Engineering Analysis

Team 14A
November 18, 2013
Jericho Alves, Benjamin Kurtz, Daniel Chief, Moneer Al-Jawad

Overview

- Problem Statement
- Chassis Analysis
- Braking Analysis
- Steering Analysis
- Project Plan
- Conclusion

Problem Statement

- Design a vehicle that maximizes fuel efficiency for the Shell Eco-marathon competition.

Chassis Analysis

-Minimize vehicle frontal area while maintaining a comfortable driving position and adequate
 driver visibility.
-Fairing tail section reduction should not exceed 22 degrees in the YZ or XZ plane to ensure flow separation does not occur.
-Chassis floor should taper between 3-4 degrees towards the rear of the vehicle to reduce turbulence of the merging flow paths coming from above and below the vehicle.

Frontal Area/Seat Angle

Aerodynamic Drag

$$
-0.2-0.3-0.4-0.5-0.6
$$

Chassis Rigidity

$$
\begin{aligned}
& \delta_{\max }=\frac{F a\left(L^{2}-a^{2}\right)^{3 / 2}}{9 \sqrt{3} L E I} \\
& x_{1}=\sqrt{\frac{L^{2}-a^{2}}{3}}
\end{aligned}
$$

Variable	Value
a (Load to nearest support)	.6 m
L (Wheelbase)	2.5 m
X (Point of maximum deflection)	1.484 m
E (Elastic Modulus)	141 GPa
I (Moment of Inertia)	$.079 \mathrm{~m}^{\wedge} 4$
Load at a	Maximum deflection at x
60 kg	1.19 mm
90 kg	1.78 mm
120 kg	2.37 mm

Braking Analysis

- Each braking system must hold car at 20\% grade

Braking Analysis

- Most mountain bike braking systems can provide enough force.
- Brake pads range in material, cost, strength.
- Rotor sizes 160mm, 185 mm , and 203 mm .

Steering Analysis

- Ackermann Steering Geometry $\cot \delta_{o}-\cot \delta_{i}=\frac{w}{l}$
- Track width
(w) $100-130 \mathrm{~cm}$
- Wheelbase (I) $220-350 \mathrm{~cm}$

Radius (R)

$$
\begin{aligned}
& R=\sqrt{a_{2}^{2}+l^{2} \cot ^{2} \delta} \\
& a^{2}=120 \mathrm{~cm} \\
& l=220 \mathrm{~cm}-350 \mathrm{~cm}
\end{aligned}
$$

Rolling Resistance

$\mathrm{F}=\mathrm{CrrN}=.0025 \times 1111.5=$
2.79N

F - rolling resistance force
Crr - coefficient of rolling friction
N - normal force

Torque
T= Fr = 2.79x.508=1.42
Nm
r - radius of the wheel

Project Plan

GARTT project					2013	2014			
						November	December	Januay	February
		Name	Begin date	End date					
90	-	Chassis Design	10/6/13	11/15/13					
		- Steering System Design	10,6/13	10/20/13					
		- Front Subframe Design	10/21/13	10/31/13					
		- Rear Subframe Design	10/21:13	10/31/13					
		- Fariring Design	11/1/13	11/15/13					
9	- Cl	Chassis Construction	11/16/13	2117114					
		- Ordering Chassis/Fairi...	11/16/13	1216813					
		- ChassisMonocoque C...	1217713	2117114					
		- Fairing Construction	1217713	2117114					
		- Ordering Steering Syste...	.11/16113	1216613					
		- Steering System Constr...	. 12117113	$2117 / 14$					

Conclusion

- The overall size of the vehicle fairing will be determined by the desired seating angle between 15 and 30 degrees.
- Each braking system must hold car at a 20\% grade slope.
- 160 mm rotors and semi-metallic brake pads are ideal for low speeds and forces.
- Nearly all disc brake systems for mountain bikes are strong enough.
- In calculating the radius, the best results are track width of 123 cm , wheelbase length of 320 cm , and rolling resistance of 2.79 Nm .

References

- B. Jawad, E. Marck, D. Tingley, T. Salvati, J. McCoy, A. Ondes, E. Posta, V. floma. "Best Practice for an SAE SUPERMILAGE Vhicle, " 2001-01-2469, SAE International, Costa Mesa, CA, 2001.
- J. Walker, Jr., "The Physics of Braking Systems" (1st Ed.) [tab] http://www.stoptech.com/docs/media-center-documents/the-physics-of-braking-systems, 2005.
- Department of Defense Design Criteria Standard: Human Defense, MIL-STD-1472F, 1999.

Questions?

