SAE Baja - Drivetrain

Project Proposal

Ricardo Inzunza, Brandon Janca, Ryan Worden

December 3, 2014

Overview

- Introduction
- Needs and Constraints
- QFD/HOQ
- Problem Definition and Project Goal
- Transmission Choices
- Decision Matrix
- Design Analyses and Calculations
- Gantt Chart
- Conclusion

Introduction

- Choosing which transmissions to begin analyzing
- Continued research and analysis to further the understanding of the designs
- Gantt Chart

Needs and Constraints

Dr. John Tester, Client

 Lightweight - vehicle is required to be, at most, 450 pounds in weight

Constraints

- Must use provided engine -Briggs & Stratton 10 horsepower OHV Intek
- Design drivetrain within SAE Baja rules
- Complete a 100 feet trial in 4 seconds on level, dry pavement
- Able to climb an incline of at least 60 degrees
- Possible to manufacture in NAU
 Machine Shop

QFD/HOQ											
			ř	Engineering Requirements							T
		High -9 Medium - 5 Low - 1 None - 0		Cost	Weight	Volume	Acceleration	Hill Climb Angle	Safety	NAU Baja 2013-14	
	ž)		Weighted %	Ļ	↓	Ļ	Ť	Ť	Ť		
	ds	Lightweight	30%	9	9	9	9	9	-		
	leer	Reverse Gear	20%	5	9	9				x	ľ
	erl	Reliable	30%	9	9	1			9	Х	1
	ustom	Manufacturing Limitations	10%	9	9	9	9	9		х	
	ŭ	Inexpensive	10%	9	9	5	9	9	9		
		· · · · · · · · · · · · · · · · · · ·	Units	\$	lbs	in^3	sec	Degrees	F.O.S.		-10
			Score	8.2	9	6.2	4.5	4.5	3.6		
			Weighted Percentages	22.78%	25.00%	17.22%	12.50%	12.50%	10.00%		
			Targets	2500	100	1000	4	65	>2		
			NAU Baja 2013-14	3000	160	1809.5	5.879	40	10		

Worden

Problem Definition and Project Goal

Design and develop a drivetrain that is able to attain the desired torque and speed for the SAE Mini Baja in order to place in the top 10 in the Hill Climb and Acceleration challenges against competing universities.

Transmission Concepts

- Automatic
- CVT Belt
- CVT Gear

- Direct Drive
- Manual
- Sequential

Automatic Transmission

Pros:

- High gear ratio range
- Reliable
- Reverse gear capable

<u>Cons:</u>

- Cost
- Medium efficiency
- Size
- Extremely difficult to design

Direct Drive Transmission

Pros:

- Cost
- Simplicity of design
- Size
- Weight
- Highly efficient

<u>Cons:</u>

- Static gear ratio
- Not reverse gear capable

(Direct Drive)

Manual Transmission

Pros:

- Reverse capable
- Reliable
- Cost effective

Cons:

- Extra weight from clutch
- Loss of power between shifts

(Representation of Manual Gearbox)

Sequential Transmission

Pros:

- Little loss of power
- Lightweight and compact
- Simple to operate
- Stronger and more reliable

Cons:

- Difficult to integrate reverse and clutch
- Possible increased cost

Janca

Continuous Variable Transmission (Belt)

11

- Pros:
- Ease of use
- Size
- Weight

Cons:

- Cost
- Efficiency
- Reliability
- Reverse gear

Continuous Variable Transmission (Gears)

12

Pros:

- Ease of use
- Variability of gear ratios
- Efficiency
- Reverse gear

Cons:

- Cost
- Weight
- Simplicity of design

(Gear CVT)

Original Decision Matrix

Scale 1-5 5 = Best, 1 = Worst	Cost	Gear Ratio Range	Efficiency (Loss of Power)	Weight	Simplicity of Design	Reliability	Size/Volume	Reverse Gear Capable	Total
Sequential	3	5	5	4	3	4	4	3	3.95
Manual	3	5	4	3	4	4	3	4	3.85
CVT Belt	2	3	2	3	5	2	5	1	2.35
CVT Gear	2	5	4	3	3	4	3	5	3.85
Automatic	2	4	3	3	2	4	2	4	3.2
Straight (One Gear Ratio)	5	2	5	5	5	5	5	1	3.75
Customer Weighting	15%	15%	20%	10%	5%	10%	5%	20%	

Manual versus Sequential

<u>Manual:</u>

- Reverse gear capable
- Simple design

Sequential:

- Efficient
- High gear ratio range
- Fast gear selection

Hill Climb Free Body Diagrams

 $m_{Baja} \cdot a_{Baja}$

FBD of Wheel

FBD of Vehicle

Janca

Calculations - Hill Climb, Vehicle

- Givens/Assumptions:
 - W = 600 lb
 - f_R = 0.16
 - c_w = 0.62
 - \circ P_{Z, B} = 8.5 hp = 4675 lb*ft / s
 - $\circ \alpha_{\rm St} = 60^{\circ}$
 - $A = 9.98 \text{ ft}^2$
 - $\circ \quad \rho_{\text{air}} = 0.00228 \text{ slug/ft}^3$
 - v = 5 mph = 22/3 ft/s

- Equations Used:
 - $F_{\rm St} = m_{\rm F} g \sin \alpha_{\rm St}$ $F_{\rm L} = \frac{1}{2} \rho_{\rm L} c_{\rm W} A v^2$
 - $F_{\rm R} = f_{\rm R} \ m_{\rm F} \ g \ \cos \alpha_{\rm St}$
 - $F_{\rm Z,B} = F_{\rm R} + F_{\rm St} + F_{\rm L} + F_{\rm a}$ $P_{\rm Z,B} = F_{\rm Z,B} \ v$

Results - Hill Climb, Vehicle

- Results
 - \circ F_{St} = 519.615 lbf
 - \circ F_f = 48 lbf
 - \circ F_L = 0.379 lbf
 - \circ F_{Z, B} = 567.994 lbf
 - \circ v_{vehicle} = 5.616 mph = 8.236 ft/s

Calculations - Hill Climb, Wheel

- First Gear Ratio Assumptions:
 Assume F_{total} = 600 lb
 - \circ Assume v_{vehicle} = 6 mph
 - P = 8.5 hp, α = 60°
 - \circ 22 in diameter tire, R = 11 in
 - \circ N_{min} = 1800 rpm
 - \circ N_{max} = 2800 rpm

• Equations Used: $\omega = \frac{v}{2}$

$$r$$

$$R = \frac{\omega_A}{\omega_B} = \frac{N_B}{N_A}$$

 $\tau = F \times r$

Results - Hill Climb, Wheel

- Results
 - $\circ \omega$ = 91.67 rpm
 - Gear Ratio_{min} @1800rpm = 19.63:1
 - Gear Ratio_{max} @2800rpm = 30.54:1
 - Gear Ratio_{avg} = 24.1:1

$$\circ$$
 T_{wheel} = 550 lb*ft

Calculations - Acceleration

- Assumptions
 - Distance = 100 ft
 - Time = 4 seconds
 - \circ a = 12.5 ft/s²
 - v = 23 mph
 - m = 18.65 lbm
 - **R = 11 in**
 - $A = 9.92 \text{ ft}^2$
 - \circ c_W = 0.62 \circ ρ_1 = 0.00228 slug/ft³
 - $\circ f_{R}^{L} = 0.014$

• Equations Used:

$$x = x_0 + v_0 t + \frac{1}{2} a_c t^2$$

F = ma

$$F_{\rm R} = f_{\rm R} \ m_{\rm F} \ g \ \cos \alpha_{\rm St}$$

$$F_{\rm L} = \frac{1}{2} \rho_{\rm L} c_{\rm W} A v^2$$

Results - Acceleration

Results:

- $F_{\text{total, High}} = 250 \text{ lbf}$ High Ratio $\frac{F_{Total,High}}{2} \times \frac{13R}{12}$ • $F_{\text{total, Low}} = 241 \text{ lbf}$
 - High Ratio = **6.2** : **1**
 - Low Ratio = **11.1 : 1**
 - Total Time = 4.25 seconds

Low Ratio -
$$\frac{F_{Total,Low}}{2} \times \frac{10R}{12}$$

Gear Ratios

Engine to Gearbox Ratio: 1:1

Gear Box Ratios

- Crawler: **2.70 : 1**
- 1st: **1.24 : 1**
- 2nd: **1:1**
- 3rd: 0.696 : 1
- Reverse: **1.20 : 1**

Reducer Ratio: 9:1

Ist 2nd 3rd 4th Rev Engine Crawler: 2.70x9 = 24.3 : 1 1st Gear: 1.24x9 = 11.16 : 1 2nd Gear: 1.00x9 = 9.00 : 1 3rd Gear: .696x9 = 6.26 : 1

Gearbox

9:1 Reverse: 1.20x9 = 10.8:1

Gear Specification

Shafts

Input shaft $M_a = 578$ lb-in Input shaft $T_m = 192$ lb-in DE-Goodman:

Output shaft $M_a = 578$ lb-in Output shaft $T_m = 528$ lb-in

$$\frac{1}{n} = \frac{16}{\pi d^3} \left\{ \frac{1}{S_e} \left[4(K_f M_a)^2 + 3(K_{fs} T_a)^2 \right]^{1/2} + \frac{1}{S_{ul}} \left[4(K_f M_m)^2 + 3(K_{fs} T_m)^2 \right]^{1/2} \right\}$$

- Shaft Material: 4340 Normalized Steel
- 0.5 inch diameter solid shaft
- Factors of Safety: Input shaft = 2.94

Output shaft = 2.00

Bearings

- McMaster-Carr Open Steel Ball Bearing
 - Shaft Diameter = 0.5 inches
 - Outside Diameter = 1.125 inches
 - Width = 0.375 inches
 - Dynamic Load Capacity = 600 pounds

• Factor of Safety: 2.3

CAD Drawing

Overall Assembly

Bill of Materials

			Overall Cost of Each	
Materials	Quantity	Cost for One Unit of Material	Material	Free/Donated
7075 T6 Aluminum (4" diameter, 2' bars)	1	\$307.44	\$307.44	х
7075 T6 Aluminum (3" diameter, 5' bars)	1	\$298.87	\$298.87	х
7075 T6 Aluminum (2" diameter, 4' bars)	1	\$87.24	\$87.24	х
6061 T6 Aluminum (0.5" thick, 1'x3' plates)	1	\$164.92	\$164.92	х
6061 T6 Aluminum (0.25" thick, 1'x3' plates)	1	\$76.69	\$76.69	х
4340 Normalized Steel (5/8" inch diameter, 5' bar)	2	\$95.64	\$191.28	х
Bearings	6	\$7.36	\$44.16	
Clutch	1	\$300.00	\$300.00	
Differential	1	\$400.00	\$400.00	х
80 tooth sprocket	1	\$25.00	\$25.00	
10 tooth sprocket	1	\$10.00	\$10.00	

Total

28

\$1,905.60

Total, subtracting free/donated

\$379.16

Inzunza

Manufacturing of Gearbox

- Can manufacture gears on site at the NAU Machine Shop
- Will either order or turn down metal received from Industrial Metal Supply Co.
- Purchasing bearings from McMaster-Carr and a clutch online

Manufacturing of Gearbox

Gantt Chart

(GANTT Project	\leq	\geq	2014	Contact Client	Calculations	Calculations	Final Presentation	2015	
	Name	Begin date	End date	September		October	November	December	January	February
	Contact Client	9/16/14	9/16/14		•					
	Presentation 1	9/24/14	9/24/14		•					
	Report 1	9/26/14	9/26/14	1000	•					
	Test Motor	10/10/14	10/12/14							
	Gear Train Selection	10/11/14	10/19/14							
	Presentation 2	10/15/14	10/15/14			٠				
	Report 2	10/17/14	10/17/14	1000						
	 3D Models for Parts 	11/1/14	11/14/14							
P	 Calculations 	11/10/14	11/26/14							
	Gear Ratio Calculations	11/10/14	11/26/14	0.00						
	Torque Calculations	11/10/14	11/26/14	2002						
	Velocity Calculations	11/10/14	11/26/14	1000						
	Shear Stress Calculations	11/10/14	11/26/14				L.			
	Safety Factor Calculations	11/10/14	11/26/14	0000						
	Presentation 3	11/12/14	11/12/14	Note of the second s						
	Report 3	11/14/14	11/14/14	1000						
	Parts Choosing	11/15/14	11/30/14							
	Parts Ordering	11/15/14	11/30/14	0000						
	Manufacturing of Transmission	n 12/1/14	2/28/15							
	Final Presentation	12/3/14	12/3/14	000				•		
	 Final Report 	12/5/14	12/5/14							

Conclusion

- Selected, designed, and analyzed a sequential transmission
- Will begin to manufacture the gears during the month of December
- Will order the metal for the shafts and housing through Industrial Metal Supply Co. (IMS)
- Will purchase bearings and a clutch

References

• 2015 Collegiate Design Series: Baja SAE Rules

http://bajasae.net/content/2015%20BAJA%20Rules%20.pdf

- Tester, John T., PhD, Associate Professor Northern Arizona University, personal communication, Sept. 2014.
- SAE Mini Baja 2013-2014 NAU Chapter Webpage: <u>http://www.cefns.nau.</u> <u>edu/capstone/projects/ME/2014/SAE-MiniBaja/</u>
- Transmissions Textbook: Lechner, G., Harald Naunheimer. <u>Automotive</u> <u>Transmissions: Fundamentals, Selection, Design and Application</u>. Berlin: Springer, 1999.
- Mating Pinion and Gear Picture http://www.daerospace.com/MechanicalSystems/GearDescFig2.png

References

- NAU Student Chapter of SAE "2006 Mini Baja," www.cens.nau. edu/~jtt3/Minibaja06, April 2006
- The Transmission Bible: Transmission, or Gearbox? <u>http://www.carbibles.</u> <u>com/transmission_bible.html</u>
- Direct Drive and Manual Picture <u>http://alooroea.blogspot.</u> <u>com/2011/05/manuel-transmission.html</u>
- Belt CVT Picture http://auto.howstuffworks.com/cvt2.htm
- Gear CVT Picture <u>http://www.gizmag.com/steve-durnin-ddrive-d-drive-infinitely-variable-transmission-geared/15088/picture/114606/</u>
- Automatic Transmission Picture <u>http://hdabob.com/Transmission.htm</u>

Questions?