Shell Eco-marathon

By
Jericho Alves, Benjamin Kurtz, Moneer Al-Jawad, \& Daniel Chief Team 14A
\section*{Engineering Analysis

Document}

Submitted towards partial fulfillment of the requirements for Mechanical Engineering Design I - Fall 2013

Department of Mechanical Engineering Northern Arizona University

Flagstaff, AZ 86011

Contents

1. Introduction 3
2. Chassis/Fairing Analysis 3
2.1. Chassis Rigidity 5
3. Steering Analysis 6
3.1. Ackermann Steering Geometry 6
3.2. Rolling Resistance 9
4. Braking Analysis 10
5. Project Update 14
6. Conclusion 15
7. References 15
8. Appendices 16
8.1. Appendix A 16
8.2. Appendix B 17

1. Introduction:

All engineering designs require an engineering analysis. Cars especially are very complicated designs in all aspects. These aspects account for all parts that a vehicle will be made of. Also, the following analyses determine the best selected designs to build the current Shell Eco-marathon vehicle. The main objective of the Shell Eco-marathon competition is to build an economic car that maximizes fuel efficiency. The main considerations for Team14A are the fairing design, steering design, and braking design.

2. Chassis Analysis

The main focus when analyzing the aerodynamic performance of the vehicle fairing is the overall frontal area. The area is largely a function of driver positioning and visibility requirements. Both drivers that are going to be going to the competition are measured in a seated position to find the greatest angle they could be reclined to and maintain adequate visibility and driver comfort. A vector diagram of the proposed driving position is then made and overall height requirements of the fairing are determined. This can be seen in Figure 1 below.

Figure 1: Driver Position Diagram
The frontal area is then calculated as a function of the seatback angle using a uniform width of . 6 meters which allows for the width of the drivers shoulders and a high density foam side bolster. This is represented in Figure 2 below.

Figure 2: Frontal Area/Seat Angle
The drag force is calculated over a range of frontal areas in order to see the drag effects over the entire range of speeds the vehicle would see. The coefficient of drag (Cd) is initially set to 0.09 which is the standard for a streamlined half body.

Drag Force

$$
\begin{equation*}
F_{D}=\frac{1}{2} \rho v^{2} C_{D} A \tag{2.1}
\end{equation*}
$$

Figure 3: Force of Aerodynamic Drag

Additional fluid mechanics based considerations determine the overall shape. To maintain an ideal streamlined body the fairing tail section reduction should not exceed 22 degrees in the YZ or XZ plane to ensure flow separation does not occur. Flow separation causes turbulent vortices to form increasing the drag force acting on the body. The chassis floor should taper between 3-4 degrees towards the rear of the vehicle to reduce turbulence of the merging flow paths coming from above and below the vehicle. [1]

2.1. Chassis Rigidity

Chassis rigidity is determined by taking a cross section of the shell at the center of mass including a 55 kg driver seated in the standard position. The polar moment of inertia is taken at this point and used to determine overall chassis deflection and its location using the following equations.

Maximum Deflection $\quad \delta_{\max }=\frac{F a\left(L^{2}-a^{2}\right)^{3 / 2}}{9 \sqrt{3} L E I}$

Point of Maximum Deflection $\quad x_{1}=\sqrt{\frac{L^{2}-a^{2}}{3}}$
The cross section evaluated at point a is 0.6 meters from the rear wheel. Initial wheelbase dimensions are somewhat arbitrary as all components have not been finalized. The elastic modulus is determined from a mean value of multiple 3000 weaves from multiple carbon fiber manufacturers.

Variable	Value
a (Load to nearest support)	.6 m
L (Wheelbase)	2.5 m
X (Point of maximum deflection)	1.484 m
E (Elastic Modulus)	141 GPa
I (Moment of Inertia)	$.079 \mathrm{~m}^{\wedge} 4$

Load at a	Maximum defiection at \mathbf{x}
60 kg	1.19 mm
90 kg	1.78 mm
120 kg	2.37 mm

3. Steering

The Eco-marathon vehicle does not encounter high speeds and is required a minimum turning radius of 8 meters. The turning radius will be calculated by using the Ackermann steering geometry. Rolling resistance is determined by using the rolling resistance coefficient. This will determine the choice of our engine, wheel and tire size.

3.1. Ackermann Steering Geometry

The course will have a few turns so we need to calculate the required radius to make the turn. To determine the radius, Ackermann steering geometry is used. Ackermann geometry is
used to solve the problem of slippage of the tires when following the path of the turn. At low speed the wheels primarily roll without slip angle. The Ackermann steering geometry works by turning the steering pivot points to the inside, so there is a line drawn from the kingpin to the center of the rear tire [2]. The steering pivot point is joined by the tire rods and sometimes includes the rack and pinion. To calculate the radius, the wheels will have a common center point. The center point is an extended line from the rear axle as shown in Figure 4. It intersects with extended lines from the front axles while the wheels are turned inwards. Correct Ackermann steering reduces tire wear and is easy on terrain [3].

$$
\cot \delta_{o}-\cot \delta_{i}=\frac{w}{l}
$$

δ_{i} is the steering angle of the inner wheel.
δ_{0} is the steering angle of the outer wheel.
w is the distance between the steer axes of the steering wheel (track).
1 is the distance between the front and rear axles (wheelbase).
The inner and outer steer angles δ_{i} and δ_{o} can be calculated by:

$$
\begin{aligned}
\tan \delta_{i} & =\frac{l}{R_{1}-\frac{w}{2}} \\
\tan \delta_{o} & =\frac{l}{R_{1}+\frac{w}{2}}
\end{aligned}
$$

Figure 4: Front-wheel steering and the Ackermann condition
The mass center of a steered vehicle will turn on a circle with radius R:

$$
R=\sqrt{a_{2}^{2}+l^{2} \cot ^{2} \delta}
$$

The track also known as the the width(w) was given in the rule book, as shown in Figure 5. The width of the vehicle must be between 100 cm to 130 cm . The wheelbase also known as length (1) is required to be, between $220 \mathrm{~cm}-230 \mathrm{~cm}$. Delta is these measurements on provided on an excel spreadsheet, in Appendix A.

With delta calculated, R is calculated by the equation above. The center of mass (a) equals 120 cm . Using an excel spreadsheet, the maximum value of R is 1 equal to 100 cm and w equal to 350 cm , provided in Appendix B. Radius (r) equal to 11.98 m . The minimum requirement is 8 m so anything above will work.

Figure 5: Steering angles of inner and outer wheels

3.2. Rolling Resistance

Rolling resistance is the force resisting the motion when a body (such as a tire, wheel or ball) rolls on a surface. Hysteresis is the main cause of rolling resistance. Hysteresis is when the energy of deformation is greater than the energy of recovery. The repeated cycle of the tire rotating results in loss if hysteresis, this is the main cause of energy loss. To keep the vehicle moving and above required speed the rolling resistance coefficient is used [4]. In determining the rolling resistance coefficient, the suffice engine size will be selected. Also, the rolling friction will be minimized. Factors that affect rolling resistance are tire pressure, tire diameter, tire thread. The higher the tire pressure the less deformation so there is less rolling resistance. The
smaller diameter of tire the higher rolling resistance. The wider the tire the less rolling resistance. The smoother the tire thread, the better rolling resistance.

The rolling resistance coefficient is determined by: $\mathrm{F}=\mathrm{C}_{\mathrm{rr}} \mathrm{N}$.
F is the rolling resistance force.
C_{rr} is the dimensionless rolling resistance coefficient or coefficient of rolling friction.
The coefficient of rolling friction can be calculate by: $\mathrm{C}_{\mathrm{rr}}=(\mathrm{z} / \mathrm{d})^{1 / 2}$.
z is the sinkage depth.
d is the diameter of the rigid wheel.
N is the normal force, the force perpendicular to the surface on which the wheel is rolling.
Tires that have done well in the past competition had diameter of 20 inches. The coefficient of rolling friction $\left(\mathrm{C}_{\mathrm{rr}}\right)$ is 0.0055 .

Torque is the amount of force needed to rotate an object about an axis [5]. To determine the torque needed we use the equation: $\mathrm{T}=\mathrm{Fr}$ [6].
F is the rolling resistance coefficient.
r is the radius of the wheel.

4. Braking Analysis

The Shell Eco-marathon competition rulebook states that each braking system must hold the car and driver in place on a 20% grade slope. A 20% grade slope translates to 11.31°.This is our main constraint for braking. Along with meeting the parking constraint, the weight of the braking system needs to be minimized in order to maximize fuel efficiency. The following analysis on the braking system is modeled after an article on the physics of braking systems [7]. The article was published by a braking design company called StopTech Systems.

The weight of the driver and car is assumed to be concentrated at a single point load of 1128 N located 1.2 meters away from the rear edge of the car and 0.27 meters above the bottom of the car. Zero slip is assumed to be between the wheels and the road. All mechanical components are assumed to be rigid with 100% efficiency. The free body diagram shown in Figure 6 shows the distributed forces on the car.

Figure 6: Entire Car Free Body Diagram
Shell requires at least two independent braking systems for each vehicle. Each braking system is required to hold the weight of the car on a 20% grade slope. The rear braking needs to provide more force than the front braking system. This is due to a larger distance between the car's center of gravity and the rear braking system than the distance between the center of gravity and the front braking system. This results in a larger toque on the rear braking system. The rear braking system only consists of one set of calipers rather than two sets on the front braking system.

Summing the moments around point O shows the required parking torque. The parking torque required by the rear braking, Tr, is equal to the tangent component of the weight, $w \sin \theta$, multiplied by the distance between the car's center of gravity and the rear axle, l_{r}.

$$
\begin{equation*}
\operatorname{Tr}=l_{r} w \sin \theta \tag{4.1}
\end{equation*}
$$

From a closer look at the rear rotor, the torque needed to keep the car in place is determined by the clamping force of the calipers. The free body diagrams shown in Figure 7 and Figure 8 show this information.

Figure 7: Rotor FBD

Summing the moments around point P shows that torque on the rotor from the weight of the car, $T r$, is equal to the friction force provided by the calipers, F_{f}, multiplied by the effective radius between the center of the rotor and the center of the caliper, $r_{e f f}$.

$$
\begin{equation*}
\operatorname{Tr}=F_{f} r_{e f f} \tag{4.2}
\end{equation*}
$$

The friction force from the caliper, F_{f}, is equal to the forces of both sides of the caliper multiplied by the coefficient of friction between the brake pad of the caliper and the rotor, $\mu_{b p}$.

$$
\begin{equation*}
F_{f}=\mu_{b p} F_{c a l} \tag{4.3}
\end{equation*}
$$

From military standard 1472 F, which includes standards for human design, the $5^{\text {th }}$ percentile grip strength on a lever at $5 \pi / 6$ degree elbow flexion is 222 Newtons for the left hand, as shown in Figure 9 and Table 1 [8].

Figure 9: Arm, Hand, and Thumb/Finger Strength (5 ${ }^{\text {th }}$ Male Percentile)

Table 1: Hand and Thumb/Finger Strength

(1)	(2)		(3)		(4)		(5)		(6)		(7)	
Degree of	Pull		Push		Up		Down		In		Out	
flexion (rad)	L**	R**	L	R	L	R	L	R	L	R	L	R
π	222	231	187	222	40	62	53	75	58	89	36	62
$5 / 6 \pi$	187	249	133	187	57	80	80	89	67	89	36	67
$2 / 3 \pi$	151	137	116	160	76	107	93	116	89	98	45	67
$1 / 2 \pi$	142	165	98	160	76	89	93	116	71	80	45	71
$1 / 3 \pi$	116	107	96	151	67	89	80	89	76	89	53	76

Hand and thumb-finger strength (N)

The left hand number is used for the analysis because it is typically the weaker hand and thus our minimum force exerted on the lever arm. Assuming 100% mechanical efficiency between the braking lines and components, the force by one side of caliper onto the rotor, $F_{\text {cal }}$ is equal to the left hand lever force, F_{l}, multiplied by the ratio of the applied force radius, $\mathrm{r}_{\text {force }}$, and the radius of the lever arm, $\mathrm{r}_{\text {arm }}$.

$$
F_{c a l}=F_{l} \frac{r_{\text {force }}}{r_{\text {arm }}}
$$

The mechanical clamping force due to the both sides of the caliper is equal to twice the force from one side.

$$
F_{\text {clamp }}=2 X F_{\text {cal }}
$$

The coefficient of friction can be calculated from combining equations (4.1), (4.2), and (4.3), while substituting the known values of $F_{c a l}, \mathrm{w}, l_{r}, \theta, r_{e f f}$.

$$
\begin{gathered}
\mu_{b p} F_{\text {clamp }} r_{e f f}=l_{r} w \sin \theta \\
\mu_{b p}(9768 N)(.070 \mathrm{~m})=(1.2 \mathrm{~m})(1128 \mathrm{~N}) \sin \left(11.31^{\circ}\right)
\end{gathered}
$$

From the previous equation, $\mu_{b p}=.388$, which is the minimum coefficient of friction needed to hold the car in place. The brake pad friction coefficient for semi-metallic brake pads ranges from $0.26-0.38$. Semi-metallic brake pads for bikes are cheaper than organic or carbon brake pads. NAU's previous Shell Eco-marathon car used MX2 brakes made by Hayes. Each braking component weighs 340 g , which compares to most high performance brakes and satisfies the objective for the current design. Standard sizes for rotors are $160 \mathrm{~mm}, 185 \mathrm{~mm}$, and 203 mm . The size of the rotor depends on weight and the applied forces onto the rotor. Smaller rotor sizes are beneficial because they are light weight. The rotors used on the previous car are 160 mm in diameter and made from aluminum, which is perfect for the current design.

5. Project Update

As shown in Figure 10, the schedule has not changed in the previous three weeks. The process of ordering the chassis/fairing materials as well as the steering components has just begun.

Figure 10: Gantt chart

6. Conclusion

The chassis will be designed with the driver as far reclined as possible while still maintaining adequate visibility and comfort. By minimizing the projected area on the front plane the aerodynamic drag at lower speed is negligible.

The fairing, as designed, exhibits very little deflection under the applied loads. With internal structures and seat supports added, the structure would only become more rigid.

Steering turn radius required by rules and regulation should be a minimum of 8 meters. Appendix B shows the calculation of track width (w) divided by wheelbase (l). Anything over 8 meters is acceptable. The main braking constraint is that each braking system needs to hold the car in place on a 20% grade slope. Most mountain bike disc brake systems provide enough force to hold the car at the given slope. Semi-metallic brake pads are the most ideal material for the braking system due to their relatively low cost, medium ranged friction coefficient, and their durability. The rotors from the previous year car will work at 160 mm .

7. References

[1].B. Jawad, E. Marck, D. Tingley, T. Salvati, J. McCoy, A. Ondes, E. Posta, V. Floma. "Best Practice for an SAE SUPERMILAGE Vhicle, " 2001-01-2469, SAE International, Costa Mesa, CA, 2001.
[2]. Wikipedia. "Ackermann Steering Geometry"
http://en.wikipedia.org/wiki/Ackermann_steering_geometry\#cite_ref-
Norris.2C Modern Steam Road Wagons.2C Ackermann steering 2-0. 2013
[3].Longoria, R. G. "Steering and Turning Vehicles-2." (2013).
[4]. "ETH - IDSC - Institute for Dynamic Systems and Control." ETH - IDSC - Institute for Dynamic Systems and Control. N.p., n.d. Web. 17 Nov. 2013.
[5]. "Rolling Resistance." Wikipedia. Wikimedia Foundation, 17 Nov. 2013. Web. 17 Nov. 2013.
[6]. "Low Rolling Resistance Tires." - Transport Canada. N.p., n.d. Web. 17 Nov. 2013.
[7]. J. Walker, Jr., "The Physics of Braking Systems" (1 ${ }^{\text {st }}$ Ed.) http://www.stoptech.com/docs/media-center-documents/the-physics-of-braking-systems, 2005.
[8]. Department of Defense Design Criteria Standard: Human Defense, MIL-STD-1472F, 1999.

8. Appendicies

8.1.Appendix A: Delta values for various widths and lengths:

8．2．Appendix B：R values for various widths and lengths：

くtI8．906	9Zて＇tS8	て\＆Zて＇¢08	9ZT8＇ESL	LI00＇90L	と66L＇699	8STC＇ST9	sc9Z＇ZLS	عLS6．0¢S	6tte＇16t	8LSE\＆¢ち	IZIt＇くLt	0¢ป	
てع6どヤ七6	688£＇198	LZ86．608	68LT＇09L	8986 ${ }^{\text {LTL }}$	Sttt｀999	てZLt 0 O9	LZLT＇LLS	6Zs＇s ${ }^{\text {cs }}$	t09s＇S6t	9L8でくらt	ع9\＆LOZt	6ZI	
＜S80＇ZZ6	9659＇898	Sてt8 9 9t8	LOt9＇99L	ST90 8t／	98tI＇t＜9	L08＇GZ9	6\＆St＇Z8S	8897＊0ts	L698．66t	8SLZ＇T9t	切切もてt	8ZI	
TS68＇6Z6	t0t0＇9L8	8908 \＆Z8	Z00Z＇ELL	6LZZ＇tてL	S868．9L9	してZて＇t\＆9	90tて＇L8S	E8L8 ${ }^{\text {ttb }}$	七てもで七0S	8\＆Zと＇G9t	8LtT゙8てt	LZI	
七七Z8＊LE6	で¢¢「¢88	†LL80¢8	9658．6LL	Z88t＇0¢L	STLL＇Z89	七6TL’9¢9	6\＆t\＆＇Z6S	659\％6ts	6189 80	tદ\＆t＇69t	LLE6＇TEt	9ZI	
SS $\angle 8 . \mathrm{St6}$	S\＆tて＇t68	6950 888	StZ9＇98L	9tt8．9EL	t七\＆く－889	800ع＇Zち9	95sc＇ 26 S	8ZTS＇tSs	Z68t＇ε TS	LS09 ¢ ${ }^{\text {ct }}$	tS8L｀¢Et	SZI	
七ZSO゙七S6	をt＜8．868	6LtE＇St8	ع88t＇E6L	t66て＇EtL	968L＇t69	S896 \angle ¢9	8Lt8＇Z09	カttt＇6ss	8S9L＇LTS	七七七8＊LLt	七Z69＇6Et	七てL	
8LSE＇Z96	Z0ZL＇906	て¢SL＇Zら8	SZ9t＇008	LSc8．6t／	Z686．00L	ttCL＇と¢9	とZZて＇809	S9ttit9s	9とtt＇ZてS	七\＆tでて8t	T099 Ett	とてI	
8t6L0L6	¢\＆69tt6	SSLZ＇098	89tら＇L08	七tTS＂9SL	958t＇L0L	80८¢ 6S9	てT89 $と$ 19	Z0\＆s＇69S	ても\＆じ $\angle Z S$	LZTS＂98t	69 $2 t t$	ZZI	
899\％＇6L6	t6L＇ZZ6	8LL6＊ 298	8\＆t＜゙もT8	6LZ＇と9L	てTEs＇ETL	660S＇S99	S9てZ 6 ¢9	Zt69＇t／S	と6Z6＇t\＆s	ZTS6．06t	SE8L＇TSt	IZL	
LLO．886	Lsz0＇t\＆6	と89＇¢ $\angle 8$	S950＇ZZ8	七ZSt＇0LL	t8L6．6TL	ttts＇t／9	七098＊もて9	LOt6 6LS	6008＇98s	t09t｀¢6t	七てt6＇¢St	OZI	
T6Z6．966	6¢＇686	とt $\angle \mathrm{C}^{\prime}$ ¢ 88	8L8t＇6Z8	LET＇LLL	66Zs＇9ZL	95 $\angle 9{ }^{\circ} \angle \angle 9$	TS8S＇0¢9	LTLC＇S8S		IZt000S	2891．09t	6LI	
LZ6＇S00T	LZ68 Lt6 $^{\text {b }}$	6765＇168	90t0＇LE8	8S\＆Z＇ヤ8L	Z88t＇E\＆	L06＇ 889	と0t＇9と9	8689006S	七t8L＇96s	Z869 t0	9て9t＇t9t	8LI	
ELO STOL	6t\＆c．996	8t L＇668	T8Tぐカヤ8	9TSt ${ }^{\text {T6L }}$	T996．6EL	80ャて＇069	t9tと＇で9	8561＇96S	Et68＇tss	90\＆t 60 S	عLZ8．89t	LII	
とLE＇もZOT	乙Zど¢96	TLE0＇806	SEZs＇ZS8	t $\angle 8 L^{\circ} 86 \mathrm{~L}$	S9E8＊9tL	86L9＇969	8LZと＇8t9	七\＆6L＇t09	LT60＇\angle SS	てL七でもTS	とt9でとくt	9IT	
6Z8＇Eと0น	\＆くSでもく6	859t＇9t6	T09t＇098	七9tで908	Zて£8๕¢ \angle	S9zz＇80L	$86 ¢ t$ t¢ 9	St8t＇L09	6SLE＇Z9S	LZ\＆t＇6TS	ZSLL＇LLD	SII	
Ltt＇Et0L	9tte＇E86	LLE0＇乌Z6	عโE¢＇898	LTE8＇\＆โ8	カ9t609L	6\＆88＇60	67C9＇099	くLLでとโ9	L67 L＇L9S	七SOT＇七てS	ZZ9と＇Z8t	七II	ш）M צวепи
とて＇とs0t	88s＇Z66	99¢ぐとを6	60t＜＇9L8	69tS＇tZ8	Z8T＇89L	Sc9．9TL	9L6．999	ELST＇6T9	8\＆LC＇ELS	乙\＆9t＇6ZS	ZLZ0＇L8t	عII	
Z8t＇E90T	266＇t00	S9Z9「で6	七Z60＇S88	£¢6と＇6Z8	SZts ${ }^{\text {ch }}$ LL		8SOt＇EL9	てttで¢Z9	EZLL＇8LS	8LOE＇七¢S	ZZLL＇t6t	ZII	
60¢ $\varepsilon<0 \tau$	9s＇tu0t	tTS9＇TS6	L689＇868	S08E＇LE8	นtع0 E8L	¢¢ 0 ¢	عLt6．6L9	8t\＆て＇Tદ9	てくてt゙も8S	9tts：6\＆s	766S＇96t	ItI	
9 99 \＆80โ	L6Z＇tZ0T	95E8．096	L9EZ＇Z06	¢90s＇St8	tTS906L	S089 $\angle E L$	S809＇989	てZとt－LE9	L8T＇06S	L98＇tts	ItIs＇TOS	OTI	
90 T ¢60T	80Z＇TE0T	S\＆8t＇0＜6	LLE0＇IL6	S9LLと¢8	L0t＇86L	tLE6 tt \angle	9LLE＇E69		9980＇965	S982＇0ss	960s＇90S	60I	
S8L＇t01T	L6て＇tt0I	S669＇6L6	8966．616	ZS6T＇Z98	9T0ع＇908	ともてと＇ZSL	6ZLZ＇00L	T6St＇0s9	L966＇t09	9Z08 ${ }^{\text {SSs }}$	عL6s＇tIS	80T	
6S9＇SILT	LS＇LSOT	S888．686	S8t1＇6Z6	S99L0＜8	て6\＆と＇tt8	Ltt8．6SL	LZ6Z＇L0L	＜t69＇9¢9	とt 90.809	Z8tゃ T 9 S	99LL＇9TS	LOL	
E\＆L＇9ZIL	zع0＇Z90T	Zscz＇666	S $\angle 0 t \cdot 8 \varepsilon 6$	Lt6t＇6L8	LEZS＇ZZ8	szos＇ 29 L	90ttittL	七6t¢＇E99	とてもでもT9	6S\＆t＊ 295	zoso＇zzs	90τ	
عI0＇8\＆IT	889＇ZLOT	S0E：600T		とt8E＇888	t6580¢8	9T0ع＇SLL	E0ZL＇IZL	99ZI＇0＜9	てt\＆¢＇0Z9	88S6＇ZLS	LOZt＇LZS	S0T	
SOS．6ヶtI	tts＇E80T	Ets 6 T0L	Z905＊S6	切 268	LOSE＇6E8	T9ヵでと8L	Sc\＆t＇6ZL	$66 Z 0 * \angle L 9$	LZt6．9Z9	$6688{ }^{\circ} 8 \mathrm{LS}$	6068 Z Z	t0L	
カしで19tI	S09．t60	七 $\angle 6.6 \mathrm{ZOL}$	T92を＇L96	9999＇906	2008t8	TOt $\mathrm{E}^{\text {L }}$ L6L	T069＇9EL	6290 t89	9Tんt＇とદ9	ZZと6 ${ }^{\text {t8 }} \mathrm{S}$	LE9t＇8\＆s	E0L	
くもT＇とくLI	8L8 SOLI	S09．0t0	S\＆દย：LL6	L690＇976	t8t8＇9¢8	Z885＇66L	と88E＂tt／	七6Zて＇T69	StてT＇0t9	680＇t6S	てZもt＇tts	ZOT	
Lte＇s8tI	89と＇LILI	てtt tSOL	$6 \varepsilon \varepsilon \mathrm{~S}^{\prime 2} 286$	8ZS9＇SZ6	8808＇598	Lt66： 208	tteて＇ZSL	S¢\＆ऽ＇869	8t06．9t9	6898： 26 S	t6Z6 6 ts	tot	
カTL゙L6IT	E80＇6ZIT	88t＇Z90T	Lદ\＆6 $\angle 66$	とてt＇ง\＆6	¢t $96{ }^{\circ} \mathrm{t} \angle 8$	9t95．9T8	LZとZ＇09L	T6L6 ${ }^{\circ} 0<$	S918．$¢$ ¢9	T09L ¢09	L8Z8＇SSS	00t	
0s ε	$0 \pm \varepsilon$	0¢\＆	O乙¢	0t\＆	00ε	$06 Z$	$08 Z$	$0 \angle Z$	09 Z	OSZ	OtZ		

