# SAE Mini Baja Project Proposal

Chris Bennett, Eric Lockwood, Anthony McClinton, Robin McRee, Colin Pemberton

December 9, 2013

# Overview

- Project Introduction
- Needs Statement and Project Goals
- Objectives, Constraints, and QFD
- Concept Generation and Selection
- Engineering Analysis
- Cost Analysis
- Final Frame Design
- Spring 2014 Project Plan
- Conclusion

# **Project Introduction**

- 2014 SAE Baja Competition
- Customer is SAE International
- Create international design standards
- Hold various collegiate design competitions
- Stakeholder is NAU SAE
- Project advisor is Dr. John Tester

#### **Need Statement**

- NAU has not won an event at the SAE Baja competition in many years.
- Goal of the frame team is to design the lightest possible frame within the SAE Baja rules.
- Goal changes to overall vehicle safety compliance after completion of the frame.

# **Design Objectives**

- Minimize frame weight
- Minimize cost
- Maximize safety
- Maximize manufacturability

# Constraints

- AISI 1018 tubing or equivalent strength
- Frame length less than 108 inches
- Frame width less than 40 inches
- Frame height less than 41 inches above seat bottom
- Frame geometry must conform to all SAE Baja Rules

#### **QFD Matrix**

| Customer Needs         | Customer Weights | Length | Width | Height | Weight | Bending Strength | Bending Stiffness | Tubing Wall Thickness | Conform to Safety Regulations | Cost | Man-Hours to Build |
|------------------------|------------------|--------|-------|--------|--------|------------------|-------------------|-----------------------|-------------------------------|------|--------------------|
| Light weight           | 10               | 3      | 3     | 3      | 9      | 3                | 3                 | 9                     |                               | 3    |                    |
| Easy to manufacture    | 6                | 1      | 1     | 1      |        |                  |                   | 3                     | 3                             |      | 9                  |
| Inexpensive            | 5                |        |       |        | 9      | 9                | 9                 | 3                     |                               | 9    |                    |
| No damage after impact | 8                | 3      | 3     | 3      |        | 9                | 9                 | 3                     | 9                             |      |                    |
| Safe                   | 10               |        |       |        |        | 9                | 9                 | 1                     | 9                             |      | 1                  |
|                        | Raw score        | 60     | 60    | 60     | 135    | 237              | 237               | 157                   | 180                           | 75   | 64                 |
|                        | Relative Weight  | 5%     | 5%    | 5%     | 11%    | 19%              | 19%               | 12%                   | 14%                           | 6%   | 5%                 |
|                        | Unit of Measure  | in     | in    | in     | lb     | N-m              | N-m <sup>2</sup>  | in                    | T/F                           | \$   | hr                 |
|                        | Techical Target  | 108    | 40    | 41     | 200    | 395              | 2789              | 0.062                 | TRUE                          | 300  | 40                 |

# **Operating Environment**

- Cinders OHV Area
- El Paso Gas Pipeline Service Road
- NAU Building 98C
- NAU Parking Lot 64



Image Credit: Stu Olsen's Jeep Site

# **Concept Generation**

- Tubing Selection
- Frame Geometry

# **Tubing Selection**

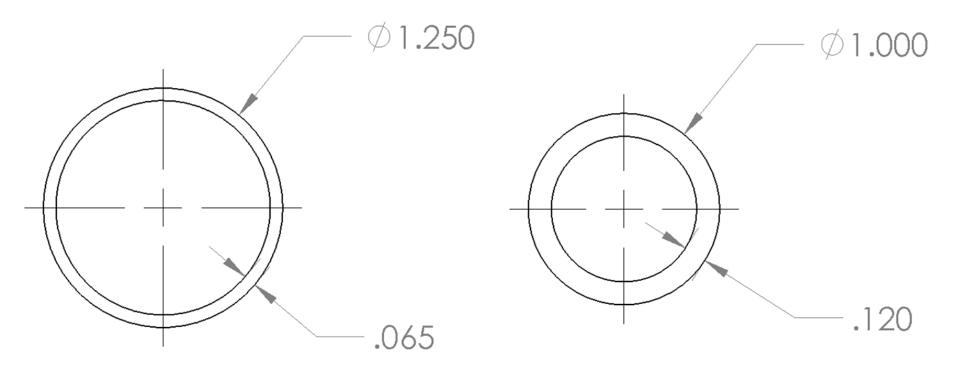
- SAE specifies AISI 1018 Steel
  - 1" Outside Diameter
  - 0.120" Wall Thickness
- Other Sizes Allowed
  - Equivalent Bending Strength
  - Equivalent Bending Stiffness
  - 0.062" Minimum Wall Thickness

# **Bending Strength and Stiffness**

 $Stiffness = E \cdot I$ 

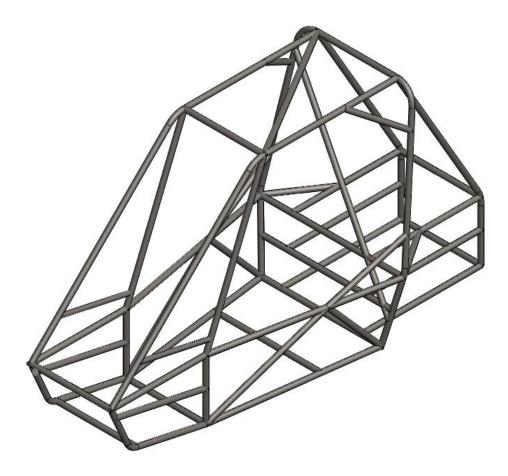
$$Strength = \frac{S_y \cdot I}{c}$$

- E = 29,700 ksi for all steel
- I = second moment of area
- $S_y = yield strength$
- c = distance from neutral axis to extreme fiber

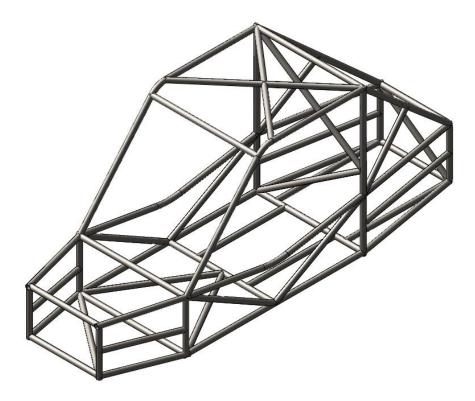

#### AISI 1018

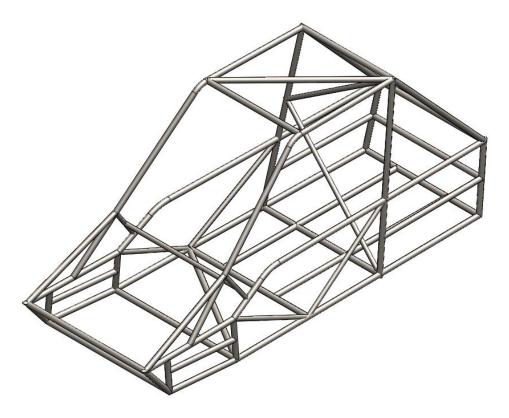
| Diameter [in] | Wall Thickness [in] | Stiffness [in-lb] | Strength [in <sup>2</sup> -lb] |
|---------------|---------------------|-------------------|--------------------------------|
| 1.000         | 0.120               | 971.5             | 3.513                          |

#### AISI 4130


| Diameter [in] | Wall Thickness [in] | Stiffness [%] | Strength [%] | Weight [%] |
|---------------|---------------------|---------------|--------------|------------|
| 1.000         | 0.120               | 100           | 118          | 100        |
| 1.125         | 0.083               | 113           | 119          | 81.9       |
| 1.125         | 0.095               | 126           | 131          | 92.7       |
| 1.250         | 0.065               | 130           | 122          | 72.9       |
| 1.375         | 0.065               | 176           | 150          | 80.6       |
| 1.500         | 0.065               | 231           | 181          | 88.3       |

#### **Final Selection**





# **Frame Geometry**

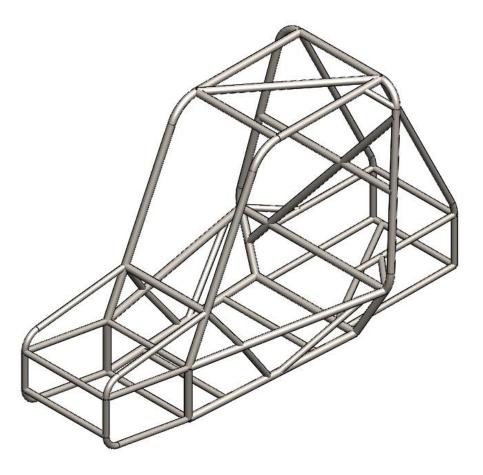
- Four initial design concepts
- Evaluated with design targets from QFD
- Decision matrix of raw data
- Lowest score is best









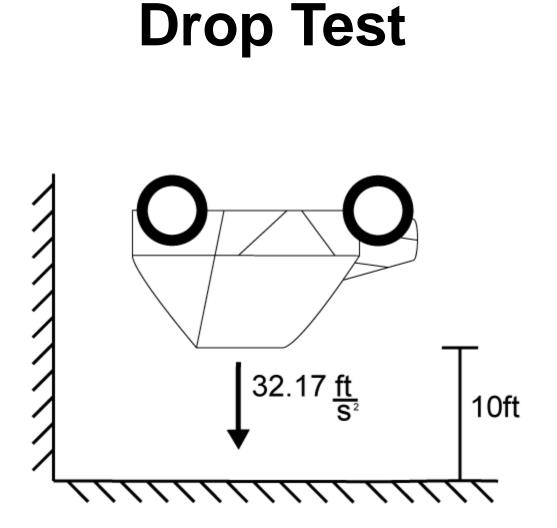

# Frame Design Criteria

- Amount of material [feet]
- Length [inches]
- Width [inches]
- Height [inches]
- Number of Bends
- Number of individual tubes

#### **Decision Matrix**

|                            | Weight | Design 1 | Design 2 | Design 3 | Design 4 |
|----------------------------|--------|----------|----------|----------|----------|
| Amount of Material [ft]    | 9      | 109      | 94       | 105      | 107      |
| Length [in]                | 5      | 83       | 78       | 100      | 100      |
| Width [in]                 | 1      | 32       | 33       | 30       | 31       |
| Height [in]                | 5      | 45       | 44       | 39       | 44       |
| Number of Bends            | 1      | 10       | 10       | 4        | 4        |
| Number of individual tubes | 1      | 65       | 43       | 50       | 55       |
| Total                      |        | 1728     | 1542     | 1724     | 1773     |

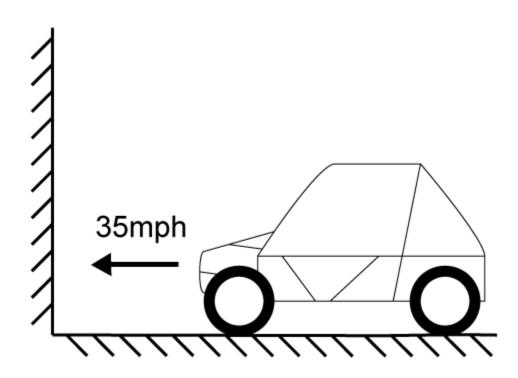
# **Final Design Concept**

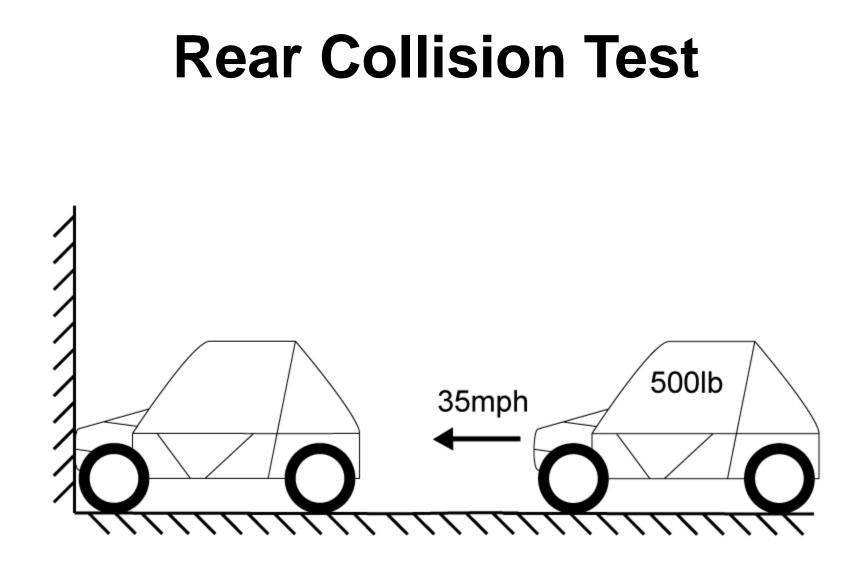



# **Engineering Analysis**

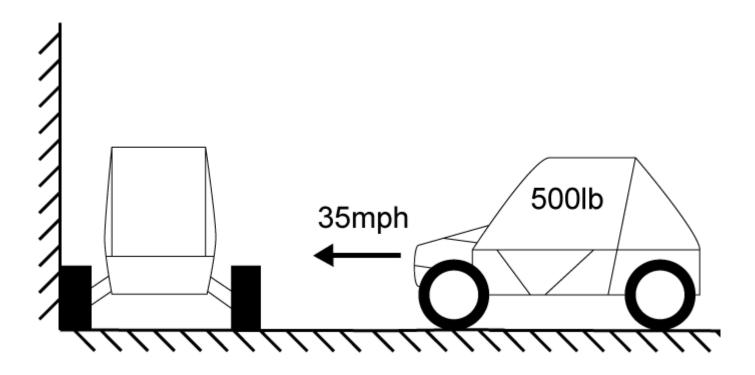
- SolidWorks Simulation
- Simple Loading Case
- Frame Impact Analysis
- Engineering Design Target Evaluation

# Frame Impact Analysis


- Drop Test
- Front Collision Test
- Rear Collision Test
- Side Impact Test
- Static simulations at maximum impact acceleration
- All are worst-case scenario




# **Drop Test** $F = m \cdot \frac{\sqrt{gh}}{t}$


- F = force
- m = mass
- g = acceleration of gravity
- h = drop height
- t = impulse time

#### **Front Collision Test**





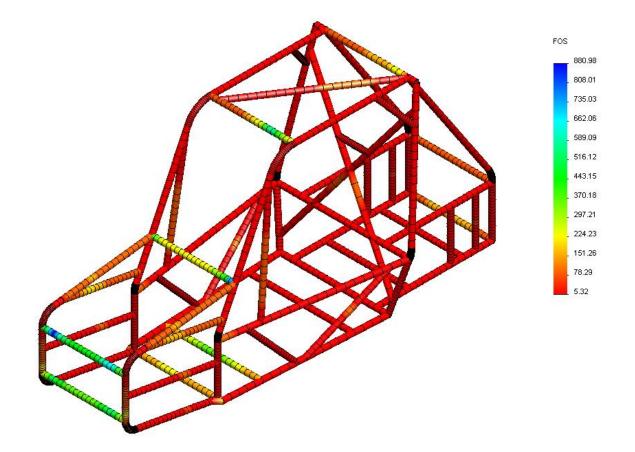
#### **Side Impact Test**



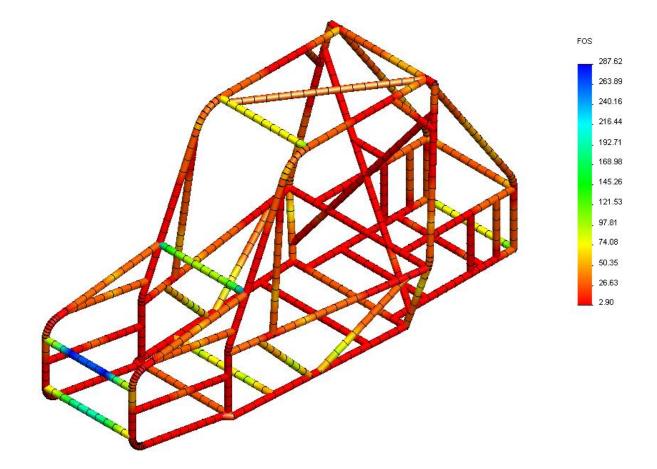
#### **Impact Tests**

$$F = m \cdot \frac{V_0}{t}$$

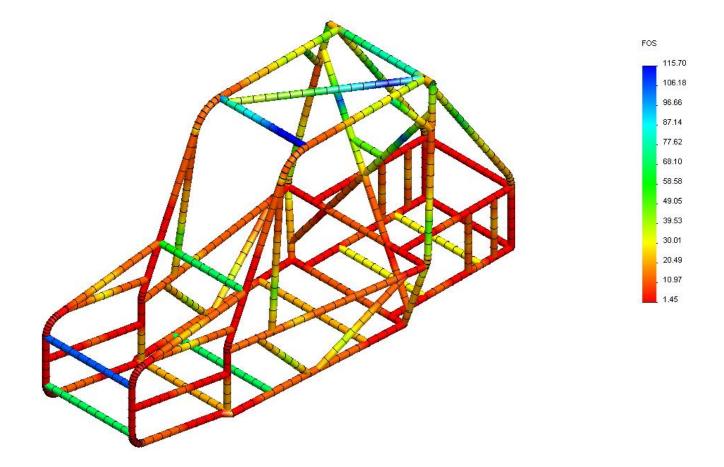
- F = force
- m = mass
- $V_0$  = initial velocity
- t = impulse time


# **Analysis Assumptions**

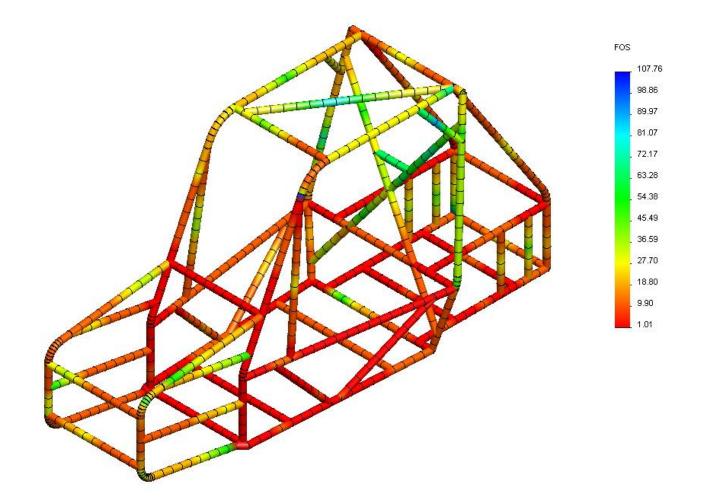
- Frame Weight:
- Drivetrain Weight:
- Suspension Weight:
- Driver Weight:


100.29 lb 120 lb 50 lb per corner 250 lb

 AISI 4130 Tubing, 1.25 in Diameter, 0.065 Thickness


# **Drop Test Safety Factor**




## **Front Collision Safety Factor**



# **Rear Collision Safety Factor**



#### Side Impact Safety Factor



## **Impact Results Summary**

| Test            | Max Deflection<br>[in] | Yield Safety<br>Factor |
|-----------------|------------------------|------------------------|
| Drop            | 0.089                  | 5.32                   |
| Front Collision | 0.135                  | 2.90                   |
| Rear Collision  | 0.263                  | 1.45                   |
| Side Impact     | 0.363                  | 1.01                   |

# **Engineering Design Targets**

| Requirement                           | Target | Actual |
|---------------------------------------|--------|--------|
| Length [in]                           | 108    | 88.18  |
| Width [in]                            | 40     | 32     |
| Height [in]                           | 41     | 44.68  |
| Bending Strength [N-m]                | 395    | 486.0  |
| Bending Stiffness [N-m <sup>2</sup> ] | 2789   | 3631   |
| Wall Thickness [in]                   | 0.062  | 0.065  |
| Pass Safety Rules                     | TRUE   | TRUE   |

## **Cost Analysis**

- Team Project Budget
- Theoretical Production Cost

# **Team Project Budget**

| Item                        | Amount       | Cost   |  |
|-----------------------------|--------------|--------|--|
| 1.25" AISI 4130 Tubing      | 120 ft       | \$200  |  |
| 1" AISI 4130 Tubing         | 60 ft        | \$100  |  |
| 0.375" x 6" AISI 4130 Plate | 6 ft         | \$112  |  |
| Corbeau Baja RS Seat        | 1            | \$250  |  |
| Safety Harness              | 1            | \$75   |  |
| Kill Switch                 | 1            | \$20   |  |
| Brake Light                 | 1            | \$35   |  |
| Entry Fee                   | 1/3 per team | \$367  |  |
| Travel Costs                | 5 people     | \$915  |  |
| Total                       |              | \$2074 |  |

# **Theoretical Production Cost**

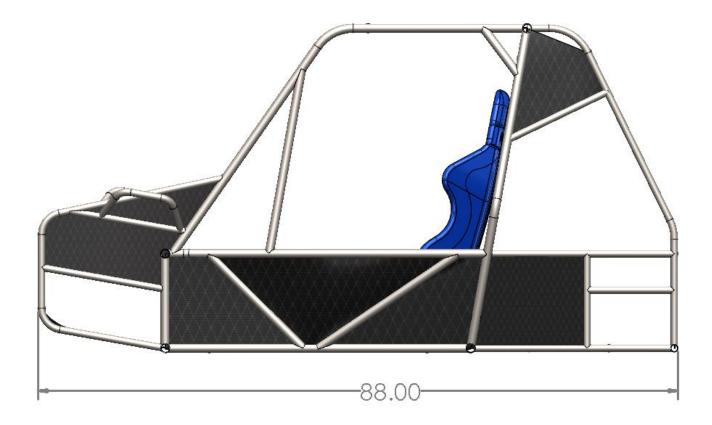
- Production of 4,000 frames per year
- Raw Material
- Off the Shelf Parts
- Labor
- Facilities

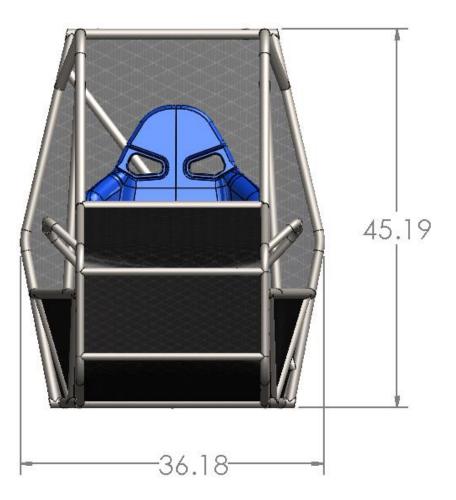
#### **Raw Material**

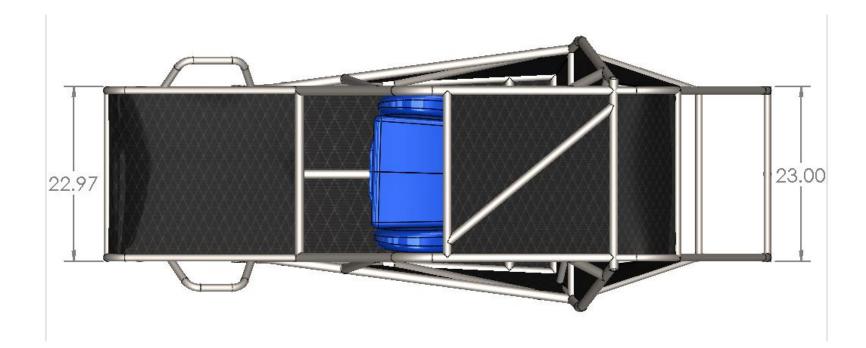
| ltem                           | Amount | Unit Cost     | Cost per<br>Frame | Annual Cost |
|--------------------------------|--------|---------------|-------------------|-------------|
| 1.25" AISI 4130 Tubing         | 80 ft  | \$0.85 per ft | \$68              | \$272,000   |
| 1" AISI 4130 Tubing            | 45 ft  | \$0.85 per ft | \$38              | \$152,000   |
| 0.375" x 6" AISI 4130<br>Plate | 6 ft   | \$55 per 6 ft | \$55              | \$220,000   |
|                                |        |               |                   |             |
| Total                          |        |               | \$161             | \$644,000   |

## **Off the Shelf Parts**

| ltem                 | Amount | Unit Cost | Cost per<br>Frame | Annual<br>Cost |
|----------------------|--------|-----------|-------------------|----------------|
| Corbeau Baja RS Seat | 1      | \$125     | \$125             | \$500,000      |
| Safety Harness       | 1      | \$40      | \$40              | \$160,000      |
| Kill Switch          | 2      | \$10      | \$20              | \$80,000       |
| Fire Extinguisher    | 1      | \$15      | \$15              | \$60,000       |
| Brake Light          | 1      | \$20      | \$20              | \$80,000       |
|                      |        |           |                   |                |
| Total                |        |           | \$220             | \$880,000      |


## **Labor and Facilities**


| ltem         | Amount | Unit Cost     | Annual Cost |
|--------------|--------|---------------|-------------|
| Metalworkers | 4      | \$10 per hour | \$80,000    |
| Welders      | 8      | \$15 per hour | \$240,000   |
| Assemblers   | 2      | \$10 per hour | \$40,000    |
| Facilities   |        |               | \$225,000   |
| Overhead     |        |               | \$180,000   |
|              |        |               |             |
| Total        |        |               | \$765,000   |


#### **Total Production Cost**

| ltem                 | Annual<br>Cost | Cost per<br>Frame |  |
|----------------------|----------------|-------------------|--|
| Raw Material         | \$644,000      | \$161             |  |
| Off the Shelf Parts  | \$880,000      | \$220             |  |
| Labor and Facilities | \$765,000      | \$191             |  |
|                      |                |                   |  |
| Total                | \$2,289,000    | \$572             |  |









# Spring 2014 Project Plan

- Complete Frame by January 31
- Final Assembly by February 24
- SAE Cost Report by March 3
- SAE Design Report by March 20
- Competition on April 24

# Spring 2014 Gantt Chart

| GANTT Project                    | $\leftarrow$ | $\mathbf{x}$ | 2013     | 2014                                | Frame Finished | Suspension and Drivetrai Design F | Report Deadline |
|----------------------------------|--------------|--------------|----------|-------------------------------------|----------------|-----------------------------------|-----------------|
| Name                             | Begin date   | End date     | December | <br>January                         | l<br>February  | l<br>March                        | l<br>April      |
|                                  | 12/16/13     | 1/31/14      |          | and the second second second second |                |                                   |                 |
| Frame Construction               | 12/10/13     | 1/31/14      |          |                                     | <u> </u>       | ·                                 |                 |
| Vehicle Assembly                 | 1/24/14      | 2/24/14      |          |                                     |                |                                   |                 |
| Frame Finished                   | 1/31/14      | 1/31/14      |          |                                     | •              |                                   |                 |
| Suspension and Drivetrain Atta   | . 2/24/14    | 2/24/14      |          |                                     | 4              |                                   |                 |
| Vehicle Testing and Modification | 2/25/14      | 4/21/14      |          |                                     |                |                                   |                 |
| Cost Report Deadline             | 3/3/14       | 3/3/14       |          |                                     |                | •                                 |                 |
| Design Report Deadline           | 3/20/14      | 3/20/14      |          |                                     |                | •                                 |                 |
| Competition                      | 4/24/14      | 4/25/14      |          |                                     |                |                                   |                 |
|                                  |              |              |          |                                     |                |                                   |                 |

## Conclusion

- SAE international is the client, NAU SAE is a stakeholder, and Dr. John Tester is the project advisor.
- Tubing Selection AISI 4130 steel tubing with 1.25" Diameter and 0.065" Wall Thickness.
  27% Lighter than stock tubing
- Four Initial frame designs. The lightest one, Design 2, was chosen.

## Conclusion

- Best frame was analyzed. Factor of safety above 1 for all tests.
- Team budget of \$2,074 and an annual production cost of \$2,289,000 for the frame.
- Final frame design based on design 2. Modifications have been made.
- Team finished everything this semester. The frame will be constructed by January 31. The competition is April 24.

#### References

- NAU Student Chapter of SAE "2006 Mini Baja," www.cens.nau.edu/~jtt3/Minibaja06, April 2006
- Tester, John T., PhD, Associate Professor Northern Arizona University, personal communication, Sept. 2013.
- SAE International, "2014 Collegiate Design Series Baja SAE Rules," 2014.

#### References

- Owens, T., Anthony, Jarmulowicz, D., Marc, Jones, Peter "Structural Considerations of a Baja SAE Frame," SAE Technical Paper 2006-01-3626, 2006.
- Silva, Martins, Maira, Oliveira, R. P. Leopoldo, Neto, C. Alvaro, Varoto, S. Paulo, "An Experimental Investigation on the Modal Characteristics of an Off-Road Competition," SAE Technical Paper 2003-01-3689, 2003.
- Tester, John, Northern Arizona University, personal communication, Nov. 2013.

#### References

 Olsen, Stu, "Cinders Recreation Area" 2009, Photograph

#### **Questions?**