Project Formulation and Plan for the Shell Eco-Marathon Competition

John Gamble, Abdul Alshodokhi, Travis Moore, Nikolaus Glassy

October 7th 2013

Overview

- Introduction
- Problem Statement
- Need Statement
- Objective
- Goal
- Constraints
 - Braking
 - Powertrain
 - Fuel Systems
 - Electrical Systems
 - Technical Documentation

John Gamble

Overview

- Planning
- Quality Function Development
- Gantt Chart
- Conclusion

Introduction

- Background info on Eco-Marathon
 - 1939 Competition started from wager between 2 Shell engineers
 - 1977 First International competition in UK
 - 2004 Record for highest fuel economy (8000 mpg)
 - 2007 First competition in the Americas
 - 2010 First competition in Asia

Need Statement

• Due to sufficient number of vehicles running on finite resources as a means of transportation, it has become necessary to research and develop means to stretch those finite resources further. The Shell Corporation has sponsored a competition to promote this research and development.

Goal

• The team's goal for this semester is to accurately and appropriately design an internal combustion engine powered vehicle for the Shell Eco-Marathon Competition that will have several subsystems working together to reach a fuel efficiency of at least 500 mpg.

Objective

- Design ignition, propulsion, braking, and electrical systems for a vehicle that will safely:
 - Start-up and engine at desired rpm within 5 seconds
 - Achieve a maximum average speed of 17mph
 - Stop the vehicle within 50ft from a speed of 17mph
 - Hold a vehicle stationary on a 20% incline
 - Completely shut down all vehicle systems within 1 second

Operating Environment

- Design Environment
 - The design environment will take form in weekly team and group meetings in the NAU Engineering Building to ensure accuracy within the vehicle design
- Fabrication Environment
 - The team will build/fabricate the designed vehicle in the student projects shop on NAU campus and perform initial testing around the campus
 - The driver will also gain experience with driving the vehicle and operating the vehicle systems

Operating Environment

- Tuning Environment
 - The initial tuning will be done in Flagstaff for engine break in and preliminary testing
 - The vehicle will also be tuned and tested in Phoenix before the competition to obtain a better idea of potential results due to the lower elevation (1200 ft above sea level)
- Competition Environment
 - The competition will take place in downtown Houston,TX from April 25th to the 27th
 - Practice, tuning, competition, and presentation will take place

John Gamble

Drivetrain (Clutch & Transmission) Constraints:

- Effective transmission chain or belt guard(s):
 - To protect driver or technician
 - Made of metal or composite material
 - Rigid enough to withstand a break
- Clutch system must be equipped, with the internal combustion engines

Drivetrain (Clutch & Transmission) Constraints:

- Manual Clutch:
 - Must not have the starter motor operable with the clutch engaged.
- Automatic clutch:
 - Motor starting speed below speed engagement of the clutch.

Braking Constraints

- 2 Independent Systems
 - Front Wheel(s)
 - Rear Wheel(s)
- All wheels must have braking force applied
- Simultaneous Engagement
- Needs to stop vehicle from 17mph within 50ft
- Needs to hold vehicle stationary at 20% incline

Fuel System Constraints

- Fuel must be Shell Regular Gasoline (87) or E100 (100% Ethanol)
- Fuel tank must be APAVE certified and a volume of either 30,100,or 250 cc
- Fuel tank must be mounted in a zero degree position and at least 5cm below the roll bar
- Air Intake must not contain any fuel or blowby gas

Fuel System Constraints

- Internal and external emergency shut-down systems must shutdown the ignition and fuel supply
- External system must be permanently mounted to body
- External system must have a latching red push button and be labeled with a 10cm by 3cm wide red arrow on a white background.
- Fuel line between tank and engine may not contain any other elements

Fuel System Constraints

- Fuel lines must be flexible and clear in color and not prone to expansion
- Teams cannot increase or decrease the fuel temperature
- Float chambers must include a drain valve at the bottom of the carburetor to ensure fuel level goes down in the fuel tank

Electrical System Constraints

- Maximum on-board voltage must not exceed 48V nominal
- Only one on-board battery and the battery must maintain a constant ground
- Electrical circuits must be protected from short circuit and overload
- Electric horn must be 85 dBa and pitch of 420 Hz

Electrical System Constraints

- Electrical starter can only operate when ignition and fuel systems are activated
- Electrical starter must not provide propulsion
- A red starter light must be installed on the rear of the vehicle with a luminescence of 21W and be clearly visible from both sides
- Starter and starter light must be extinguished by the time the rear wheel crosses the start line

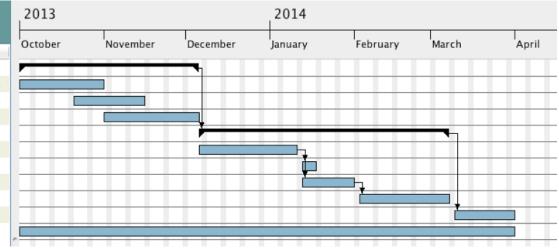
Technical Documentation Constraints

- Fuel System
 - Full description and detailed schematic from tank to motor
 - including pressurized air bottle, pressure relief valves, air pressure gauges, fuel tank, valves, injectors, float chambers, and pumps
 - Description of vehicle clutch operation
 - Specifically showing starter motor does not engage clutch

Technical Documentation Constraints

- Electrical System
 - Circuit diagrams with all components listing voltage, current, and power ratings
 - Show emergency stop switch locations for inside and outside of car
 - Show battery location with type and rated voltage
 - Show starter motor location
- All documentation must be current, printed copies, with display poster

Planning


- Independent Research
- Systems Design and Integration
- Ordering/Fabricating Parts
- Assembly
- Initial Tuning and Engine Break-in
- Fine Tuning
- Competition

Quality Function Deployment (QFD)

			Maximum Efficiency Vehicle								
			Requirements								
	Customer Needs	Customer Weights	Accesibility	Part strength	Horse Power	Torque	Weight	Velocity	Friction	Steering geometry	Gear Ratio
Drive	Maintain average lap time	7	0	1	8	6	10	5	2	1	7
	Complete course efficiently	10	0	1	9	6	10	6	6	1	10
	Manuever course	7	0	3	6	8	7	8	8	10	5
Braking	Braking distance	6	0	5	0	0	8	0	10	0	0
Safety	Operate safely	6	10	10	1	3	1	0	0	0	0
-	Be stable	5	0	8	0	3	8	4	7	3	0
		Raw score	60	168	194	191	313	171	225	102	184
		Relative Weight	4%	10%	12%	12%	19%	11%	14%	6%	11%
	U.L. ; Stands for unitless	Unit of Measure	s	psi	hp	lbf	ľb	fps	U.L.	U.L.*	U.L.*

Gantt Chart

(G	A	project	\mathbf{i}	\sim
Na	me			Begin date	End date
▼	0	Dri	ivetrain Design	10/1/13	12/5/13
		0	Fuel System Design	10/1/13	10/31/13
		0	Braking Design	10/21/13	11/15/13
		0	Electrical Systems Design	11/1/13	12/5/13
▼	0	Dri	vetrain Construction	12/6/13	3/7/14
		۰	Order OTS Parts	12/6/13	1/10/14
		0	Build Braking System	1/13/14	1/17/14
		0	Integrate Engine System	1/13/14	1/31/14
		•	Integrate Electrical Systems	2/3/14	3/7/14
	0	Te	st Vehicle	3/10/14	3/31/14
	0	Te	chnical Documentation	10/1/13	3/31/14

Conclusion

- Problem Statement
- Need Statement
- Objectives
- Goal Statement
- Constraints
- Project Planning

Questions?

References

Shell Eco-marathon, "Offical Rules 2014 Chapter 1,"http://s01.static-shell.com/content/dam/shellnew/local/corporate/ecomarathon/downloads/pdf/se m-global-official-rules-chapter-1-2014.pdf, 01 Oct. 2013.