Shell Eco-Marathon Concept Generation and Selection

Abdul Alshodokhi , John Gamble, Nik Glassy, Travis Moore

October 28th 2013

Overview

- Project Overview
- Braking Concepts
- Drivetrain Concepts
- Engine Concepts
- Fuel System Concepts
- Electrical System Concepts
- Final Concept Design
- Conclusion

Project Overview

Need

 High volume greenhouse gas emissions from vehicles contribute to global warming

Goal

- Design, build, and compete with a vehicle prototype that maximizes high fuel efficiency.
- Focus on drivetrain, engine, brakes, fuel system and electrical

Braking Concepts

- Disk
- Caliper
- Drum

Disk Brakes

http://upload.wikimedia.org/wikipedia/commons/2/21/BrakeDiskVR.JPG

Disk Brakes

- Advantages
 - Lightweight
 - Have good stopping advantages
- Disadvantages
 - More expensive

Caliper Brakes

Nik Glassy

hi.jpg

http://roadcyclinguk.com/wp-content/uploads/old_images/news/images/kcnc-brake-

Caliper Brakes

- Advantages
 - Very simple
 - Inexpensive
- Disadvantages
 - Easy to get clogged with debris

Drum Brakes

http://www.ecovelo.info/images/roller.jpg

Drum Brakes

- Advantages
 - Inexpensive
 - Very low maintenance
- Disadvantages
 - Doesn't dissipate heat well

Braking Decision Matrix

	Relative Weight	Disk	Caliper	Drum
Weight	30%	10	10	1
Reliability	30%	10	1	1
Simplicity	10%	10	10	5
Cost	30%	5	10	5
Total	100%	8.5	7.3	2.6

Final verdict: Disk brakes

The way of delivering the torque coming from the engine to the rear wheel can helps us to achieve high fuel efficiency.

There are three types of possible drivetrain systems:

- Shaft & gearbox drivetrain
- CVT belt system
- Roller chain & sprocket drivetrain

Shaft & Gearbox Drivetrain:

- Can be seen in most cars.
- best method of delivering highest torque from the engine to the wheel
- More weight will be added to the vehicle if this drivetrain is used
- Very reliable drivetrain

CVT Belt System:

- Gear ratio
- More weight
- Deliver required Torque

CVT Belt System:

https://grabcad.com/library/cvt-comett-780

Abdul Alshodokhi

Roller Chain & Sprocket Drivetrain:

- Low weight
- High simplicity
- Reliable

Roller Chain & Sprocket Drivetrain:

https://grabcad.com/library/roller-chain-drive-iso-606-05b-2

Drivetrain Decision Matrix

	Low Weight	High Reliability	High Simplicity	Low Cost	Total
Relative Weight	30%	30%	10%	30%	100%
Shaft & Gearbox	1	5	2	3	2.9/5
CVT Belt	4	3	3	3	3.3/5
Roller Chain & Sprocket	5	3	5	5	4.4/5

The highest number we got from this decision matrix was for the roller chain & sprocket drivetrain (4.4 out of 5)

Honda engines were looked at since they offer the best powerband for small engines

3 Engine's Considered:

- GY6-QMB 50cc
- GX25 25cc
- GX35 35cc

- Engines are compared by
 - Power Output (5%)
 - Compression Ratio (25%)
 - Aftermarket Support (20%)
 - Starter Type (10%)
 - Clutch Type (10%)
 - Fuel Consumption (10%)
 - Cost (20%)

Honda GY6-QMB 50cc

(image from www.mbe-motorsports.com)

Honda GY6-QMB 50cc

- High Compression
- Integrated Clutch
- Electric Start
- Strong Aftermarket Support

Honda GX25

(image from http://grabcad.com/library/honda-g25-2kg-and-300-g-1)

John Gamble

Honda GX25

- Best use of power
- High fuel efficiency

Honda GX35

(image taken from http://grabcad.com/library/honda-gx-35-1)

John Gamble

Honda GX35

Lowest Cost

Engine Selection Decision Matrix

	Weighted Percentage	Honda GY6-QMB	Honda GX25 25cc	Honda GX35 35cc
Power Output	5%	1	10	5
Compression Ratio	25%	10	1	1
Aftermarket Support	20%	10	1	1
Starter Type	10%	10	1	1
Clutch Type	10%	10	1	1
Initial Fuel Consumption	10%	1	10	5
Cost	20%	1	5	10
Total	100%	6.85	3.15	3.4

John Gamble

Engine Selection Decision Matrix

The Honda GY6-QMB was selected because of its highest potential for fuel efficiency

- The team came up with three different concepts related to the fuel system:
- Carburetor
- Fuel Injection
- Forced Induction

Carburetor

(Image from http://en.wikipedia.org/wiki/User:WikipedianProlific/Gallery)

Carburetor

- Advantages
 - Simple mechanical design (no electronics)
 - Already in-place as fuel system on engine
- Disadvantages
 - Cannot tune very precise
 - Lower fuel efficiency
 - Higher maintenance

Fuel Injection

Travis Moore

Fuel Injection

- Advantages
 - Higher fuel efficiency
 - Very low maintenance
 - Very precise tuning (electronics & software)
- Disadvantages
 - Long install time
 - Costs to purchase

Travis Moore

Forced Induction

- Advantages
 - Increases fuel efficiency
 - Increases compression ratio
 - Precise tuning (electronics & software)
- Disadvantages
 - Very long install time
 - Costs to purchase
 - Very long tuning time
 - Increased maintenance
 - Increased weight

Travis Moore

Fuel System Decision Matrix

	Weighted Percentage	Carburetor	Fuel Injection	Forced Induction
Fuel Efficiency (%)	40%	10	50	100
Ease of Implementation (mins)	10%	100	50	10
Precise Tuning	20%	10	100	50
Reliability (days)	15%	10	100	50
Maintenance (mins)	10%	50	100	10
Cost (\$)	10%	100	50	10
Total	100%	27.5	72.5	60

Fuel System Chosen Concept

After completing the decision matrix, it was clear to the team that the best fuel system for the vehicle was the fuel injection system. The reason behind this is that the fuel injection system is the most fuel efficient, has the best tuning precision, best reliability, and requires the least amount of maintenance.

Electrical System Concepts

The electrical system will be split up into two sub systems. The first sub system will focus on starting the vehicle up and running the vehicle. This system will include all of the required kill switches, safety fuses, relays, wiring to the electric starter, and various other components related to the specific chosen engine and fuel injection system.

Electrical System Concepts

The second sub system will focus on all of the other accessory components such as the horn, speedometer, GPS system, and possible interior lighting for door handle location. The main power source for the electrical system will be generated from a 12V battery.

Electrical System Concepts

Since the only difference in concept designs is the battery source, the team chose three different batteries for the vehicle:

- Duralast CB Series Motorcycle Battery
- Duralast Lawn & Garden
- Optima Yellow Top

Electrical System Decision Matrix

	Weighted Percentage	Duralast CB Series	Duralast Lawn & Garden	Optima Yellow Top
Weight (N)	20%	20	10	2
Scale (cm^3)	15%	15	7.5	1.5
Capacity (Ahr)	40%	20	4	40
Cost (\$)	25%	12.5	25	2.5
Total	100%	67.5	46.5	46

Electrical System Chosen Concept

After completing the decision matrix, it was clear to the team that the best battery for the vehicle was the Duralast CB series. The reason behind this is that the Duralast CB series is the lightest, the smallest and still has good capacity and isn't too expensive.

Project Gantt

Conclusion

- Braking system selected uses disc brakes for superior stopping power and high reliability
- Drivetrain selected is chain drive for its low weight, low cost, and high reliability
- Engine selected is the Honda GY6-QMB for best potential for fuel efficiency
- Fuel system selected is fuel injection for the best compromise between efficiency and reliability
- Electrical system uses a Duralast CB Series battery for least weight and cost while still having enough power

Questions?

Travis Moore

References

- Acosta, B., Betancourt, M., Pinheiro, F., "Shell Eco-Marathon 25% of Final Report," B.S. thesis, Mechanical Engineering Department, Florida International University, Miami, 2012.
- Honda Engines, "GX25 Motor Specs," http://engines.honda.com/models/model-detail/gx25, Oct. 2013.
- Honda Engines, "GX35 Motor Specs," http://engines.honda.com/models/model-detail/gx35, Oct. 2013.
- AZ Power and Lawn. "NAU SAE ENGINEERING, JOHN Price quote for 25CC ENGINE". 26 Oct 2013.
- AZ Power and Lawn. "NAU SAE ENGINEERING, JOHN Price quote for 35CC ENGINE". 26 Oct 2013.
- ebay, "139QMB 50CC 4 STROKE GY6 SCOOTER ENGINE MOTOR AUTO CARB," http://www.ebay.com/itm/139QMB-50CC-4-STROKE-GY6-SCOOTER-ENGINE-MOTOR-AUTO-CARB-/360090949889?pt=Motors_ATV_Parts_Accessories&hash=item53d717d9 01&vxp=mtr, Oct. 2013.