SAE Baja - Drivetrain

Engineering Analysis

Ricardo Inzunza, Brandon Janca, Ryan Worden

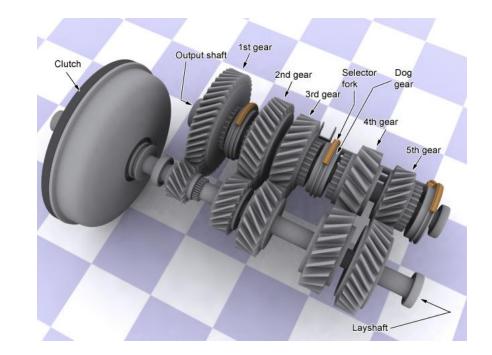
November 12, 2014

Overview

- Introduction
- Design Analyses
 - Manual Transmission
 - Sequential Transmission
- Decision Matrix
- Gantt Chart
- Conclusion

Introduction

- Analysis between manual versus sequential transmissions
- The customer requires a reverse, lightweight, and safe transmission
- Continued research and analysis to further the understanding of the designs
- Updated Gantt Chart


Manual Transmission

Pros:

- Reverse capable
- Reliable
- Cost effective

Cons:

• Long Shift Times

Sequential Transmission

Pros:

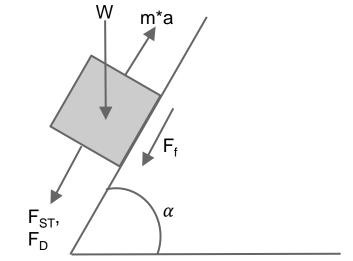
- Little loss of power
- Short Shift Times
- Lightweight/Compact
- Simple to operate
- Stronger and more reliable

Cons:

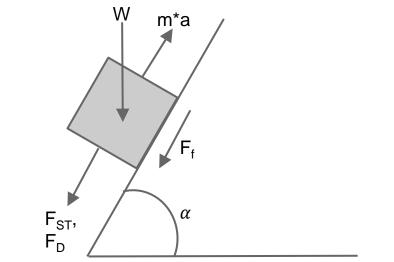
- Difficult to integrate reverse
- Possible increased cost

Dog gears have more space so the teeth butt up against each other rather than meshing directly

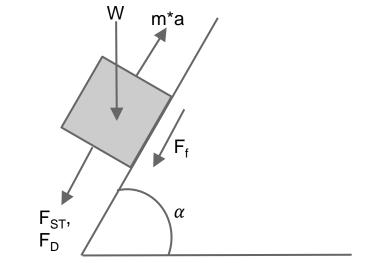
(Sequential Dog ring compared to Manual Dog ring)

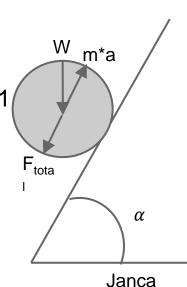


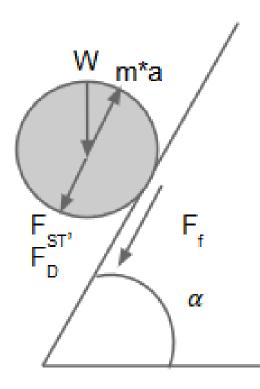
Janca

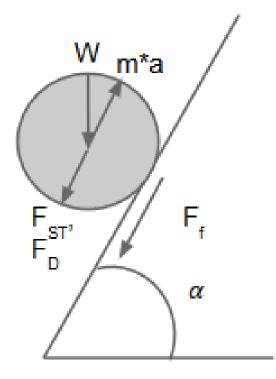

Decision Matrix

Scale 1-5 5 = Best, 1 = Worst	Cost	Gear Ratio Range	Efficiency (Loss of Power)	Weight	Simplicity of Design	Reliability	Size/Volume	Reverse Gear Capable	Total
Sequential	3	5	5	4	3	4	4	3	3.95
Manual	3	5	4	3	4	4	3	4	3.85
Customer Weighting	15%	15%	20%	10%	5%	10%	5%	20%	


- Givens/Assumptions
 - \circ W = 600 lb
 - $\circ \quad f_f = 0.16$
 - $\circ c_{D} = 0.62$
 - \circ P = 8.5 hp = 4675 lb*ft / s
 - $\circ \alpha = 60^{\circ}$
 - \circ A = 9.98 ft²
 - $\circ \quad \rho_{air} = 0.00228 \text{ slug/ft}^3$
 - \circ v_{wind} = 5 mph = 22/3 ft/s


- Equations Used
 - $\circ \quad \mathsf{F}_{\mathsf{ST}} = \mathsf{W} * \sin(\alpha)$
 - $\circ \quad \mathsf{F}_{\mathsf{D}} = \mathsf{f}_{\mathsf{f}}^* \mathsf{W}^* \cos(\alpha)$
 - \circ ~ F_f = 0.5 * ρ_{air} * C_D * A * (V_{wind})^2
 - $\circ \quad \mathsf{F}_{\mathsf{total}} = \mathsf{F}_{\mathsf{ST}} + \mathsf{F}_{\mathsf{D}} + \mathsf{F}_{\mathsf{f}}$
 - $\circ \quad v_{vehicle} = P/F_{total}$


- Results
 - \circ F_{ST} = 519.615 lb
 - \circ F_D = 48 lb
 - \circ F_f = 0.379 lb
 - \circ F_{total} = 567.994
 - \circ v_{vehicle} = 5.616 mph = 8.236 ft/s


- First Gear Ratio Assumptions
 - Assume $F_{total} = 600$ lb (rounded F_{total} from previous slide)
 - Assume $v_{vehicle} = 6$ mph (rounded from $v_{vehicle}$ from previous slide)
 - $P = 8.5 \text{ hp}, \alpha = 60^{\circ}$
 - \circ 22 in diameter tire, R = 11 in = 0.916 ft
 - \circ N_{min} = 1800 rpm
 - \circ N_{max} = 2800 rpm
 - Typical rock crawlers have ratios between 50:1 to 70:1

- First Gear Ratio Equations Used
 - $\circ \omega = v_{vehicle}/R$
 - $\circ \quad Gear \ Ratio_{min} = N_{min}/\omega$
 - $\circ \quad \text{Gear Ratio}_{\text{max}} = N_{\text{max}} / \omega$
 - $\circ \quad \mathsf{T}_{\mathsf{wheel}} = \mathsf{R} \, * \, \mathsf{F}_{\mathsf{total}}$

- First Gear Ratio Equations Used
 - $\circ \omega$ = 91.67 rpm
 - Gear Ratio_{min} @1800rpm = 19.63:1
 - Gear Ratio_{max} @2800rpm = 30.54:1
 - Gear Ratio_{avg} = 24.1:1
 - \circ T_{wheel} = 550 lb*ft

Formulas - Acceleration

Distance = 100 ft

Time = 4 s $x=v_0^*x^*t + 0.5^*a^*t^2$

 $a=2^{*}x/t^{2}$

a=12.5 ft/s²

v=23 mph

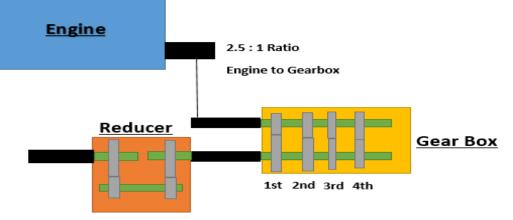
m=18.65 lbm c_a=9.92 ft² c w=0.62 $F_{accel} = m^*a = 233.1 \text{ lbf}$ $F_{Roll} = f_r^m = g_{8.4} \text{ lbf } f_r = 0.014$ $F_{air}=0.5^{*}p_{l}c_{w}c_{a}v^{2}=8.3$ lbf $F_{Total H}$ =250 lbf $F_{Total I}$ =241 lbf

Final Design - Acceleration

High Ratio =(250lbf/2)*(11in/12in/ft)/13lbf*ft=8.8

Low Ratio =(241lbf/2)*(11in/12in/ft)/10lbf*ft=11.05

Weight = 130 lbs Total Time = 4.25 s


Overall Gear Ratios

Engine to Gearbox Ratio: 2.5:1

Gear Box Ratios

- 1st Gear: 2.4:1
- 2nd Gear: 1.25:1
- 3rd Gear: 1.033:1
- 4th Gear: 0.967:1

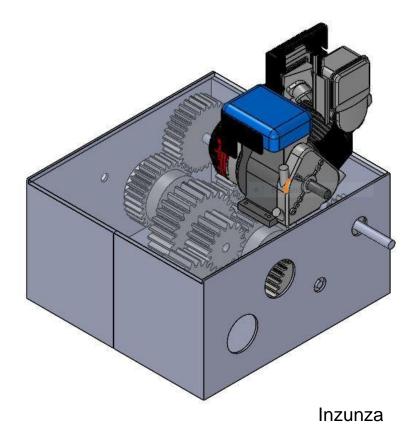
Reducer Ratio: 3.5:1

1.72 : 1 X 2 =3.44 : 1 Ratio

1st Gear: 2.5 x <u>2.4</u> x 3.44 = 24.16:1 2nd Gear: 2.5 x <u>1.25</u> x 3.44 = 10.75:1 3rd Gear: 2.5 x <u>1.033</u> x 3.44 = 8.88:1 4th Gear: 2.5 x <u>0.967</u> x 3.44 = 8.31

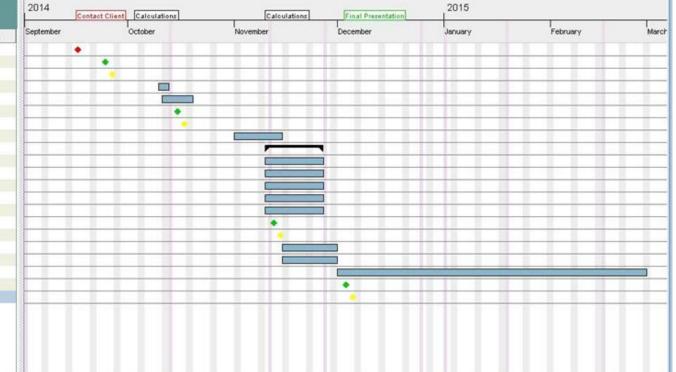
Number of Teeth Chosen

Engine to Gearbox Pinion:11 Gear: 28 Gearbox


1st Gear-Pinion: 16Gear: 452nd Gear-Pinion: 27Gear: 34

3rd Gear- Pinion: 30 Gear: 31

4th Gear- Pinion: 31 Gear: 30


<u>Reducer</u>

1st Mesh- Pinion:16Gear:282nd Mesh- Pinion:16Gear:28

Gantt Chart

		Name	Begin date	End date	
3	0	Contact Client	9/16/14	9/16/14	
	9	Presentation 1	9/24/14	9/24/14	
	0	Report 1	9/26/14	9/26/14	
	0	Test Motor	10/10/14	10/12/14	
	0	Gear Train Selection	10/11/14	10/19/14	
	0	Presentation 2	10/15/14	10/15/14	
	0	Report 2	10/17/14	10/17/14	
	0	3D Models for Parts	11/1/14	11/14/14	
9 0	ø	Calculations	11/10/14	11/26/14	
		Gear Ratio Calculations	11/10/14	11/26/14	
		Torque Calculations	11/10/14	11/26/14	
		Velocity Calculations	11/10/14	11/26/14	
		Shear Stress Calculations	11/10/14	11/26/14	
		Safety Factor Calculations	11/10/14	11/26/14	
	0	Presentation 3	11/12/14	11/12/14	
	0	Report 3	11/14/14	11/14/14	
	0	Parts Choosing	11/15/14	11/30/14	
	0	Parts Ordering	11/15/14	11/30/14	
	0	Manufacturing of Transmission	12/1/14	2/28/15	
	0	Final Presentation	12/3/14	12/3/14	
	9	Final Report	12/5/14	12/5/14	

Worden

Conclusion

- Project Introduction
 - State which designs were chosen to be analyzed
- New Decision Matrix
 - Assessment of selected gearboxes
- Gantt Chart Update
 - Re-evaluating deadlines and milestones

References

- The Transmission Bible: Transmission, or Gearbox? <u>http://www.carbibles.com/transmission_bible.html</u>
- Transmissions Textbook: Lechner, G., Harald Naunheimer. <u>Automotive</u> <u>Transmissions: Fundamentals, Selection, Design and Application</u>. Berlin: Springer, 1999.
- Manual Picture <u>http://alooroea.blogspot.com/2011/05/manuel-</u> <u>transmission.html</u>

Questions?