SAE Baja: Concept Generation & Selection

Suspension and Steering

Benjamin Bastidos, Victor Cabilan, Jeramie Goodwin, William Mitchell, Eli Wexler

Wednesday, October 30, 2013

Overview

- Introduction
- Suspension Concept Designs
 - Decision Matrix
 - Final Design
- Steering Concept Designs
 - Decision Matrix
 - o Final Design
- Conclusion
- References

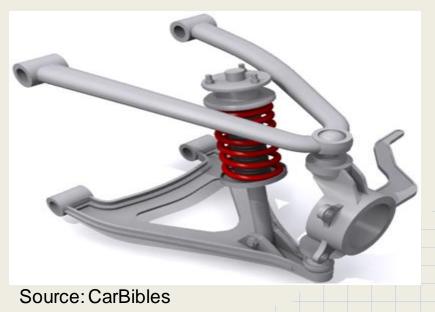
Introduction

Client: Dr. John Tester

• Problem Statement:

Design and build a safe, maneuverable, and versatile vehicle for competition use.

• Goal:


Design a suspension and steering system that will meet the demands of off road racing.

Suspension Concepts

- 4 Designs truly considered
 - Dual A-arms (front and rear)
 - Twin I-beam (front)
 - Semi-trailing arms (rear)
 - Solid Axle (rear)
- Design that did not make it past preliminary choosing process
 - Twin Trailing Arm (front)

Suspension Design 1 (Front & Rear)

- Independent Suspension
- Advantages
 - o Lightest weight
 - Alignment control throughout travel
- Disadvantages
 - Easier to break (mostly due to CV axles)

William Mitchell 4

Suspension Design 2 (Front)

- Equal I Beams
- Advantages
 - Allows for maximum travel
 - Best articulation
- Disadvantage
 - Susceptible to bumpsteer
 - Radical camber change
 - Uneven tire wear due to camber wear

Source: HM Racing Design

William Mitchell 5

Suspension Design 3 (Rear)

- Trailing Arm
- Advantages
 - Lots of travel
 - o Truly independent
 - o Strong
 - o Simple
- Disadvantages
 - Camber is static
 - o Handling suffers at limit

Source: SAEBaja.net

William Mitchell 6

Suspension Design 4 (Rear)

- Live Axle/Solid Rear Axle
- Advantages
 - o Tough
 - Simple design
 - Good articulation
 - o Reliable
- Disadvantage
 - o Large unsprung weight
 - o Wheels are not independent

Source: Motor Trend

Eli Wexler7

Decision Matrix (Suspension Front)

Table 1: Suspension Decision Matrix (Front)

Requirements	A Arm	Equal I Beam	Solid Axle
Simplicity (0.20)	4	4	5
Reliability (0.30)	4	4	5
Weight (0.30)	3	2	1
Cost (0.20)	4	3	2
Totals	3.7	3.2	3.2

Eli Wexler 8

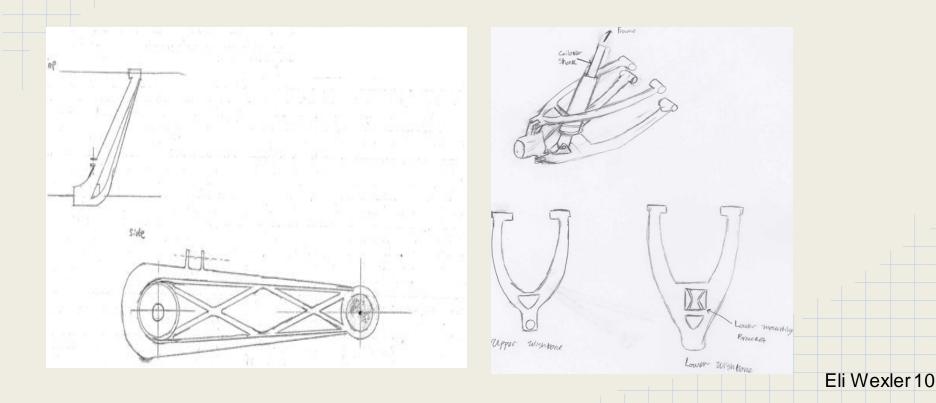

Decision Matrix (Suspension Rear)

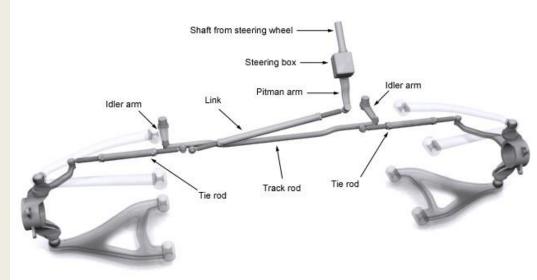
Table 2: Suspension Decision Matrix (Rear)

Requirements	A Arm	Solid Axle	Trailing Arms
Simplicity (0.20)	3	4	4
Reliability (0.30)	3	5	3
Weight (0.30)	4	1	4
Cost (0.20)	4	2	4
Totals	3.5	3.3	3.7

Eli Wexler 9

Final Design (Suspension)

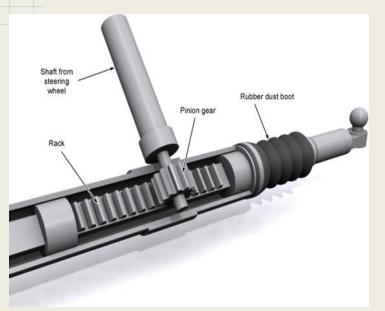
Steering Concepts

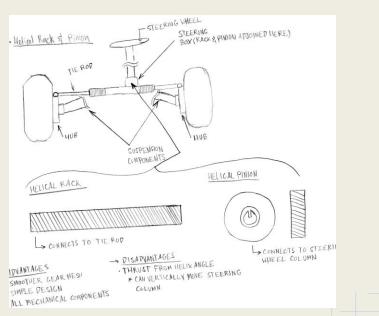

- 3 Designs considered
 - o Pitman arms
 - o Rack & pinion
 - o Steer-by-Wire

Benjamin Bastidos 11

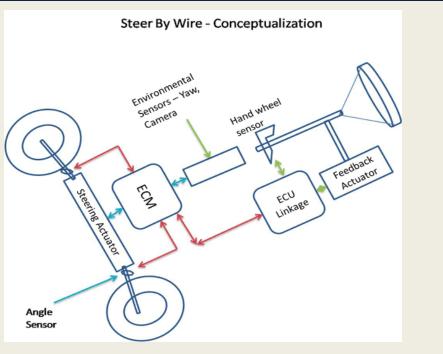
- Pitman Arm Steering Assembly
- Advantages
 - o Easily repaired
 - o Robust
 - Strictly Mechanical Components
- Disadvantage
 - o "Dead Spot"
 - Response time

Benjamin Bastidos 12


• Pitman Arm Steering


Source: CarBibles

Benjamin Bastidos 13


- Rack and Pinion
- Types
 - o Helical
 - o Spur
- Advantages
 - Smooth gear Meshing(Helical)
 - o Simple mechanical design
- Disadvantage
 - Steering Column Thrust Load(Helical)

Source: CarBibles

- Steer by wire
- Advantages
 - o Lightweight
 - Advanced Electronic Traction and Stability control
- Disadvantage
 - Precise programing
 - Needs watertight connections
 - Needs to be well grounded



Source: Cvel Clemson

Decision Matrix (Steering)

Requirements	Rack & Pinion	Pitman Arm	Steer by Wire
Simplicity (0.20)	5	4	2
Reliability (0.30)	4	5	2
Weight (0.30)	4	3	3
Cost (0.20)	4	3	1
Totals	4.2	3.8	2.1

Final Design (Steering)

Source: Car Bibles

Conclusion

Front and Rear Suspension Concepts

- Double A-arm (independent)
- Solid Axle
- o I-Beam
- o Trailing Arm
- Steering Design Concepts
 - o Rack & Pinion
 - o Pitman Arm
 - o Steer-by-wire
- Final Suspension and Steering Concepts
 - Trailing Arm/A-arm
 - o Rack & Pinion

References

- 1. http://www.carbibles.com/steering_bible.html
- 2. <u>http://www.autoblog.com/2009/06/22/report-s197-ford-mustang-could-have-had-independent-rear-suspen/</u>
- 3. <u>http://www.cvel.clemson.edu/auto/AuE835_Projects_2009/pillai_project.html</u>
- 4. <u>http://www.hmracingdesign.com/html/suspension_kit_ranger_ibeam_hnm.html</u>
- 5. <u>http://www.altairhyperworks.com/(S(3fu2zyrlbyi03xcofiue25jd))/hwhelp/Altair/hw</u> <u>11.0/help/engsol/engsol.htm?rear_trailing_arm_suspension_system_svdd.htm</u>
- 6. <u>http://forums.bajasae.net/forum/trailing-arm-suspension_topic753.html</u>