SAE Baja: Project Proposal Suspension and Steering

Benjamin Bastidos, Victor Cabilan, Jeramie Goodwin, William Mitchell, Eli Wexler

Wednesday, November 20, 2013

Overview

- Introduction
- Concept Generation & Selection
- Engineering Analysis
 - o Structural: Tie Rod, Front A-Arms, Rear Trailing Arms

Victor 1

- Cost Analysis
- Conclusion

Project Introduction

- 2014 SAE Baja Competition
- Customer is SAE International
- Stakeholder is NAU SAE
- Project advisor is Dr. John Tester

Need Statement

- NAU has not won an event at the SAE Baja Competition in many years
- Goal of the suspension team is to design the most durable, and versatile front and rear suspension systems
- Goal of the steering team is to design an efficient steering mechanism that will meet the needs of off-road racing

Design Objectives

Victor 4

- Minimize cost
- Maximize suspension member strength
- Minimize suspension member weight
- Minimize turning radius

Constraints

- AISI 1018 tubing or equivalent strength
- Funding
- Must Follow SAE International Collegiate Design Series, Baja SAE Series Rules

QFD Matrix: Steering

Customer Needs	Customer Weights	Y.S.	Caster Angle	Ackerman Angle	Turning Radius	Cost	Bolt Shear Stress	Width
1. Lightweight	10					3	1	
2. Maneuverability	10		9	9	9			9
3. Relatively inexpensive	6	9				9	3	
4. Stable/safe	9		9	9	3			9
5. Must be durable	8	9				9	3	
6. Transportable	8				3			3
	Raw score	126	171	171	141	156	52	195
	Relative Weight	12%	17%	17%	14%	15%	5%	19%
	Unit of Measure	psi	degrees	degrees	ft	\$	psi	lb

Victor 6

QFD Matrix: Suspension

Customer Needs	Customer Weights	Ground Clearance	Suspension Travel	Y.S.	Stiffness	Spring Rate	Cost	Weight	
1. Lightweight	10					3	3	9	1
2. Maneuverability	10	9	9		3	9	3	9	
3.Relatively inexpensive	6		1				9]
4. Must be safe	7	3	1	9	3		1		
5. Must be durable	8			9	9		3		
6. Transportable	8	3	3					3	
	Raw Score	135	127	135	123	120	145	204	
	Relative Weight	14%	13%	14%	12%	12%	15%	21%	Victor 7
	Unit of Measure	in	in	in	lb	lb/in	\$	ft	

Operating Environment

- Cinders OHV Area
- El Paso Gas Pipeline Service Road
- NAU Building 98C
- NAU Parking Lot 64

Figure1: Operating Environment Example Image Credit: Stu Olsen's Jeep Site

Victor 8

Concept Generation & Selection

- Steering
 - o Rack and Pinion
 - o Pitman Arms
- Suspension
 - Double A-Arms
 - Twin I-Beam
 - Semi-Trailing Arm
 - Solid axle
- Tubing Selection

Steering Design 1

- Pitman Arm Steering Assembly
- Advantages
 - o Easily repaired
 - o Robust
 - Strictly Mechanical Components
- Disadvantage
 - o "Dead Spot"
 - Response time

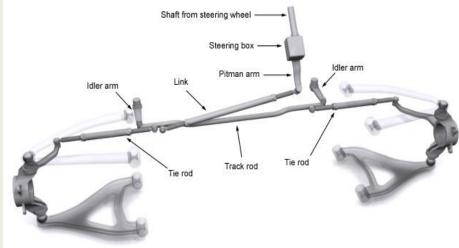
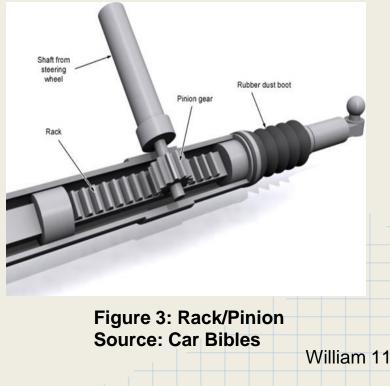



Figure 2: Pitman Arm Source: Car Bibles

Steering Design 2

- Rack and Pinion
- Advantages
 - Smooth gear Meshing
 - Simple mechanical design
- Disadvantage
 - Not as durable than pitman arm style

Suspension Design 1 (Front & Rear)

- Independent Suspension
- Advantages
 - o Lightest weight
 - Good range of travel
- Disadvantages
 - Not as strong as other considered designs

Figure 4: A Arm Source: CarBibles

Suspension Design 2 (Front)

- Equal I Beams
- Advantages
 - Allows for maximum travel
 - Best articulation
- Disadvantage
 - Susceptible to bumpsteer
 - Radical camber & caster change

Figure 5: I-Beams Source: HM Racing Design

Suspension Design 3 (Rear)

- Trailing Arm
- Advantages
 - o Lots of travel
 - o Truly independent
 - o Strong
 - o Simple
- Disadvantages
 - o Camber is static
 - o Handling suffers at limit

Figure 6: Trailing Arm Source: SAEBaja.net

Suspension Design 4 (Rear)

- Live Axle/Solid Rear Axle
- Advantages
 - o Tough
 - o Simple design
 - Good articulation
 - o Reliable
- Disadvantage
 - Large unsprung weight
 - o Wheels are not independent

Figure 7: Solid Axle Source: Motor Trend

Suspension Decision Matrix (Front)

Table 3: Front Suspension Decision Matrix

Requirements	A Arm	Equal I Beam
Simplicity (0.20)	4	4
Reliability (0.30)	4	4
Weight (0.30)	3	2
Cost (0.20)	4	3
Totals	3.7	3.2

Suspension Decision Matrix (Rear)

Table 4: Rear Suspension Decision Matrix

Requirements	A Arm	Solid Axle	Trailing Arms
Simplicity (0.20)	3	4	4
Reliability (0.30)	3	5	3
Weight (0.30)	4	1	4
Cost (0.20)	4	2	4
Totals	3.5	3.3	3.7

Decision Matrix Steering

Table 5: Steering Decision Matrix

Requirements	Rack & Pinion	Pitman Arm
Simplicity (0.20)	5	4
Reliability (0.30)	4	5
Weight (0.30)	4	3
Cost (0.20)	4	3
Totals	4.2	3.8

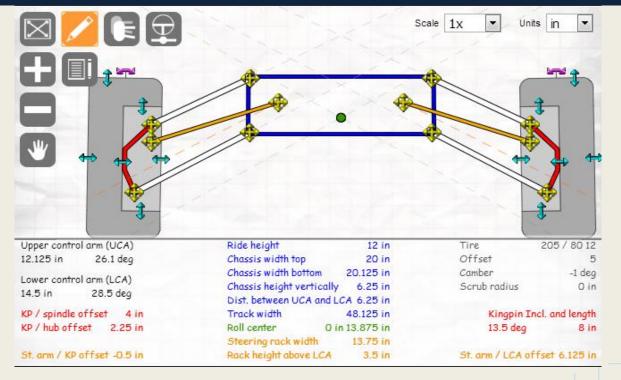
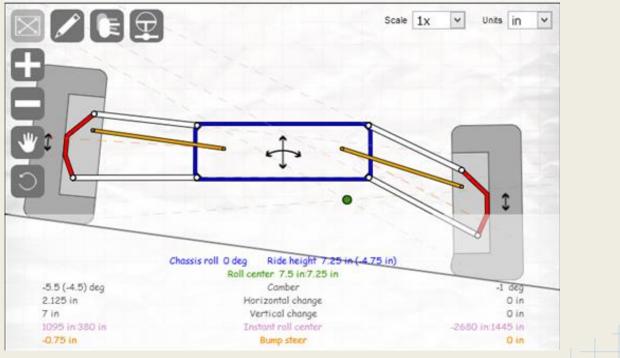
Tubing Selection

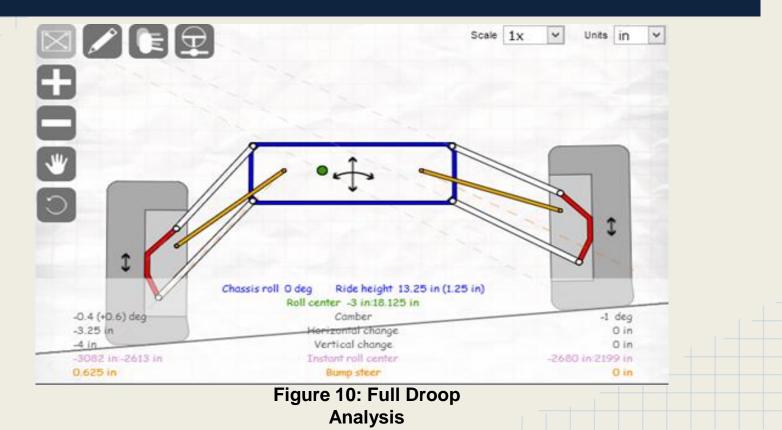
- SAE Specification:
 - o AISI 1018 Steel
 - o 1" Diameter
 - o 0.120" Wall Thickness
- Other Sizes Allowed
 - Equivalent Bending Strength
 - Equivalent Bending Stiffness
 - o 0.062" Minimum Wall Thickness

AISI 4130 Steel

- Equivalent Strength With Smaller Diameter Than AISI 1018 Steel
- Heavily Used In The SAE Mini Baja Competition And Other Racing Applications
- Welding of AISI 4130 Steel Can Be Performed By All Commercial Methods
- Motivated by choice of frame team to use the same material

Front Geometry


Figure 8: Front Suspension Geometry

Full Compression

Figure 9: Full Compression

Full Droop

Front Suspension Geometry

Figure 11: Front Suspension Geometry (Front-view)

Front Suspension Geometry

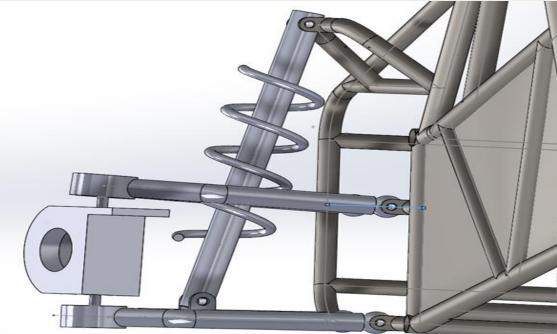
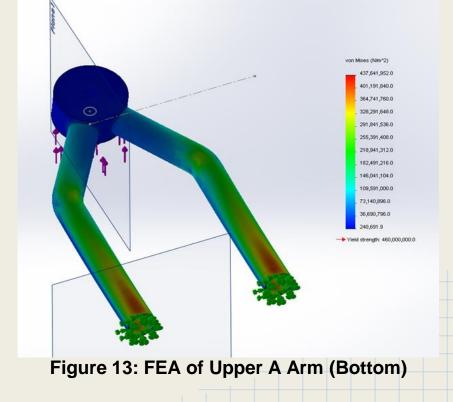


Figure 12: Front Suspension Geometry (Back-view)

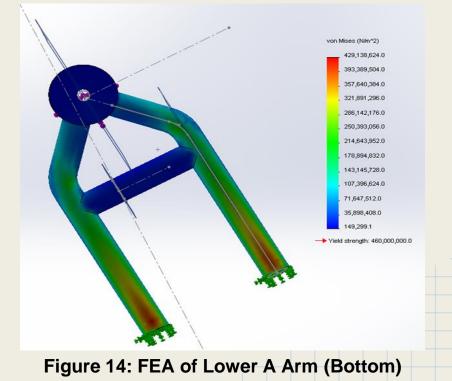
Front Suspension Geometry

Expected Drop Forces


Drop Test Assumptions:

- Fi = Force of impact
- Fs=500 lb Weight
- h= 6 ft Drop Height
- K= 160 lbin Spring rate constant (using shocks from Polaris RZR 570)
- Force assuming worst case landing on one wheel
- Fi= Fs + ((Fs) 2 + 2 x K x 12 x Fs x h)^{1/2} (Source SAE Brasil)

• Fi=1022.53 lb


Upper Arm from bottom

- Upper arm
- loaded at 700 lbf from bottom
- FS=1.05

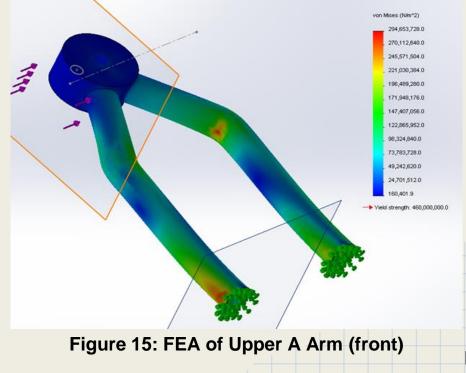
Lower Arm from bottom

- Lower arm
- loaded at 700 lbf from bottom
- FS =1.07

Expected Impact Forces

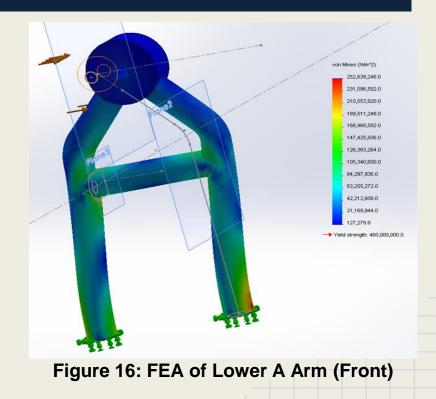
Max speed is ~ 35MPH=51.33Ft/s

M=500lb/32.2=15.53slug


T=.2s

 $F_{impact} = M(V/T_{impact})$

F_{impact}=15.53(51.33/.2)=3985.77lbf


Upper Arm from front

- Upper arm
- loaded At 1000 lbf front front
- FS=1.56

Lower Arm from Front

- Lower arm
- Loaded at 1000 lbf from front
- FS=1.82

Analysis: Tie Rod

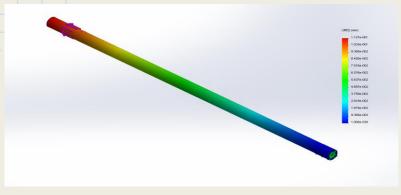


Figure 17: FEA of Tie Rod

Figure 18: CAD Tie Rod

- AISI 4130 (Chromoly)
- Diameter = 0.7"
- Maximum Axial Deformation @ 3000 lbf = 0.13mm

Benjamin 33

Rack and Pinion Geometry

 Rack and Pinion with Casing and steering shaft

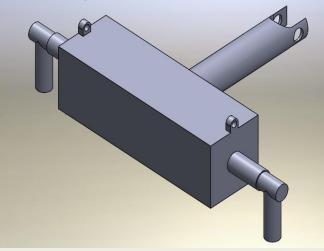


Figure 19: Rack and Pinion (Enclosed)

Bare Rack and Pinion

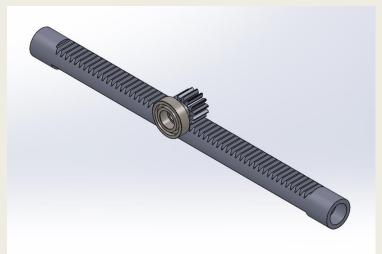


Figure 20: Rack and Pinion (Inside)

Benjamin 34

Rack and Pinion Geometry

Rack and Pinion

- Designed but most likely buy
- Assumptions: No crown, Hardened, Not operating at high temp's, Range for force applied
- Force by Driver: 0.1-10 lbf
- Rack teeth => pinion turns 360 degrees max, both sides
 - if circumference of pinion=4.64in, rack ~ 9in

Benjamin 35

Rack and Pinion Geometry

Table 6: Dimensions of Pinion and Rack

	Teeth Number	Face Width (in.)	Bending Stress (kpsi)	Radii for Pitch Circle (in)	Radii for Base Circle (in)	Adden. (in.)	Dedden (in)
pinion	20	0.74	0.04 - 3.9	0.787	.739	0.078	0.098
rack	40	0.74	-	inf	inf	0.078	0.098

Rack and Pinion Geometry

Rack: approx. 9 inches

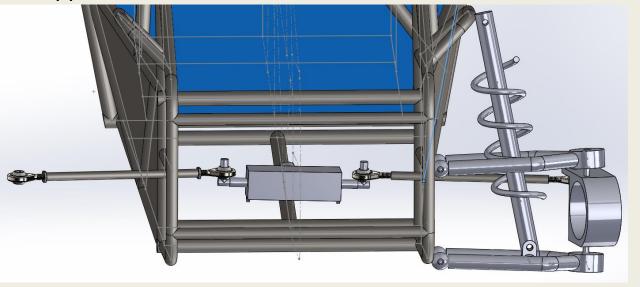


Figure 21: CAD Front Assembly

Ben 37

Cost of Front Suspension

- Fox Podium X Shocks
- Wheel hubs
- Bearing Carrier
- Heim joints
- Uniball Joints
- Brake Caliper and master cylinder
- 10 Ft of 1.25" .065" thick 4130 steel tubing

Table 7: Front Suspension Cost					
	Full Retail	Sponsorship Rate			

\$2529.33

\$1440.33

Prices:

Cost of Rear Suspension

- Fox Podium X shocks
- Bearing Carrier
- Wheel hub
- Heim Joints
- 1.5" diameter
- .0625" thick 4130 Steel tubing

Table 8: Rear Suspension Cost				
	Full Retail	Sponsorship Rate		
Prices:	\$1868.14	\$1067.67		

Cost Steering

- Rack and Pinion
- Tie Rods
- Heim Joints

Table 9: Steering Cost

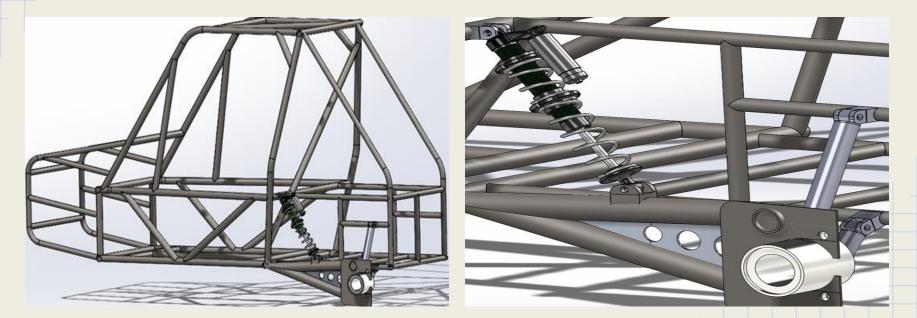
	Full Retail	Sponsorship Rate
Prices:	\$649.20	\$324.60

Total Cost Analysis

- We estimate that the total cost of the suspension, brakes, and steering to be
 - \$2832.60 at sponsorship rates
 - o \$5046.67 at full retail

Rear Suspension Geometry




Figure 22: Rear Suspension Geometry

Rear Suspension Geometry

Figure 23: Rear Suspension Geometry

Final Rear Suspension

Figure 24: Rear Suspension

Figure 25: Rear Suspension

Gantt Chart

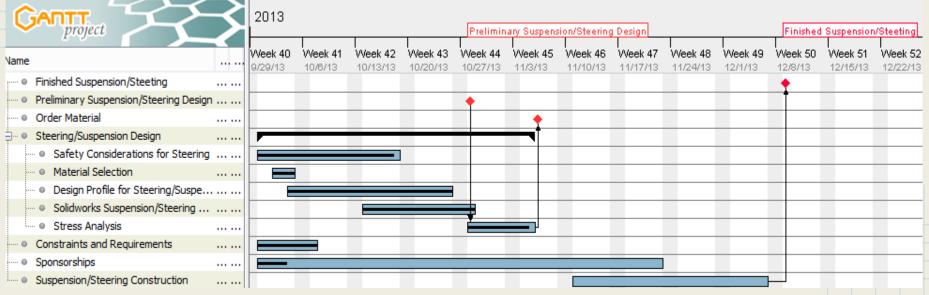


Figure 26: Gantt Chart

Spring 2014 Project Plan

- Finish Shock Calculations
- Further Design Refinement
- Completed Frame by January 31
- Completed Suspension Members by February 24
- SAE Cost Report by March 3
- SAE Design Report by March 20
- Competition on April 24

Conclusion

- SAE International is the client, NAU SAE is a stakeholder, and Dr.John Tester is the project advisor.
- Material Selection AISI 4130 steel tubing for suspension members 1.25" -1.50" O.D. and 0.065" - 0.083" wall thickness.
- Create a Baja design with an adequate weight and steering radius
- Front Suspension: Double A-Arms
- Rear Suspension: Trailing Arms
- Steering System: Rack and Pinion
- Analysis Results for optimization of design
- Cost analysis for economics of design

References

- Polaris Industries, "Parts List,"<u>http://parts.polarisind.com/Browse/Browse.asp</u>,2013
- Polaris Suppliers, "SAE Team Baja Parts List,"<u>http://www.polarissuppliers.com/sae_team/baja_parts.pdf</u>,2013
- McMaster-Carr, "Product List Page,"<u>http://www.mcmaster.com/</u>,2013
- EAD Offroad, "Synergy 1" Uniball Cup ,"<u>http://www.eadoffroad.com/synergy-3630-16-3631-16-1-inch-uniball-cup</u>,2013
- Shigley, "Shigley's Mechanical Engineering Design," McGraw Hill, ISBN 978-0073529288, 2010.

References (Cont.)

- Adams, Herb. Chassis Engineering. Los Angeles, CA, 1992, ISBN 978-1-56091-526-3
- Millikin, Douglas, "Race Car Vehicle Dynamics," Society of Automotive Engineers Inc., ISBN 978-1-56091-526-3, 2003.
- Olsen, Stu, "Cinders Recreation Area" 2009, Photograph
- HM Racing Design, "Ford Ranger I-Beam Kit,"<u>http://www.hmracingdesign.com/html/suspension_kit_ranger_ibeam_hnm.html</u>, 2011.
- Baja SAE Forum," Trailing Arm Suspensions Topic", <u>http://forums.bajasae.net/forum/trailing-arm-suspension_topic753.html</u>,2010

References (Cont.)

- Wikipedia, "Steer System," <u>http://en.wikipedia.org/wiki/File:Steer_system.jpg</u>
- Car Bibles, "Steering Bible," <u>http://www.carbibles.com/steering_bible.html</u>
- Autoblog, "Ford Mustang Independent Rear Suspension," <u>http://www.autoblog.com/2009/06/22/report-s197-ford-mustang-could-have-had-independent-rear-suspen/</u>