# **Engineering Analysis**

Team 14A November 18, 2013 Jericho Alves, Benjamin Kurtz, Daniel Chief, Moneer Al-Jawad

#### **Overview**

- Problem Statement
- Chassis Analysis
- Braking Analysis
- Steering Analysis
- Project Plan
- Conclusion

#### **Problem Statement**

• Design a vehicle that maximizes fuel efficiency for the Shell Eco-marathon competition.

# **Chassis Analysis**

-Minimize vehicle frontal area while maintaining a comfortable driving position and adequate driver visibility.



-Fairing tail section reduction should not exceed 22 degrees in the YZ or XZ plane to ensure flow separation does not occur.

-Chassis floor should taper between 3-4 degrees towards the rear of the vehicle to reduce turbulence of the merging flow paths coming from above and below the vehicle.

#### **Frontal Area/Seat Angle**



#### **Aerodynamic Drag**



Jericho Alves

# **Chassis Rigidity**

$$\delta_{max} = \frac{Fa(L^2 - a^2)^{3/2}}{9\sqrt{3}LEI}$$

$$x_1 = \sqrt{\frac{L^2 - a^2}{3}}$$

| Variable                        |                            | Value   |  |  |
|---------------------------------|----------------------------|---------|--|--|
| a (Load to nearest support)     | .6 m                       |         |  |  |
| L (Wheelbase)                   | 2.5 m                      |         |  |  |
| X (Point of maximum deflection) | 1.484 m                    |         |  |  |
| E (Elastic Modulus)             |                            | 141 GPa |  |  |
| I (Moment of Inertia)           | .079 m^4                   |         |  |  |
| Load at a                       | Maximum<br>deflection at x |         |  |  |
| 60 kg                           | 1.19 mm                    |         |  |  |
| 90 kg                           | 1.78                       | '8 mm   |  |  |
| 120 kg                          | 2.37 mm                    |         |  |  |

#### **Braking Analysis**

 Each braking system must hold car at 20% grade



## **Braking Analysis**

- Most mountain bike braking systems can provide enough force.
- Brake pads range in material, cost, strength.
- Rotor sizes 160mm, 185mm, and 203mm.



# **Steering Analysis**

 Ackermann Steering Geometry

 $\cot \delta_o - \cot \delta_i = \frac{w}{l}$ 

- Track width (w)100-130cm
- Wheelbase (I) 220-350cm



$$R=\sqrt{a_2^2+l^2\cot^2\delta}$$

 $a^2 = 120cm$ 

l = 220cm - 350cm

# **Rolling Resistance**

F = CrrN =.0025x1111.5 = 2.79N F - rolling resistance force Crr - coefficient of rolling friction N - normal force

#### **Torque** T= Fr = 2.79x.508=1.42 Nm

r - radius of the wheel



# **Project Plan**

|     |   | G       | Project              | 4          | 凶        | 2013    |               |               | 2014         |                         |
|-----|---|---------|----------------------|------------|----------|---------|---------------|---------------|--------------|-------------------------|
|     |   |         | Name                 | Begin date | End date | October | l<br>November | l<br>December | l<br>January | l<br>February           |
| 9 ( | 0 | Chassis | s Design             | 10/6/13    | 11/15/13 |         | <b></b>       |               |              |                         |
|     |   | • Stee  | ering System Design  | 10/6/13    | 10/20/13 |         |               |               |              |                         |
|     |   | • From  | nt Subframe Design   | 10/21/13   | 10/31/13 | i i     |               |               |              |                         |
|     |   | • Rea   | r Subframe Design    | 10/21/13   | 10/31/13 |         |               |               |              |                         |
|     |   | Fairi   | ing Design           | 11/1/13    | 11/15/13 |         |               |               |              |                         |
| 9   | 0 | Chassis | s Construction       | 11/16/13   | 2/17/14  |         | -             |               |              |                         |
|     |   | • Orde  | ering Chassis/Fairi  | 11/16/13   | 12/16/13 |         |               |               |              |                         |
|     |   | • Cha   | ssis/Monocoque C     | 12/17/13   | 2/17/14  |         |               |               |              | No. of Concession, Name |
|     |   | • Fairi | ing Construction     | 12/17/13   | 2/17/14  |         |               |               |              |                         |
|     |   | • Orde  | ering Steering Syste | .11/16/13  | 12/16/13 |         |               |               |              |                         |
|     |   | • Stee  | ering System Constr  | .12/17/13  | 2/17/14  |         |               |               |              |                         |

## Conclusion

- The overall size of the vehicle fairing will be determined by the desired seating angle between 15 and 30 degrees.
- Each braking system must hold car at a 20% grade slope.
- 160mm rotors and semi-metallic brake pads are ideal for low speeds and forces.
- Nearly all disc brake systems for mountain bikes are strong enough.
- In calculating the radius, the best results are track width of 123cm, wheelbase length of 320cm, and rolling resistance of 2.79Nm.

#### References

- B. Jawad, E. Marck, D. Tingley, T. Salvati, J. McCoy, A. Ondes, E. Posta, V. floma. "Best Practice for an SAE SUPERMILAGE Vhicle," 2001-01-2469, SAE International, Costa Mesa, CA, 2001.
- J. Walker, Jr., "The Physics of Braking Systems" (1<sup>st</sup> Ed.) [tab] http://www.stoptech.com/docs/media-centerdocuments/the-physics-of-braking-systems, 2005.
- Department of Defense Design Criteria Standard: Human Defense, MIL-STD-1472F, 1999.

#### **Questions?**