REVERSE ENGINEERING OF MICRO AIR VEHICLE

Final Presentation

Abdul Aldulaimi, Travis Cole, David Cosio, Matt Finch, Jacob Ruechel, and Randy Van Dusen

04/25/14

OVERVIEW

- Project Description
- Problem Formulation
 - Need and Goal
 - Objectives
- Final Design
- System Integration
- Fairing Design
- Comparison
- Initial testing
- Final design modifications
- Cost Analysis
- Summary

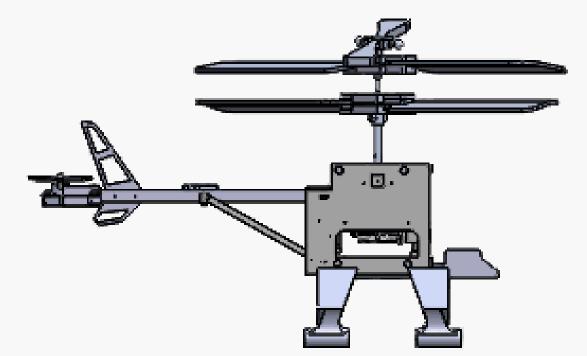
PROJECT DESCRIPTION

- Client is Dr. Kosaraju
- Task of scaling U13A remote controlled helicopter by 1.5
- Capability to have mission specific attachments

NEED AND GOAL

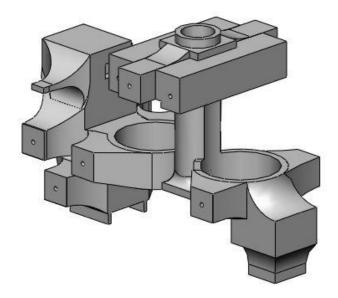
Need:

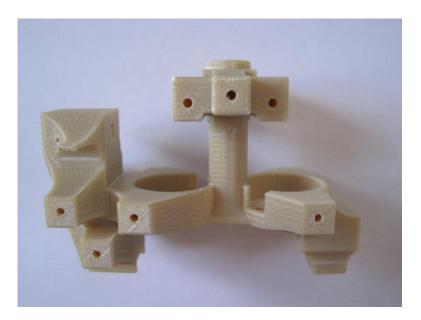
The battery life is to short, and the helicopter is too small, for early warning and mobile vantage point for forest fires.


Goal:

Successfully upscale a remote controlled helicopter with the ability to add mission specific accessories.

OBJECTIVES

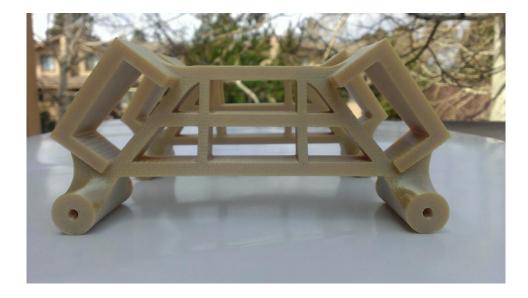

Objectives	Measurement Basis	Units		
Designing and building a RC helicopter	Amount of materials	Dollars		
Attachments	Camera Parts	Numbers		
Batteries	Two sets of batteries	Dollars		
Carrying capabilities	Weight	lbs		
Lift capabilities	Height range	Meters		



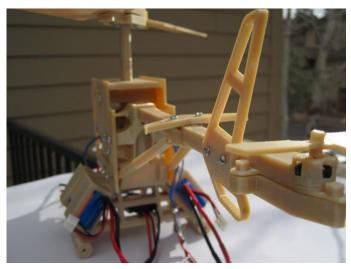
MAIN CORE

- Large sections where screws attachFillets on parts sticking out
- •Bulky design

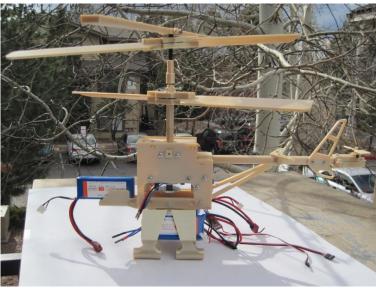
Main Core 3D printed using Ultem



Designed and Tested 4 different types of blade designs for varying performance and complexity in manufacturing



LANDING GEAR


- Enclosure for battery and electronics
- Impact support to the helicopter in the event of crash landing

TAIL STRUCTURE

3D PRINTING PROBLEMS

•Ultem tolerance made prototypes not fit together perfectly – e.g. base of blades do not fit into clamp

- •Top Rotor kept on slipping in the gear mesh
 - Added a smaller shaft inside the gear to prevent it from wobbling
- •Too much weight was added to the helicopter
 - Removed material from the major parts such as landing gear, main body, and side panels

WEIGHT CALCULATIONS

- Weight
 - Batteries = 0.217 lb
 - 4 Blades = 0.286 lb
 - Helicopter = 1.342 lb
 - Landing Gear = 0.378 lb
- Total Weight = 2.034 lb

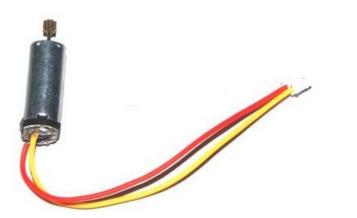
POWERTRAIN

•Original helicopter's powertrain had very simple design

•All powertrain components were modified to fit a larger helicopter

•Modifications were made to:

- Motors
- Batteries
- Speed Controllers
- Transmitter/Receiver

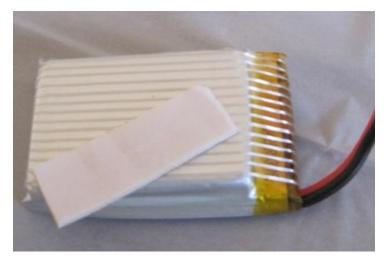

MOTORS

•Original motor specifications (exact specs not given):

- Two small brushed motors control the main rotor
- One, even smaller brushed motor for the tail rotor

- Two 5000 KV brushless outboard motors for the main rotor
- One 1000 KV brushless outboard motor for the tail rotor

Not only increased power of motors, but by making them brushless we get increased: efficiency, reliability, lifespan


BATTERIES

Original battery specifications

One 1S, 3.7 V, 580 mAh LiPo Flight time approximately 7 min

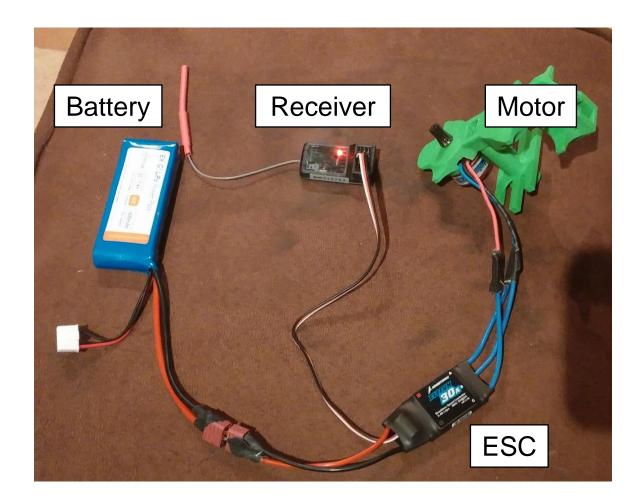
Scaled battery specifications

Three 2S, 7.4 V, 1600 mAh LiPo Flight time approximately 15 min

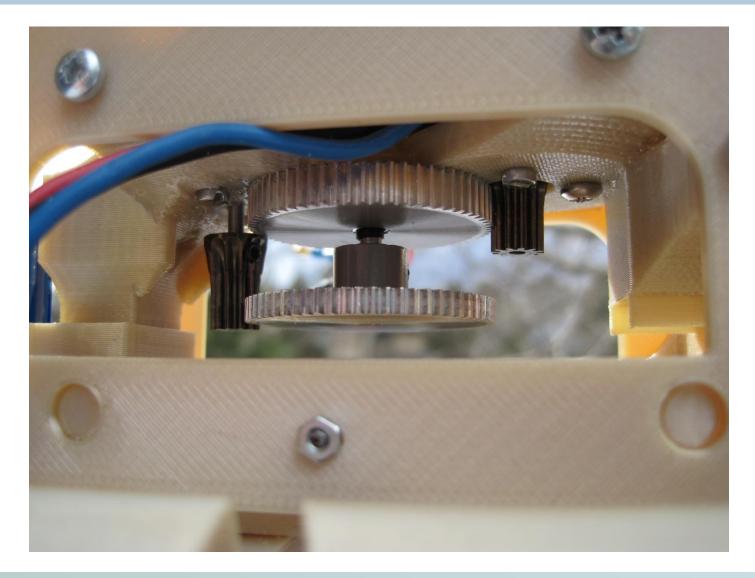
Original battery

Scaled battery

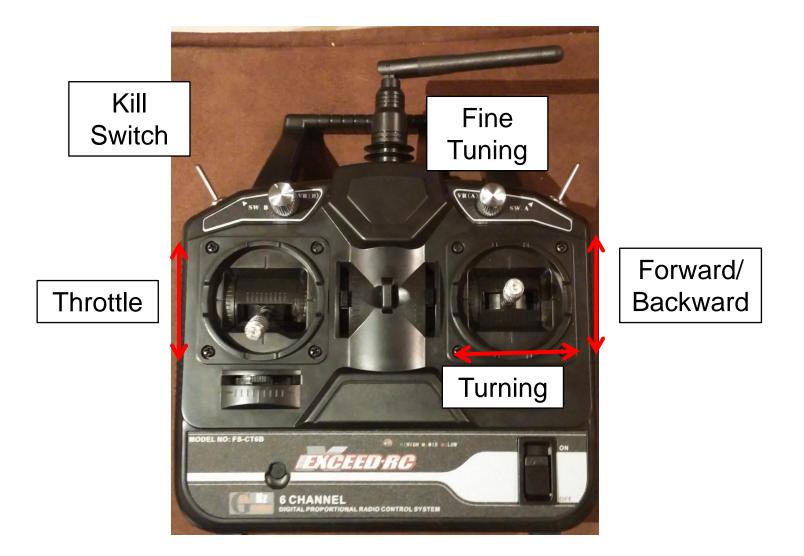
SPEED CONTROLLERS & TRANSMITTER/RECEIVER


•Original specifications:

- No physical speed controller or receiver
- PCB board used for both controlling speed and receiving transmissions


Scaled specifications:

- Three Electronic Speed Controllers (ESCs)
- ESCs require much less extensive programming than PCB boards, accomplishing the same task
- One 6-channel 2.4 GHz transmitter and receiver

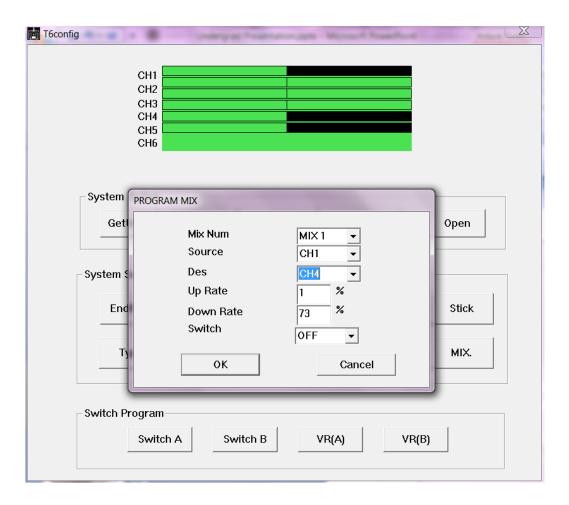

SYSTEM INTEGRATION

SYSTEM INTEGRATION

SYSTEM INTEGRATION

TRANSMITTER PROGRAMMING

Used two programs to program the transmitter


Most preset programs are designed for variable pitch helicopters or traditional airplanes

Both rotors are programmed to spin together

TRANSMITTER PROGRAMMING

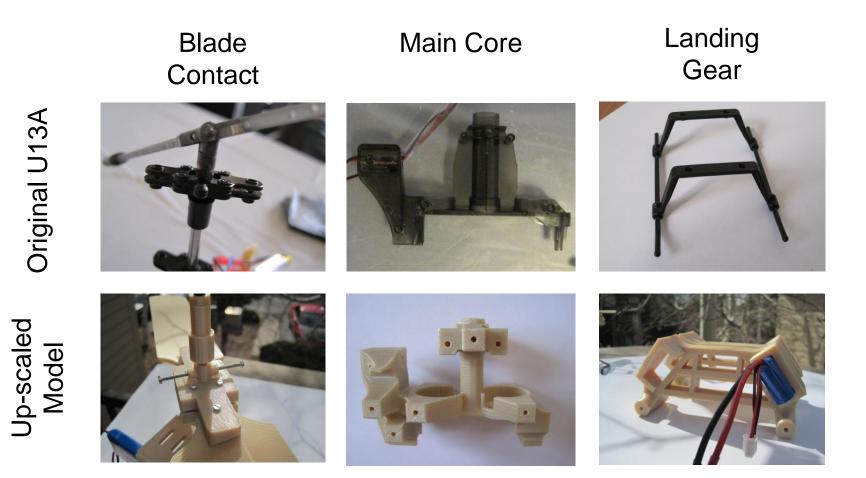
🔌 Configuration	n 🔛 Mi	xers						
	Rev S	ub Trim	En	d Point 1	End Point 2	DR On	DR Off	F
Channel 1		0 🌩 °		120 🚔 %	120 🊔 %	100 🊔 🤤	% 100	\$%
Channel 2		0 🌩 °		120 🌲 %	1 🚔 %	55 🊔 S	% 100	- %
Channel 3		0 🊔 °		120 🌲 %	120 🊔 %			
Channel 4		0 🊔 °		120 🚔 %	100 🚔 %	90 🊔 9	% 75	€%
Channel 5		0 🌩 °		100 🚔 %	100 🚔 %			
Channel 6		0 🌩 °		100 🌲 %	100 🊔 %			
	Functio	n			Function			
Variable A	Disable	d	•	Switch A	Disabled	•		
Variable B	Disable	d	•	Switch B	Throttle Cutoff	•		
	Туре							
Mode	Mode 3		•	S		7		
Configuration	Airplane		•	Å		>		

TRANSMITTER PROGRAMMING

FAIRING DESIGN

Constructed with Carbon Fiber material

COMPARISON BETWEEN TWO MODELS



Original U13A

Up-scaled Model

COMPARISON BETWEEN TWO MODELS

INITIAL TESTING

PROBLEMS FROM TESTING

•Too much weight in the main body

•Top rotor keeps slipping in the gear mesh

•The pin hole in the gear was stripped

•Calibrating the 6 channel remote control

•Shaft had a lot of uncontrolled movement

DESIGN MODIFICATIONS

•Reducing the weight

- Cutting out excess Ultem on the bottom plate
- Cutting out excess Ultem on the landing gear
- Drilling holes in the landing gear
- Drilling holes in bottom plate
- Decreasing outer diameter of spacers
- Cutting down the side panels
- Removing the top piece

COST ANALYSIS

Quantit	y Pa	rt	Name	Price Per Part	Price
2	Main 250 Motors	Hobbymate HB2622-5000kv Brushless Motor	\$	24.80	\$ 49.60
1	Tail Rotor	12000KV Brushless Tail Motor for Micro Heli	\$	14.99	\$ 14.99
2	Main Rotor ESC	New HobbyWing Flyfun ESC 30A	\$	17.49	\$ 34.98
1	Tail ESC	New HobbyWing Flyfun ESC 10A	\$	11.99	\$ 11.99
3	Batteries	HYPERION G3 EX 1600 MAH 2S 7.4V 45C/90C LIPOLY PACK	\$	25.95	\$ 77.85
1	Top Shaft	HP Heli's Inner Main Shaft for the X-2 helicopter	\$	10.99	\$ 10.99
1	Lower Shaft	HP Heli's Outer Main Shaft w/Gear for the X-2 helicopter	\$	10.99	\$ 10.99
1	Transmiter-Reciver	Fly Sky CT6B OEM Version Exceed RC 6-Ch 2.4Ghz Transmitter w/ Receiver	\$	44.70	\$ 44.70
2	Pinions	Mod 0.5, 10 Tooth, 2.3 mm ID Pinion	\$	1.99	\$ 3.98
2	Large Gears	Mod 0.5, 80 Tooth, 6 mm ID Gear	\$	30.00	\$ 60.00
1	Screws	LPPM3006 - M3 x 6mm - Thread forming screws For Plastic (100)	\$	2.40	\$ 2.40
10	Pins	M2 - 8mm Roll Pins	\$	0.11	\$ 1.10
1	Remote	Exceed-RC 6 Channel / Digital proportional Radio Control System	\$	49.99	\$ 49.99
1	3d Printer Material	Ultem for Rapid Prototyping	\$	500.00	\$ 500.00
Total					\$ 862.57

SUMMARY

- Our task is to upscale a U13A helicopter by 1.5
- Calculated the power requirements based on modified Aerodynamics
- Designed a power train system for the up-scaled prototype
- Created 3D model of the prototype using Ultem on a Rapid Prototyping Machine
- Tested and redesigned the initial prototype to improve flight characteristics

REFERENCES

- Wolfgang, R.C., 2006, "Lift Produced by Multi-Blade Heads", from http://rc.runryder.com/helicopter/t276865p1/
- Squire, J., 2010, "Airfoil lift and drag coefficients", University of Maryland Baltimore County, from http://www.csee.umbc.edu/~squire/cs455_lairfoil.shtml
- Heli Chair, 2011, "Aerodynamics 101", from http://www.heli-chair.com/aerodynamics_101.html
- Heliguy, 2010, "Remote Control Helicopters FAQ", from http://www.heliguy.com/nexus/newbie.html
- Seddon, J., 1990, Basic Helicopter Aerodynamics, Mackays of Chatham, Chatham, Kent.
- UDIRCTOYS INDUSTRY CO., 2012, "UDIR/C," http://www.udirc.com/eng/show.asp?id=49
- Audio / Video Spy Camera Transmitter. Security and Self Defense Store, n.d. Web. 27 Oct. 2013.
- Philpot, Timothy A. Mechanics of Materials: and Integrated Learning System, John Wiley and Sons Inc. Rolla Missouri, 2011.
- Budynas, Richard G., Nisbett, J. Keith, Shigley's Mechanical Engineering Design, Ninth Edition, McGraw Hill Inc., New York, New York, 2011.

QUESTIONS?