SAE Baja: Suspension & Steering

Benjamin Bastidos, Victor Cabilan, Jeramie Goodwin, William Mitchell, Eli Wexler

Wednesday, October 9, 2013

Overview

- Introduction
- Operating Environment
- Recognizing the Need
 - Need Statement
 - o Goals
 - Objectives
 - Constraints

Overview (cont'd)

• QFD

- o Suspension
- o Steering
- House of Quality
- Gantt Chart
- Conclusion

Introduction

Client: Professor John Tester

Why: passion for automobile motorsports

- His research projects include:
- Manufacturing
- Rapid prototyping
- Injection molding
- CAD/CAM application

Operating Environment

- Competition
 - El Paso, Tx
- Off road course environment
- Traverse over several natural terrains

Recognizing the Need: Need Statement

- Need = client requests
- Maneuverability
 - Reduce turning radius while sustaining proper suspension
- Weight Reduction from Previous Design
 - Possibly use lighter material for A arms, hubs and suspension

Recognizing the Need: Need Statement (cont'd)

Economical

- Within budget and functional
- Safe
 - Within safety standards (Article 12, SAE 2014 Collegiate Design Series)
- Durable
 - Low maintenance & Strength Tested

Defining the Problem: Goals

 Design an inexpensive, durable off road vehicle suspension/steering systems for competition use

Defining the Problem: Objectives

- Increase individual component strength while decreasing weight
 - All component weights combined should not weigh more than the frame
- Inexpensive to produce and manufacture
 - use materials that are both strong while remaining light

Defining the Problem: Objectives

- Decrease turning radius
 - $_{\odot}$ Within 66% of the current baja
 - Current Baja is at nearly 14ft for its turning radius
- Pick and design a suspension that would be competitive in a race setting
 - Could use an innovative but risky design or use a simple design that is more likely to work well

Defining the Problem: Constraints (Client)

- Steering
 - Must be able to manuever vehicle
 - Smaller turning radius than previous design

■ ~ 14ft

- Weight
 - less than previous "tank"
 - ~ 600lb

Defining the Problem: Constraints (Client)

- w/o 300lb
 - light design for suspension/steering
- Suspension dimensions
 - w/ comparison to frame
 - previous design
 - Travel Length (for driver)
 - Must be able to function after drop from 3ft

Defining the Problem: Constraints (Client)

Current Vehicle Suspension:

* Provided by: ENG 386w Team 61

Defining the Problem: Constraints (SAE)

Constraints relative to SAE rules

- Vehicle
 - Four wheel (not linear)
- Dimensions
 - Width: 162 cm (64 in)
- Length : not restricted

Defining the Problem: Constraints (SAE)

Suspension

Ground Clearance/Traction

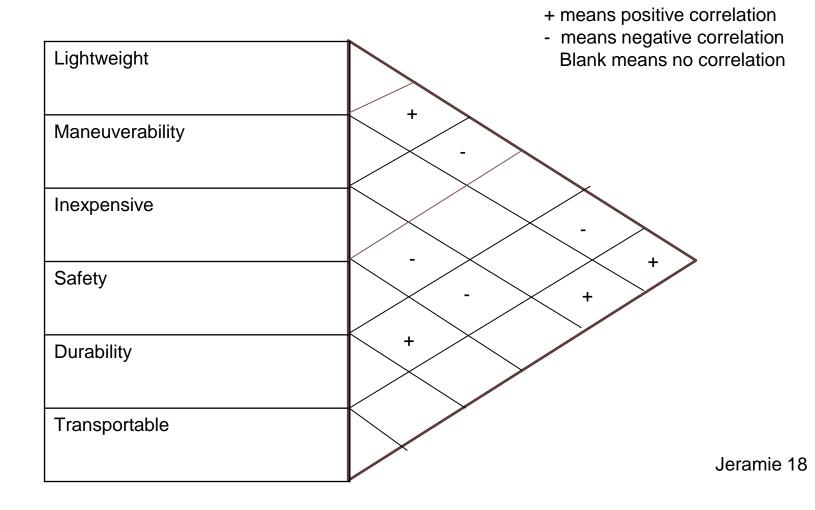
Safety

○ Safely traverse over rough terrain

Snow, mud, shallow water, rain

QFD: Suspension

		Engineering Requirements for given design													
	Customer Needs	Customer Weights	Ground Clearance	Suspension Travel	Y.S.	Stiffness	Spring Rate	Cost	Weight						
	1. Lightweight	10					3	3	9						
Suspension	2. Maneuverability	10	9	9		3	9	3	9						
	3.Relatively inexpensive	6		1				9							
	4. Must be safe	7	3	1	9	3		1							
	5. Must be durable	8			9	9		3							
	6. Transportable	8	3	3					3						
		Raw score	135	127	135	123	120	145	204						
		Relative Weight	14%	13%	14%	12%	12%	15%	21%						
		Unit of Measur e	in	in	in	lb	lb/in	\$	ft						
		Technic al Target													


Jeramie 16

QFD: Steering

	Engineering Requirements for given design												
Steering	Customer Needs	Customer Weights	.S.Y	Caster Angle	Ackerman Angle	Turning Radius	Cost	Bolt Shear Stress	Width				
Ste	1. Lightweight	10					3	1					
	2. Maneuverability	10		9	9	9			9				
	3. Relatively												
	inexpensive	6	9				9	3					
	4. Stable/safe	9		9	9	3			9				
	5. Must be durable	8	9				9	3					
	6. Transportable	8				3			3				
		Raw score	126	171	171	141	156	52	195				
		Relative Weight	12%	17%	17%	14%	15%	5%	19%				
		Unit of Measure	psi	degrees	degrees	ft	\$	psi	lb				
		Technical Target											

Jeramie 17

House of Quality

Gantt Chart

キャナナダ派			Zoom In Zoo	om Out To	oday ▼ ← Past	t Future → Sh	ow critical path B	laselines										
GANTT.		2013																
Nan		Begin date	End date	Week 36 9/1/13	Week 37 9/8/13	Week 38 9/15/13	Week 39 9/22/13	Week 40 9/29/13	Week 41 10/8/13	Week 42 10/13/13	Week 43	Week 44 10/27/13	Week 45	Veek 46	Week 47 11/17/13	Week 48	Week 49 12/1/13	Week 5
-	Research	9/23/13	10/7/13									_						
	• Steering Geometry	9/23/13	9/24/13															
	• Suspension Design	9/23/13	9/25/13	_				1.1										
	Suspension Comp.	. 9/26/13	10/7/13									_						
	Design	10/10/13	11/8/13			_	_								_		_	_
	SolidWorks Models	10/10/13	10/23/13		_							_			_			_
	• FEA	10/24/13	11/8/13			_	•					_	-		_			_
	Colaberate With	10/10/13	10/14/13				_						_					_
-	Prototype	11/4/13	12/9/13															_
	Steering	11/4/13	11/15/13															
	···· Suspension	11/4/13	11/13/13												-			
	Compile System	11/18/13	12/9/13															
ė	 Test 	11/29/13	12/5/13															
	···· Spring Rate	11/29/13	12/5/13															
	···· Alignment	11/29/13					_											
	Shock Adjustment	11/29/13	12/3/13															

Conclusion

- Our client John Tester
- The competition in El Paso TX
- Need Statement
 - o Maneuverability
 - \circ weight

Conclusion (cont'd)

Goals

- o Inexpensive
- o durable

Objectives

- Decrease turning radius
- o Be competitive

Constraints

- Width Ground
- o Clearance
- o Fasteners

Conclusion (cont'd)

• QFD

- Suspension
- o Steering
- House of Quality
- Gantt Chart

References

- 2014 Baja Rules
 - SAE International 2014 Collegiate Design Series
 - Baja SAE Rules
 - http://www.sae.org/students/2014_baja_rules_8-2103.pdf
- Dr. John Tester
 - College of Forestry, Engineering and Natural Sciences
 - http://nau.edu/CEFNS/Engineering/Mechanical/Fa culty-Staff/John-Tester/