UNIX: Open shared library (.so file)
open shared object/3 UNIX: Open shared library (.so file)
peek byte/1 Read character without removing
peek byte/2 Read character without removing
phrase/2 Activate grammar-rule set
phrase/3 Activate grammar-rule set (returning rest)
please/3 Query/change environment parameters
plus/3 Logical integer addition
portray/1 (hook) Modify behaviour of print/1
portray clause/1 Pretty print a clause
predicate property/2 Query predicate attributes
predsort/3 Sort, using a predicate to determine the order
preprocessor/2 Install a preprocessor before the compiler
print/1 Print a term
print/2 Print a term on a stream
print message/2 Print message from (exception) term
profile/3 Obtain execution statistics
profile count/3 Obtain profile results on a predicate
profiler/2 Obtain/change status of the profiler
prolog/0 Run interactive toplevel
prolog current frame/1 Reference to goal’s environment stack
prolog edit:locate/2 Locate targets for edit/1
prolog edit:locate/3 Locate targets for edit/1

SWI-Prolog 3.2 Reference Manual

B.1. PREDICATES 177

prolog edit:edit source/1 Call editor for edit/1
prolog edit:edit command/2 Specify editor activation
prolog edit:load/0 Load edit/1 extensions
prolog file type/2 Define meaning of file extension
prolog frame attribute/3 Obtain information on a goal environment
prolog list goal/1 Hook. Intercept tracer ’L’ command
prolog load context/2 Context information for directives
prolog skip level/2 Indicate deepest recursion to trace
prolog to os filename/2 Convert between Prolog and OS filenames
prolog trace interception/4 library(user) Intercept the Prolog tracer
prompt1/1 Change prompt for 1 line
prompt/2 Change the prompt used by read/1
proper list/1 Type check for list
protocol/1 Make a log of the user interaction
protocola/1 Append log of the user interaction to file
protocolling/1 On what file is user interaction logged
put/1 Write a character
put/2 Write a character on a stream
qcompile/1 Compile source to Quick Load File
qload/1 Load Quick Load File as consult/1
qsave program/1 Create runtime application
qsave program/2 Create runtime application
read/1 Read Prolog term
read/2 Read Prolog term from stream
read clause/1 Read clause
read clause/2 Read clause from stream
read history/6 Read using history substitution
read link/3 Read a symbolic link
read term/2 Read term with options
read term/3 Read term with options from stream
read variables/2 Read clause including variable names
read variables/3 Read clause including variable names from stream
recorda/2 Record term in the database (first)
recorda/3 Record term in the database (first)
recorded/2 Obtain term from the database
recorded/3 Obtain term from the database
recordz/2 Record term in the database (last)
recordz/3 Record term in the database (last)
redefine system predicate/1 Abolish system definition
rename file/2 Change name of file
repeat/0 Succeed, leaving infinite backtrack points
require/1 This file requires these predicates
reset profiler/0 Clear statistics obtained by the profiler
resource/3 Declare a program resource
restore/1 Restore saved-state (save/1 , save program/1)
retract/1 Remove clause from the database
retractall/1 Remove unifying clauses from the database

SWI-Prolog 3.2 Reference Manual

178 APPENDIX B. SUMMARY

reverse/2 Inverse the order of the elements in a list
same file/2 Succeeds if arguments refer to same file
see/1 Change the current input stream
seeing/1 Query the current input stream
seek/4 Modify the current position in a stream
seen/0 Close the current input stream
select/3 Select element of a list
set feature/2 Define a system feature
set input/1 Set current input stream from a stream
set output/1 Set current output stream from a stream
set tty/2 Set ‘tty’ stream
setarg/3 Destructive assignment on term
setenv/2 Set shell environment variable
setof/3 Find all unique solutions to a goal
sformat/2 Format on a string
sformat/3 Format on a string
shell/0 Execute interactive subshell
shell/1 Execute OS command
shell/2 Execute OS command
show profile/1 Show results of the profiler
size file/2 Get size of a file in characters
skip/1 Skip to character in current input
skip/2 Skip to character on stream
rl add history/1 Add line to readline(3) history
rl read init file/1 Read readline(3) init file
sleep/1 Suspend execution for specified time
sort/2 Sort elements in a list
source file/1 Examine currently loaded source files
source file/2 Obtain source file of predicate
source location/2 Location of last read term
spy/1 Force tracer on specified predicate
stack parameter/4 Some systems: Query/Set runtime stack parameter
statistics/0 Show execution statistics
statistics/2 Obtain collected statistics
stream position/3 Get/seek to position in file
string/1 Type check for string
string concat/3 concat/3 for strings (non-deterministic)
string length/2 Determine length of a string
string to atom/2 Conversion between string and atom
string to list/2 Conversion between string and list of ASCII
style check/1 Change level of warnings
sublist/3 Determine elements that meet condition
subset/2 Generate/check subset relation
substring/4 Get part of a string
subtract/3 Delete elements that do not meet condition
succ/2 Logical integer successor relation
swritef/2 Formatted write on a string

SWI-Prolog 3.2 Reference Manual

B.1. PREDICATES 179

swritef/3 Formatted write on a string
tab/1 Output number of spaces
tab/2 Output number of spaces on a stream
tell/1 Change current output stream
telling/1 Query current output stream
term expansion/2 (hook) Convert term before compilation
term to atom/2 Convert between term and atom
thread create/3 Create a new Prolog task
thread exit/1 Terminate Prolog task with value
thread join/2 Wait for Prolog task-completion
throw/1 Raise an exception (see catch/3)
time/1 Determine time needed to execute goal
time file/2 Get last modification time of file
tmp file/2 Create a temporary filename
told/0 Close current output
trace/0 Start the tracer
trace/1 Set trace-point on predicate
trace/2 Set/Clear trace-point on ports
tracing/0 Query status of the tracer
trim stacks/0 Release unused memory resources
true/0 Succeed
tty get capability/3 Get terminal parameter
tty goto/2 Goto position on screen
tty put/2 Write control string to terminal
ttyflush/0 Flush output on terminal
union/3 Union of two sets
unix/1 OS interaction (get command-line arguments)
unknown/2 Trap undefined predicates
unload foreign library/1 library(shlib) Detach shared library (.so file)
unsetenv/1 Delete shell environment variable
use module/1 Import a module
use module/2 Import predicates from a module
var/1 Type check for unbound variable
visible/1 Ports that are visible in the tracer
volatile/1 Predicates that are not saved
wait for input/3 Wait for input with optional timeout
wildcard match/2 Csh(1) style wildcard match
win exec/2 Win32: spawn Windows task
write/1 Write term
write/2 Write term to stream
write ln/1 Write term, followed by a newline
write canonical/1 Write a term with quotes, ignore operators
write canonical/2 Write a term with quotes, ignore operators on a stream
write term/2 Write term with options
write term/3 Write term with options to stream
writef/1 Formatted write
writef/2 Formatted write on stream

SWI-Prolog 3.2 Reference Manual

180 APPENDIX B. SUMMARY

writeq/1 Write term, insert quotes
writeq/2 Write term, insert quotes on stream

SWI-Prolog 3.2 Reference Manual

B.2. ARITHMETIC FUNCTIONS 181

B.2 Arithmetic Functions

* /2 Multiplication
** /2 Power function
+/2 Addition
- /1 Unary minus
- /2 Subtraction
/ /2 Division
// /2 Integer division
/\ /2 Bitwise and
<</2 Bitwise left shift
>>/2 Bitwise right shift
. /2 List of one character: character code
\ /1 Bitwise negation
\/ /2 Bitwise or
ˆ /2 Power function
abs/1 Absolute value
acos/1 Inverse (arc) cosine
asin/1 Inverse (arc) sine
atan/1 Inverse (arc) tangent
atan/2 Rectangular to polar conversion
ceil/1 Smallest integer larger than arg
ceiling/1 Smallest integer larger than arg
cos/1 Cosine
cputime/0 Get CPU time
e/0 Mathematical constant
exp/1 Exponent (base)
float/1 Explicitly convert to float
float fractional part/1 Fractional part of a float
float integer part/1 Integer part of a float
floor/1 Largest integer below argument
integer/1 Round to nearest integer
log/1 Natural logarithm
log10/1 10 base logarithm
max/2 Maximum of two numbers
min/2 Minimum of two numbers
mod/2 Remainder of division
random/1 Generate random number
rem/2 Remainder of division
round/1 Round to nearest integer
truncate/1 Truncate float to integer
pi/0 Mathematical constant
sign/1 Extract sign of value
sin/1 Sine
sqrt/1 Square root
tan/1 Tangent

SWI-Prolog 3.2 Reference Manual

182 APPENDIX B. SUMMARY

xor/2 Bitwise exclusive or

SWI-Prolog 3.2 Reference Manual

B.3. OPERATORS 183

B.3 Operators

$ 1 Bind toplevel variable
ˆ 200 Predicate
ˆ 200 Arithmetic function
mod 300 Arithmetic function
* 400 Arithmetic function
/ 400 Arithmetic function
// 400 Arithmetic function
<< 400 Arithmetic function
>> 400 Arithmetic function
xor 400 Arithmetic function
+ 500 Arithmetic function
- 500 Arithmetic function
? 500 XPCE: obtainer
\ 500 Arithmetic function
+ 500 Arithmetic function
- 500 Arithmetic function
/\ 500 Arithmetic function
\/ 500 Arithmetic function
: 600 module:term separator
< 700 Predicate
= 700 Predicate
=.. 700 Predicate
=:= 700 Predicate
< 700 Predicate
== 700 Predicate
=@= 700 Predicate
=\= 700 Predicate
> 700 Predicate
>= 700 Predicate
@< 700 Predicate
@=< 700 Predicate
@> 700 Predicate
@>= 700 Predicate
is 700 Predicate
\= 700 Predicate
\== 700 Predicate
=@= 700 Predicate
not 900 Predicate
\+ 900 Predicate
, 1000 Predicate
- > 1050 Predicate
*- > 1050 Predicate
; 1100 Predicate
| 1100 Predicate

SWI-Prolog 3.2 Reference Manual

184 APPENDIX B. SUMMARY

discontiguous 1150 Predicate
dynamic 1150 Predicate
module transparent 1150 Predicate
multifile 1150 Predicate
volatile 1150 Predicate
initialization 1150 Predicate
:- 1200 Introduces a directive
?- 1200 Introduces a directive
- - > 1200 DCGrammar: rewrite
:- 1200 head :- body. separator

SWI-Prolog 3.2 Reference Manual

[Anjewierden & Wielemaker, 1989] A. Anjewierden and J. Wielemaker. Extensible objects. ESPRIT
Project 1098 Technical Report UvA-C1-TR-006a, University of
Amsterdam, March 1989.

[BIM, 1989] BIM Prolog release 2.4. Everberg, Belgium, 1989.

[Bowen & Byrd, 1983] D. L. Bowen and L. M. Byrd. A portable Prolog compiler. In
L. M. Pereira, editor, Proceedings of the Login Programming
Workshop 1983, Lisabon, Portugal, 1983. Universidade nova de
Lisboa.

[Bratko, 1986] I. Bratko. Prolog Programming for Artificial Intelligence.
Addison-Wesley, Reading, Massachusetts, 1986.

[Clocksin & Melish, 1987] W. F. Clocksin and C. S. Melish. Programming in Prolog.
Springer-Verlag, New York, Third, Revised and Extended edi-
tion, 1987.

[Deransart et al., 1996] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Stan-
dard. Springer-Verlag, New York, 1996.

[Kernighan & Ritchie, 1978] B. W. Kernighan and D. M. Ritchie. The C Programming Lan-
guage. Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[OKeefe, 1990] R. A. OKeefe. The Craft of Prolog. MIT Press, Massachussetts,
1990.

[Pereira, 1986] F. Pereira. C-Prolog User’s Manual, 1986.

[Qui, 1997] Quintus Prolog, User Guide and Reference Manual. Berkham-
sted, UK, 1997.

[Sterling & Shapiro, 1986] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cam-
bridge, Massachusetts, 1986.

[Warren, 1983] D. H. D. Warren. The runtime environment for a prolog compiler
using a copy algorithm. Technical Report 83/052, SUNY and
Stone Brook, New York, 1983. Major revision March 1984.

SWI-Prolog 3.2 Reference Manual

’MANUAL’ library, 20
-ldl library, 118
-lpl library, 152
-lreadline library, 165
.so files, 118
=:= /2, 77
/\ /2, 80
=\= /2, 77
| /2, 48
, /2, 48
! /0, 48
! /1, 55
/ /2, 78
. /2, 79
=/2, 46
==/2, 46
>=/2, 77
>/2, 77
ˆ /2, 80
// /2, 78
- >/2, 48
=< /2, 77
<</2, 79
</2, 77
- /1, 78
- /2, 78
\= /2, 47
\ /1, 80
\== /2, 46
\+ /1, 49
\/ /2, 79
+/2, 78
** /2, 80
>>/2, 79
; /2, 48
*- >/2, 49
=@=/2, 47
\=@=/2, 47
@>=/2, 47
@>/2, 47
* /2, 78
@=</2, 47

@</2, 47
=.. /2, 72
PL get arg(), 130

abolish/1, 14, 56
abolish/2, 56, 119
abort/0, 19, 25, 64, 96, 145, 146
abs/1, 78
absolute file name/2, 93
absolute file name/3, 93
absolute file name/2, 15, 38, 93, 163
absolute file name/3, 40, 93, 119
absolute file name/[2,3], 38, 40
access file/2, 92
access file/2, 32, 93
acos/1, 80
Alpha, DEC, 14
append/1, 62, 63
append/3, 82
apply/2, 49
apropos/1, 20, 21, 171
arg/3, 72
arithmethic function/1, 141
arithmetic function/1, 81
arithmetic function/1, 81
asin/1, 80
assert/1, 38, 40, 56–58, 111, 114
assert/2, 57, 61
asserta/1, 19, 40, 57, 143
asserta/2, 57
assertz/1, 57
assertz/2, 57
at end of stream/0, 68
at end of stream/1, 68
at halt/1, 42
at initialization/1, 42
at halt/1, 42, 97
at initialization/1, 43, 151
atan/1, 80
atan/2, 80
atom/1, 46, 127
atom char/2, 73

SWI-Prolog 3.2 Reference Manual

INDEX 187

atom chars/2, 73
atom length/2, 74
atom prefix/2, 74
atom to term/3, 74
atom chars/2, 73
atom length/2, 75
atom to term/3, 68
atomic/1, 46
autoload/0, 39, 159, 160

backcomp library, 14
bagof/3, 84, 85, 171
between/3, 77
block/3, 54, 171, 174
break/0, 19, 25, 96, 145

call/1, 42, 48–50, 98, 137
call/2, 49
call/[2-6], 49
call shared object function/2, 119
call with depth limit/3, 50
call with depth limit/3, 50
catch/3, 14, 50, 51, 96, 179
ceil/1, 79
ceiling/1, 79
character count/2, 66
chdir/1, 91, 94
check/0, 39
checklist/2, 85
clause/2, 61
clause/3, 57, 61, 161
clause/[2,3], 166
clause property/2, 61
clause property/2, 167
close/1, 64
close dde conversation/1, 103
close shared object/1, 119
compare/3, 47, 84, 143
compiling/0, 43
compound/1, 46
concat/3, 74, 75, 178
concat atom/2, 74
concat atom/3, 74
concat atom/2, 74
consult/1, 16, 17, 27, 39, 41, 43, 44, 58, 70, 99,

100, 121, 177
context module/1, 113

context module/1, 113, 138
convert time/2, 92
convert time/8, 92
convert time/2, 92
convert time/8, 10, 92
copy term/2, 73
copy term/2, 73
cos/1, 80
cputime/0, 81
current arithmetic function/1, 81
current atom/1, 59
current flag/1, 59
current foreign library/2, 119
current format predicate/2, 90
current functor/2, 59
current input/1, 65
current key/1, 59
current module/1, 113
current module/2, 113
current op/3, 76
current output/1, 65
current predicate/2, 60
current signal/3, 54
current stream/3, 64, 94
current thread/2, 96
current atom/1, 59
current input/1, 41
current predicate/2, 102
current signal/3, 54
current thread/2, 96

dde current connection/2, 105
dde current service/2, 105
dde execute/2, 104
dde poke/4, 104
dde register service/2, 104
dde request/3, 104
dde unregister service/1, 105
debug/0, 24, 26, 51, 98, 145
debugging,exceptions, 51
debugging/0, 98, 99
DEC, Alpha, 14
default module/2, 114
delete/3, 82
delete file/1, 93
discontiguous/1, 58, 59
display/1, 87, 131, 132

SWI-Prolog 3.2 Reference Manual

188 INDEX

display/[1,2], 14
displayq/1, 88
displayq/[1,2], 14
dld, 118
dlopen, 118
dup stream/2, 65
dwim match/2, 105
dwim match/3, 105
dwim predicate/2, 61
dwim match/2, 61, 105
dynamic/1, 31, 56, 58, 60, 99, 113

e/0, 81
ed/[0,1], 40
edit/1, 44, 176, 177
edit/[0,1], 40
edit command/2, 44
edit source/1, 44, 45
Emacs, 20
ensure loaded/1, 39
ensure loaded/1, 27, 39, 41, 109
erase/1, 57, 61
exception-handling, 54
exception/3, 99, 169
exceptions,debugging, 51
exists directory/1, 92
exists file/1, 92
exists file/1, 32
exit/2, 54
exp/1, 78, 80
expand answer/2, 97
expand file name/2, 94
expand file search path/2, 40
expand goal/2, 42
expand query/4, 97
expand term/2, 42
expand answer/2, 97
expand file name/2, 32, 41, 91
expand goal/2, 31, 42
expand term/2, 42, 43
explain library, 174
explain/1, 21
explain/2, 21
export/1, 113
export list/2, 113

fail/0, 47

fail/1, 55
feature/2, 18, 29, 33, 35, 46, 51, 68, 69, 97,

104, 118, 120, 148, 151
file base name/2, 92
file directory name/2, 92
file name extension/3, 94
file search path/2, 40
file base name/2, 92
file search path/2, 17, 19, 38–41, 119, 162–

164
fileerrors/0, 66
fileerrors/2, 29, 32, 66
findall/3, 84, 114, 115
flag/3, 29, 31, 57, 59
flatten/2, 82
float/1, 45, 77, 79
float fractional part/1, 79
float integer part/1, 79
float integer part/1, 79
floor/1, 79
flush/0, 64, 67
flush output/1, 67
flush output/1, 64
forall/2, 42, 85
foreign file/1, 122
format/1, 87
format/2, 87, 89
format/3, 89
format/[1,2], 30, 68, 86, 174
format/[2,3], 35
format predicate/2, 89
free variables/2, 73
functor/3, 46, 71, 72

garbage collect/0, 102
gensym/2, 105
get/1, 67
get/2, 67
get0/1, 64, 67, 68
get0/2, 67
get single char/1, 68
get time/1, 92
get single char/1, 19, 32
get time/1, 10, 92
getenv/2, 91
GNU-Emacs, 20
goal expansion/2, 42

SWI-Prolog 3.2 Reference Manual

INDEX 189

goal expansion/2, 42
Graphics, 9
ground/1, 46, 58
GUI, 9

halt/0, 26, 97
halt/1, 97, 145, 172
halt/[0,1], 42
hash term/2, 58
hash term/2, 58
help/0, 20, 163
help/1, 20
helpidx library, 20

ignore/1, 50
import/1, 108, 109, 113
index/1, 58–60
initialization/1, 43, 118, 146, 161
install/0, 161
int to atom/2, 74
int to atom/3, 74
integer/1, 45, 79
intersection/3, 83
is/2, 31, 77, 79, 81
is absolute file name/1, 93
is list/1, 81
is set/1, 83
is list/1, 82

keysort/2, 12, 84

last/2, 82
leash/1, 25, 99
length/2, 82
library directory/1, 40
library directory/1, 32, 33, 38, 39
likes/2, 16
limit stack/2, 102
limit stack/2, 102
line count/2, 66
line position/2, 66
line count/2, 90
line position/2, 90
list to set/2, 83
listing/0, 45
listing/1, 25, 45
load files/2, 38
load foreign/2, 121

load foreign/[2,5], 121
load foreign library/1, 119
load foreign library/2, 119
load files/2, 38
load foreign/2, 121
load foreign/5, 29
load foreign/[2,5], 29
load foreign library/1, 161
load foreign library/[1,2], 40, 118
locate/3, 44
log/1, 80
log10/1, 80

main/0, 28
make/0, 8, 33, 40
make library index/1, 33
make library index/1, 33
maplist/3, 85, 111, 160
max/2, 79
member/2, 25, 61, 82, 175
memberchk/2, 82
memory,layout, 37
merge/3, 83
merge set/3, 83
message hook/3, 52
message hook/3, 52
meta predicate/1, 113, 116
meta predicate/1, 114, 116
min/2, 79
mod/2, 78
module/1, 114
module/2, 42, 108, 113
module transparent/1, 113
module transparent/1, 60, 114, 138
msort/2, 83, 84
multifile/1, 41, 44, 58, 60, 169
mutexes, 95

name/2, 73
netmask/4, 150
nl/0, 66
nl/1, 66
nl/[0,1], 86
nodebug/0, 98
nofileerrors/0, 66
nonvar/1, 45
noprotocol/0, 97

SWI-Prolog 3.2 Reference Manual

190 INDEX

nospy/1, 25, 99
nospyall/0, 99
not/1, 42, 49, 171
notrace/0, 98
notrace/1, 98
nth0/3, 82
nth1/3, 82
nth clause/3, 61
nth clause/3, 61, 167
number/1, 46
number chars/2, 73
number chars/2, 73
numbervars/4, 72

on signal/3, 52
on signal/3, 14, 52, 54
once/1, 49, 50, 98, 101, 139
online help library, 172
op/3, 38, 58, 75, 76
open/3, 32, 63, 64
open/4, 13, 63, 64
open dde conversation/3, 103
open null stream/1, 64
open resource/3, 164
open shared object/2, 118
open shared object/3, 119
open dll/2, 118
open null stream/1, 66
open resource/3, 14, 159, 162, 164
open shared object/2, 29, 118, 119

peek byte/1, 67
peek byte/2, 67
phrase/2, 55
phrase/3, 12, 55
pi/0, 80
PL abort hook(), 146
PL abort unhook(), 147
PL action(), 144
PL atom chars(), 126
PL call(), 139
PL call predicate(), 139
PL close foreign frame(), 140
PL close query(), 139
PL compare(), 143
PL cons functor(), 133
PL cons functor v(), 133

PL cons list(), 133
PL context(), 140
PL copy term ref(), 123
PL cut query(), 139
PL discard foreign frame(), 140
PL dispatch hook(), 146
PL erase(), 143
PL exception(), 143
PL fail(), 124
PL foreign context(), 125
PL foreign context address(), 125
PL foreign control(), 125
PL functor arity(), 127
PL functor name(), 127
PL get arg(), 130
PL get atom(), 128
PL get atom chars(), 128
PL get chars(), 129
PL get float(), 129
PL get functor(), 130
PL get head(), 130
PL get integer(), 129
PL get list(), 130
PL get list chars(), 129
PL get long(), 129
PL get module(), 130
PL get name arity(), 130
PL get nil(), 131
PL get pointer(), 129
PL get string(), 129
PL get tail(), 131
PL halt(), 151
PL initialise(), 150
PL install readline(), 151
PL is atom(), 128
PL is atomic(), 128
PL is compound(), 128
PL is float(), 128
PL is functor(), 128
PL is integer(), 128
PL is list(), 128
PL is number(), 128
PL is string(), 128
PL is variable(), 128
PL module name(), 141
PL new atom(), 126
PL new functor(), 126

SWI-Prolog 3.2 Reference Manual

INDEX 191

PL new module(), 141
PL new term ref(), 123
PL new term refs(), 123
PL next solution(), 139
PL open foreign frame(), 139
PL open query(), 138
PL pred(), 137
PL predicate(), 137
PL predicate info(), 137
PL put atom(), 131
PL put atom chars(), 131
PL put float(), 133
PL put functor(), 133
PL put integer(), 131
PL put list(), 133
PL put list chars(), 131
PL put nil(), 133
PL put pointer(), 131
PL put string chars(), 131
PL put string nchars(), 131
PL put term(), 133
PL put variable(), 131
PL query(), 144
PL raise exception(), 142
PL record(), 143
PL recorded(), 143
PL register extensions(), 144
PL register foreign(), 144
PL reset term refs(), 123
PL retry(), 125
PL retry address(), 125
PL signal(), 144
PL strip module(), 140
PL succeed(), 124
PL term type(), 127
PL throw(), 143
PL toplevel(), 151
PL unify(), 134
PL unify arg(), 136
PL unify atom(), 134
PL unify atom chars(), 135
PL unify float(), 135
PL unify functor(), 135
PL unify integer(), 135
PL unify list(), 135
PL unify list chars(), 135
PL unify nil(), 136

PL unify pointer(), 135
PL unify string chars(), 135
PL unify string nchars(), 135
PL unify term(), 136
PL warning(), 144
plus/3, 49, 77
portray/1, 30, 68, 69, 138, 147, 169
portray clause/1, 45
portray clause/1, 45
predicate property/2, 60
predicate property/2, 113
predsort/3, 84
preprocessor/2, 43
print/1, 30, 68, 69, 87, 88, 138, 176
print/2, 69
print/[1,2], 68
print message/2, 52, 175
print message/2, 52
profile file, 17
profile/3, 101, 165
profile count/3, 102
profiler/2, 101
prolog/0, 17, 19, 29, 51, 96, 97, 114, 151
prolog current frame/1, 167
prolog edit:edit command/2, 45
prolog edit:edit source/1, 44
prolog edit:load/0, 45
prolog edit:locate/2, 44
prolog edit:locate/3, 44
prolog file type/2, 41
prolog frame attribute/3, 167
prolog load context/2, 41
prolog skip level/2, 169
prolog to os filename/2, 94
prolog trace interception/4, 168
prolog current frame/1, 167
prolog file type/2, 41
prolog frame attribute/3, 61
prolog load context/2, 41
prolog to os filename/2, 93
prolog trace interception/4, 167
prompt/2, 71
prompt1/1, 71
proper list/1, 82
proper list/1, 83
protocol/1, 97, 98
protocola/1, 97, 98

SWI-Prolog 3.2 Reference Manual

192 INDEX

protocolling/1, 98
put/1, 67
put/2, 67

qcompile/1, 43
qload/1, 43, 44
qsave program/1, 159
qsave program/2, 159, 160
qsave program/2, 14, 28, 159, 162
qsave program/[1,2], 13, 14, 19, 28, 30, 43,

118, 160, 161
quintus library, 113, 116

random/1, 79
read/1, 21, 31, 37, 64, 67, 69–71, 75, 100, 177
read/2, 69
read clause/1, 70
read clause/2, 70
read history/6, 71
read link/3, 94
read term/2, 70
read term/3, 71
read variables/2, 70
read variables/3, 70
read clause/1, 70, 100
read history/6, 21, 71
read term/2, 31, 70, 71
read term/3, 97
read variables/2, 70, 71, 74
reconsult/1, 38
recorda/2, 57
recorda/3, 57, 59, 143
recorded/2, 57
recorded/3, 57, 114, 161
recordz/2, 57, 114
recordz/3, 57
redefine system predicate/1, 56
redefine system predicate/1, 11
rem/2, 78
rename file/2, 93
repeat/0, 48, 50
require/1, 39, 160
reset profiler/0, 101
reset profiler/0, 101
resource/3, 14, 159, 160, 162–164
retract/1, 38, 40, 56, 58, 114
retractall/1, 11, 12, 56

reverse/2, 82, 108
rl add history/1, 170
rl read init file/1, 170
round/1, 79

same file/2, 92
save/0, 30
save/1, 177
save/[1,2], 30
save program/1, 177
save program/0, 30
save program/[1,2], 30
see/1, 62, 63
seeing/1, 62, 63, 94
seek/4, 65
seen/0, 63
select/3, 82
semaphores, 95
set feature/2, 32
set input/1, 65
set output/1, 65
set tty/2, 90
set feature/2, 21, 76
setarg/3, 12, 72
setenv/2, 44, 91
setof/3, 85, 171
sformat/2, 89
sformat/3, 89
shell/0, 90, 91
shell/1, 45, 90, 91
shell/2, 90
shell/[0-2], 91
shell/[1,2], 90
shlib library, 173, 175, 179
show profile/1, 101
show profile/1, 101
sign/1, 78
sin/1, 78, 80
size file/2, 93
skip/1, 67, 68
skip/2, 68
sleep/1, 106
sort/2, 83–85
source file/1, 41
source file/2, 41
source location/2, 41
source file/1, 41

SWI-Prolog 3.2 Reference Manual

INDEX 193

source file/2, 43, 60, 61
source file/[1,2], 113
source location/2, 41
spy/1, 24, 25, 99
sqrt/1, 80
stack,memory management, 37
stack parameter/4, 102
startup file, 17
statistics/0, 100
statistics/2, 81, 100
stream position/3, 65
stream position/3, 63, 65, 70
string/1, 46, 88
string concat/3, 75
string length/2, 75
string to atom/2, 75
string to list/2, 75
style check/1, 99
style check/1, 37, 59, 75
sublist/3, 85
subset/2, 83
substring/4, 75
subtract/3, 83
succ/2, 77
swi edit library, 45
swi help library, 20
swritef/2, 87
swritef/3, 87

tab/1, 67
tab/2, 67
tan/1, 80
tell/1, 62, 63
telling/1, 62, 63, 94
term expansion/2, 42
term to atom/2, 74
term expand/2, 42
term expansion/2, 38, 42, 43, 97
term to atom/2, 68
thread create/3, 95
thread exit/1, 96
thread join/2, 96
thread exit/1, 96
thread join/2, 96
throw/1, 14, 24, 50, 51, 96, 142, 143
time/1, 81, 101
time/6, 10

time file/2, 93
time file/2, 92
tmp file/2, 94
told/0, 63
trace/0, 24, 98, 145
trace/1, 98
trace/2, 98
tracing/0, 98
trim stacks/0, 102
trim stacks/0, 29, 102
true/0, 31, 48, 50
truncate/1, 79
tty get capability/3, 90
tty goto/2, 90
tty put/2, 90
tty get capability/3, 90
tty goto/2, 90
tty put/2, 90
ttyflush/0, 67, 87

union/3, 83
unix, 32
unix/1, 28, 91
unknown/2, 29, 33, 58, 99, 113
unload foreign library/1, 119
unsetenv/1, 91
use module/1, 109
use module/2, 109
use module/2, 33
use module/[1,2], 27, 39, 108–110, 113
user library, 177
user profile file, 17
user:prolog list goal/1, 169

var/1, 11, 45, 127
visible/1, 99
volatile/1, 161

wait for input/3, 66
wait for input/3, 66
wildcard match/2, 105
Win32s, 11
win exec/2, 91
win exec/2, 90
Window interface, 9
windows, 32
write/1, 30, 69, 74, 87, 88, 131
write/2, 69

SWI-Prolog 3.2 Reference Manual

194 INDEX

write canonical/1, 69
write canonical/2, 69
write ln/1, 86
write term/2, 68
write term/3, 69
write canonical/[1,2], 14
write term/2, 24, 68, 69, 87
write term/[2,3], 14
writef/1, 86
writef/2, 15, 35, 68, 86, 87
writef/[1,2], 86
writeq/1, 69, 87, 88
writeq/2, 69

X11, 9
xor/2, 80
XPCE, 9

SWI-Prolog 3.2 Reference Manual

