Aqua Scooter

Concept Generation and Selection

Dylan Cannon, Darin Gilliam, Eli Palomares, Elizabeth Tyler, Jiyan Wang, Tyler Winston

Oct 14, 2014

NORTHERN

Overview

- Background
- Team Concepts
- Decision Matrix
 - Components
- Top Two Ideas
- Summary
- References

http://www.redferret.net/?p=8163

Problem Statement

 Design an hydrodynamic, inexpensive, aesthetically pleasing Aqua Scooter, with a marine engine that complies with EPA regulations.

Background

- Client's main concern with Aqua Scooter is the EPA regulations
- Second concern is to provide an aesthetically pleasing hydrodynamic design
- Designs must address one of the main client concerns

Team Concepts

- Boomerang
- Octopus
- Magneto Hydrodynamic Propulsion System
- Propane Injected 4-Stroke
- Duck Scooter
- Tank Housing

- 2 Propeller
- 4 Mix Engine
- Enclosed Housing
- Adjustable Jet
- Catalytic Converter and Coil
- Fuel Injected 2-Stroke

4 Mix Engine

• 4 stroke engine that uses two stroke gas, making it lighter.

Enclosed Housing

• Enclosed housing can increase engine life.

Magneto Hydrodynamic Propulsion System

• Thrust provided by rapid hydrolysis.

Propane Injected 4-Stroke

• Conventional 4- stroke that uses propane.

Duck Scooter

• It is a fuel injected 4 stroke engine with kid friendly design.

2 Propeller

• Provides higher speed with 2 propellers and a 4 stroke engine.

Fuel Injected 2-Stroke

• Fuel is electronically injected and monitored, decreasing emissions.

Tank Housing

• More aesthetically pleasing and hydrodynamically efficient.

Adjustable Jet

• The nozzle can be angled differently for different thrust vectoring.

Catalytic Converter and Coil

• Catalytic converter externally heated to burn excess fuel in exhaust.

Boomerang

• Consists of boomerang skeleton system with a four stroke engine and nozzle.

Octopus

• Legs spin around the passenger creating the movement of the device.

Decision Matrix

	Requirements and Criteria									
	Aesthetically Pleasing	Minimal Probability of Error	Ease of Manufacture	EPA Requirements	Complexity of Design	Provides Thrust	Hydrodynamic Efficient	Lightweight	Minimal Cost of Materials	Total Weighted Factor
Requirement Weighting	10%	10%	10%	20%	10%	10%	10%	10%	10%	100%
Boomerang	7	6 (7 0.6	5 0.5	7 1.4	5 0.5	8 0.8	8 0.8	6 0.6	7.5 0.75	6.65
Octopus	6 0.6	3 6 0.3	4 0.4	7 1.4	4 0.4	8 0.8	6 0.6	6 0.6	5 0.5	5.6
Magnetohydrodynamic propulsion	5 0.ť	3 5 0.3	3 0.3	7 1.4	2.5 0.25	9 0.9	6 0.6	4 0.4	3 0.3	4.95
Propane injected 4 stroke	7	7 7 0.7	7 0.7	8 1.6	7 0.7	5.5 0.55	7 0.7	6 0.6	5 0.5	6.75
Duck Scooter	8 0.8	6 6 3 0.6	6 0.6	6 1.2	6 0.6	7.5 0.75	5.5 0.55	6 0.6	5 0.5	6.2
2 Propeller	8	6 (3 0.6	6 0.6	7.5 1.5	5 0.5	8.5 0.85	7 0.7	5.5 0.55	6 0.6	6.7
4 Mix Engine	6.5 0.65	7 0.7	3 0.8	8.5 1.7	7 0.7	9 0.9	7 0.7	6 0.6	5 0.5	7.25
Enclosed Housing	7.5 0.75	8 0.8	6 0.6	7 1.4	5 0.5	9 0.9	7 0.7	6 0.6	5 0.5	6.75
Adjustable Jet	7	6 (7 0.6	6 0.6	8 1.6	6 0.6	8 0.8	8 0.8	6 0.6	6.5 0.65	6.95
Catalytic Converter and Coil	6 0.6	5.5 0.55	5 0.5	8 1.6	5 0.5	7 0.7	6.5 0.65	7 0.7	5 0.5	6.3
Fuel Injected 2 Stroke	7	5.5 7 0.55	5 0.5	8 1.6	50.5	90.9	7 0.7	7.5 0.75	4 0.4	6.6
Tank Housing	7.5 0.7	5.5 5 0.55	6 0.6	6 1.2	5.7 <u>5</u> 0.575	9 0.9	7.5 0.75	7 0.7	5.5 0.55	6.575

12

Criteria

 Aesthetically Pleasing 	10%
 Minimal Probability of Error 	10%
 Ease of Manufacture 	10%
 EPA Regulations 	20%
 Complexity of Design 	10%
 Provides Thrust 	10%
 Hydrodynamically Efficient 	10%
 Lightweight 	10%
 Minimal Cost of Materials 	10%

Top Two Ideas

Boomerang with 4-stroke Propane Engine
 with Adjustable Jet

 Two Propeller with 4-stroke 4-mix Engine with Adjustable Jet

Summary

- Individually, each team member conceptualized varying design components and criteria.
- As a group, a final decision matrix was constructed based on all the concepts and criteria.
- Based on the group decision matrix, two final designs were developed.

References

] L. Arnone, M. Janeck, M. Marcacci, R. Kirchberger, M. Pontoppidan and R. Busi, "Development of a direct injection twostroke engine for scooters," in *Small Engine Technology Conference and Exhibition, November 28, 2001 - November 30,* 2001, .

[2] B. Douville, P. Ouellette, A. Touchette and B. Ursu, "Performance and emissions of a two-stroke engine fueled using high-pressure direct injection of natural gas," in 1998 SAE International Congress and Exposition, February 23, 1998 - February 26, 1998, .

[3] P. Duret, A. Ecomard and M. Audinet, "A new two-stroke engine with compressed-air assisted fuel injection for high efficiency low emissions applications," in *International Congress and Exposition, February 29, 1988 -March 4,* 1988, .

[4] H. Huang, M. Jeng, N. Chang, Y. Peng, J. H. Wang and W. Chiang, "Improvement of exhaust emissions from a twostroke engine by direct injection system," in *International Congress and Exposition, March 1, 1993 -March 5,* 1993, .

[5] W. Mitianiec, "Direct injection of fuel mixture in a spark ignition two-stroke engine," in SAE 2002 World Congress, March 4, 2002 - March 7, 2002, .

[6] K. Morikawa, H. Takimoto, T. Kaneko and T. Ogi, "A study of exhaust emission control for direct fuel injection two-stroke engine," in *Small Engine Technology Conference and Exposition, September 28, 1999 -September 30,* 1999, .

[7] P. Rochelle and W. Perrard, "Fuel consumption and emission reduction of a small two-stroke engine through airassisted fuel injection and delayed-charging," in *International Congress and Exposition, March 1, 1999 -March 4,* 1999,.

[8] Stihl KM 130 R. Accessed 10 Oct 2014. *Firewood Hoarders Club.* http://firewoodhoardersclub.com/forums/index.php?threads/stihl-km-130-r-4-mix-engine.3850/

[9] A. Dave, Development of a Reed Valve Model for Engine Simulations for Two-Stroke Engines, 1st ed., SAE International, 2004.

Any Questions?