Scaling of the U13A Remote Controlled Helicopter

Concept Generation and Selection

Abdul Aldulaimi, Travis Cole, David Cosio, Matt Finch, Jacob Ruechel, Randy Van Dusen 10/28/13

Overview

- Problem Description
- Concept Generation
 - Blades
 - Battery
 - Lift
 - Landing Gear
 - Camera
- Gantt Chart
- Summary

Problem Description

- Client is Dr. Kosaraju
- Task of scaling U13A remote controlled helicopter
- Capability to have mission specific attachments
- Testing has revealed room for many different improvements.

Blades

• Problem: Blade Contact

Blades continued

- Solution 1: Raised upper rotor
- Solution 2: More durable blade material
- Solution 3: Rigid upper blades

Blade Contact:	Column1	Colun	Co	Column4	Col 🔽
Category	Ease of Design	Safety	Cost	Estimated Life	Total
Raised Upper Rotor	3	5	8	7	5.8
Durable Blade Material	7	5	4	6	5.5
Rigid Blade Design	8	5	8	8	7.1
Weight (%)	20	30	20	30	

Blade Solution

• Rigid upper blades

Battery

• Problem: Short Battery Life

• How can lithium polymer cells be configured increase battery effectiveness?

Battery Continued

Possible LiPo Configurations

Cells in Parallel

Parallel + Series

Battery Continued

	Voltage	Capacity	Weight	Durability	Cost	Total
Single LiPo	5	5	10	4	9	6.15
LiPos in Parallel	5	10	7	8	6	7.1
LiPos in Series	10	5	8	8	6	7.45
Parallel+Series	10	10	6	8	3	7.9
Weight (%)	25	30	25	5	15	

Battery Solution

• Solution: Parallel and series

Lift

• Problem: Lift to Weight Ratio

- Solution 1: Extend blade length
- Solution 2: Increase motor size
- Solution 3: Increase gear ratio

Lift Continued

Lift 🔤	Column1	Column	Colu	Colum	Columr	Column6 🗾
		Minimize			Minimize	
Category	Ease of Design	Cost	Safety	Weight	Power	Total
Larger Motors	6	4	7	3	3	4.55
Gear Ratio	7	6	7	7	7	6.85
Longer Blades	8	9	3	8	8	7.15
Weight (%)	20	15	20	25	20	

Lift Solution

• Solution: Increase blade length

Landing Gear

• Problem: Helicopter lands on its side

- Solution 1: Small flat landing gear
- Solution 2: Small round landing gear
- Solution 3: Large flat landing gear
- Solution 4: Large round landing gear

Landing Gear Continued

Landing Gear:	🛛 Column1 🛛 🔄 💌	Column2	Column3 🛛 🔤	Column4 🛛 🗾	Colu 🔼	Colun
Category	Helicopter Weight	Take-off/Landing	Stability on ground	Landing Impact	Cost	Total
Larger Landing Gear (Flat)	7	5	7	7	5	6.4
Smaller Landing Gear (Flat)	1	1	4	6	7	3.2
Smaller Landing Gear (Rounded	l) 1	2	4	8	7	3.8
Larger Landing Gear (Rounded)	7	8	7	9	5	7.4
Weight %	30	20	20	20	10	

Landing Gear Solution

• Solution: Larger Rounded Landing Gear

Camera

• Requirement: Live Feed Camera

- Solution 1: GoPros HERO3 white edition
- Solution 2: wireless hidden camera
- Solution 3: live feed camera off of another helicopter

Camera Continued

Improved Car	Colum	Column2	Column3	•	Column	Colu 🔽	Colun 🔽
		Minimize					
Helicopter Power			Ease of				
	Weight	Usage	Minimize Cos	t	Durability	Use	Total
GoPro	4	10)	2	10	8	7
Spycam	7	10)	9	3	8	7.55
Wi-spi camera	9	3	3	4	9	8	6.8
Weight (%)	30	25	5	10	15	20	

Camera Solution

• Solution: Wireless hidden camera

Source: Security and Self Defense Store

Abdul Aldulaimi 19

Gantt Chart

David Cosio 20

Summary

- Discussed how we are scaling the U13A helicopter by 1.5.
- Chose a rigid blade system to eliminate blade contact.
- Decided most power will be gained by a LiPo battery in series and parallel.
- Figured the best solution to increase lift would be to increase the blade length.

Summary Continued

- Decided on a large rounded base for the landing gear to help stabilize landing.
- Chose the Spycam for the live feed video camera.
- Lastly, we gave an update on our Gantt chart and where we are in our schedule.

References

 [1] Audio / Video Spy Camera Transmitter. Security and Self Defense Store, n.d. Web. 27 Oct. 2013.

Questions?