Problem Formulation & Project Plan

Chris Bennett, Eric Lockwood, Anthony McClinton, Robin McRee, Colin Pemberton

October 7, 2013

Overview

- Introduction
- Needs
- Project Goal
- Objectives
- Operating Environment
- Constraints and QFD
- Project Schedule

Introduction

Customer:

SAE International

What do they do:

 Organization for international design standards that also holds collegiate automotive design competitions

Why they are sponsoring the project:

To test engineering students abilities

Need Statement

NAU has not won an event at the SAE Mini Baja competition in many years.

- Hill Climb
- Acceleration
- Presentation
- Maneuverability
- Endurance Event

Project Goal

- Design and build the lightest possible frame to win an event.
- Ensure vehicle conforms to all safety guidelines outlined in the SAE rule book

Objectives

Minimize:

- Frame weight
- Cost
- Damage from collisions

Ease of manufacturability

Driver safety

Operating environment

The Vehicle must be able to traverse:

- Rocks
- Sand jumps
- Logs
- Steep inclines
- Mud
- Shallow water
- Handle large drop offs

Operating environment

Endurance Event

Rock Crawl

www.cens.nau.edu/~jtt3/Minibaja06

www.cens.nau.edu/~jtt3/Minibaja06

Operating environment

Maneuverability Course

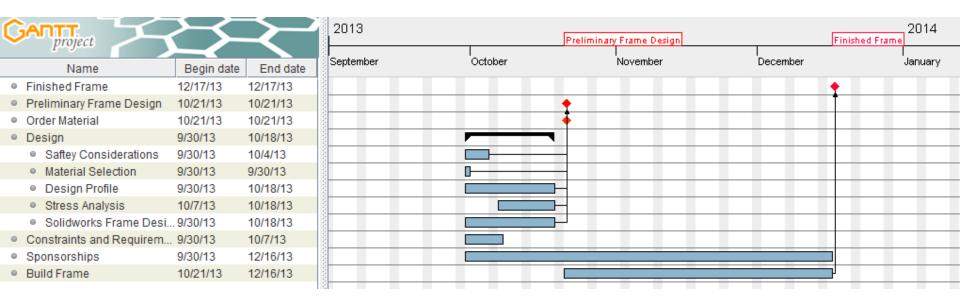
Hill Climb

www.cens.nau.edu/~jtt3/Minibaja06

www.cens.nau.edu/~jtt3/Minibaja06

Constraints

- AISI 1020 tubing or equivalent strength
- Frame length less than 108 inches
- Frame width less than 40 inches
- Frame height less than 41 inches above seat bottom
- Frame geometry must conform to all SAE Baja Rules
- Vehicle must comply with all the safety regulations


QFD

Customer Needs	Customer Weights	Length	Width	Height	Weight	Bending Strength	Bending Stiffness	Tubing Wall Thickness	Conform to Safety Regulations	Cost	Man-Hours to Build
Light weight	10	3	3		9	3	3	9		3	
Easy to manufacture	6	1	1	1				3	3		9
Inexpensive	5				9	9	9	3		9	
No damage after impact	8	3	3	3		9	9	3	9		
Safe	10					9	9	1	9		1
	Raw score	60	60	60	135	237	237	157	180	75	64
	Relative Weight	5%	5%	5%	11%	19%	19%	12%	14%	6%	5%
	Unit of Measure	in	in	in	lb	N-m	N-m ²	in	T/F	\$	hr
	Techical Target	108	40	41	200	395	2789	0.062	TRUE	300	40

Project Plan

- Frame design will be completed by October 20th, 2013
- Construction will begin immediately following the design finalization
- Frame construction will be done by December 16th, 2013
- Baja vehicle will be completed by March 15th, 2014

Gantt Chart

Conclusions

- Project Introduction
- Need NAU hasn't won a Baja event in many years.
- Project Goal Construct lightest possible frame to win an event.
- Objectives Comply with safety regulations while minimizing weight.
- Operating Environment Off road
- Constraints Specific geometry and strength requirements
- Project Schedule

References

- 1. NAU Student Chapter of SAE "2006 Mini Baja," www.cens.nau.edu/~jtt3/Minibaja06, April 2006
- 2. Tester, John T., PhD, Associate Professor Northern Arizona University, personal communication, Sept. 2013.
- 3. SAE International, "2014 Collegiate Design Series Baja SAE Rules," 2014.