

Solar Autoclave for Rural Areas

UGRADS Presentation

April 26th, 2013

Eric Brettner Kyle Godwin Adam Compton Blake Lawrence Yuchen Liu

Department of Mechanical Engineering Northern Arizona University Flagstaff, AZ 86011

Presentation Overview

- Introduction
- Research
- Methods
- Final Design
- Manufacturing
- User Interface
- Cost Analysis
- Results
- Conclusion
- References

Problem Statement

- NEED STATEMENT: Certain developing areas around the world have limited availability to sterilized medical equipment.
- <u>OUR GOAL</u>: To create a solar autoclave that can be easily used at remote clinics in rural areas.

Figure 1: Western Design Autoclave Source: <u>http://www.trojanmedical.co.za/?page_id=205</u>

Need Identification

Objectives

- Provide remote clinics in rural areas with the means to sterilize medical equipment
- Create a flexible design from location to location
- Parts can be repaired/replaced from local, readily available materials

Constraint

 Temperature of the steam must reach and hold 121°C for at least 15 minutes

Research

- Dry Heat Sterilization
 - Pros:
 - Does not require water
 - Lower gauge pressure, meaning safer to use
 - Cons:
 - Takes 2 hours at 160°C to "sterilize" equipment
 - Does not kill all proteins associated with bacteria
- Saturated Steam Sterilization
 - Takes 15 minutes at 121°C to fully sterilize equipment

Research

Thermal Capture

Fresnel lens, parabolic dish and trough

Figure 2: Fresnel Lens Courtesy of WN http://article.wn.com/view/2008/01/16/Fresnel _lens_sheet_rear_projection_screen_and_rear_pro jectio/

Figure 3: Parabolic Dish Courtesy of Inhabitat http://inhabitat.com/19-year-old-teenagermakes-homemade-solar-death-ray/solarray2/

Figure 4: Parabolic Trough Courtesy of Tech Bells <u>http://techbells.blogspot.com/2012/07/working-of-csp-</u> parabolic-trough.html

Research

Figure 5: Fiberglass Courtesy of Unipro <u>http://www.alibaba.com/product-</u> tp/12283858/FiberGlass_wool_Insulation

Figure 6: Foam Hose Insulation Courtesy of WJDennis <u>http://www.wjdennis-</u> rcr.com/Products/Weatherstripping/PipeInsulation.aspx Table 1: Thermal Conductivity of Various Materials [k]

Insulation Material	k, $\left[\frac{W}{m \cdot K}\right]$
Thermablok Aerogel	0.014
Balsa Wood	0.048
Cork	0.07
Cork, regranulated	0.044
Corkboard	0.043
Mineral Wool	0.04
Fiberglass	0.04
Styrofoam	0.033

Eric Brettner

Methods

Thermodynamic Properties of Water

Table 2: Properties of Saturated Water at Desired Temperatures

Temperature [°C]	Pressure [bar]	Internal Energy [kJ/kg]
20	0.02	83.95
121	2.05	507.75

$$Q = m \cdot (u_2 - u_1)$$

)

Where:

Q = Heat transfer, [kJ]

 $u = \text{Internal energy, } [\frac{kJ}{ka}]$

Methods

Thermal Capture

•
$$q_{rad} = \alpha \cdot \rho \cdot G \cdot A_{proj}$$

• $A_{proj} = \frac{E}{t \cdot \alpha \cdot \rho \cdot \varepsilon \cdot G}$

Where:

- $\alpha = \text{absorptivity of boiler}$
- $\rho = \text{reflectivity of Mylar}$
- $G = solar irradiance, [\frac{W}{m^2}]$

 $A_{proj} =$ projected area, $[m^2]$

- E = energy required to raise temperature, [J]
- t = time allotted to reach temperature, [s]
- $\epsilon = \text{efficiency of the trough}$

Figure 7: Parabolic Trough with Focal Point Courtesy of Science Direct <u>http://www.sciencedirect.com/science/article/pii/S</u> <u>1364032110001206</u>

$$y = \frac{x^2}{4f}$$

Where:

f = focal length, [m]

y = equation of curve

Final Design

Figure 8: Solar Autoclave Final Design

Manufacturing the Design – Boiler

List of Actual Materials:

- 1.5" Schedule 40 galvanized pipe
- Reducing tee
- Square plug
- Cap
- Brass ball valve
- Stainless steel hose barb
- Krylon BBQ Spray paint

Figure 9: Boiler Design

Manufacturing the Design – Trough

List of Actual Materials:

- Sheet metal: Zinc 24 gauge (8ft x 4ft)
- Particle board: 2 x 5/8" (8ft x 4ft)
- Screws: 2.5" inch Zinc Plated (100 count)
- Nails: 1.5" Galvanized roofing nails (100 count)
- Spray adhesive: "3m super 77 16.75 fl. oz. multi purpose spray adhesive"
- Mylar: "Viagrow 25ft Mylar 2mil reflective film"
- Clear Plastic: 1/16" (8ft x 4ft)
- Classic Dolly
- Scrap Metal

Figure 10: Parabolic Trough

Manufacturing the Design - Trough

- Initial construction:
 - Parabolic ribs
 - Side and end panels
 - Boiler stopper
- Wood finish
- Drilled holes

Figure 11: Parabolic Trough

Manufacturing the Design – Trough

- Trough assembly
- Sun dial
- Weight reduction
- Edge protectors
- Spray adhesive
- Clear plastic

Figure 12: Final Trough Design

Manufacturing the Design – Pressure Vessel

- Contains all the medical equipment in need of sterilization
- Used and modified a Mirro-Matic 394M 4 Qt. pressure cooker

List of Actual Materials:

- Mirro 9898 Pressure Regulator
- Honeywell TD-165 Tridicator
- Dixon Stainless Steel 316 1/4" NPT Male 3/4"
 Hose Barb
- 3/4" x 1/2" Galvanized Hex Bushing
- 1/2" Conduit Nipple
- Apollo 1/2" Brass Ball Valve NPT Full-Port
- 3/4" Locknut
- 2 Washers

Figure 13: Mirro-Matic 394M Pressure Cooker

Courtesy of Ebay <u>http://i.ebayimg.com/t/Mirro-Matic-4-</u> <u>Qt-Aluminum-Pressure-Cooker-</u> /00/s/NzIwWDk2MA==/z/9EEAAOxyY9V <u>ROnWm/\$T2eC16VHJF0E9nmFRoweBROn</u> <u>WmTJeQ~~60_57.JPG</u>

Manufacturing the Design - Pressure Vessel

- Manufacturing Process:
 - Lid modifications
 - Hose barb
 - Tridicator
 - Pressure Regulator
 - Handle
 - Base modifications
 - Ball valve

Figure 14: Modified Pressure Vessel

Figure 15: Pressure Regulator with Added Weight

Homemade Pressure Vessel Design

Figure 16: Homemade Pressure Vessel

Importance of User Interface

User interface definition:

• The way in which the user and the system interact

Goal:

- User can independently operate system
- To keep the user safe

Figure 17: User Manual

User Interface

- Used smaller prototype modeling the solar autoclave
- Operate system with a given list of instructions
- Candidates:
 - No prior knowledge
 - No engineering background

Figure 18: User Interface Prototype

User Interface

Results:

- Volunteers made suggestions:
 - Change order of certain instructions
 - Use simple language
 - Clearly identify parts involved
 - Add pictures
- Improved list of instructions
- Made system safer and easier to operate

Cost Analysis

Allowable Budget: \$500

Actual Cost: \$336

Table 3: Cost Analysis of Materials

	Material 🖃	Cost 👻
Boiler	Pipe	\$22.00
	Fittings	\$26.00
	Ball Valve	\$24.00
	Spray Paint	\$7.99
	Hose	\$37.00
	Hose Barb	\$20.00
	Insulation	\$1.27
Trough	Sheet Metal	\$24.99
	Mylar	\$20.00
	Nails	\$6.00
	Particle Board	\$40.00
	Adhesive	\$7.99
	Screws	\$6.00
Pressure Vessel	Vessel	\$13.99
	Tridicator	\$20.00
	Hose Barb	\$16.00
	Jiggler	\$17.00
	Fittings	\$10.00
	Insulation	\$6.00
	Ball Valve	\$8.00
Misc.	Clamps	\$2.00
	Total	\$336.23

Results

- Continuous steam produced after 15-20 minutes
- Additional 40 minutes to reach steady-state pressure and temperature
- Best results at 1.24 bar (gauge), 118°C

Recommendations

- Weather conditions
- Shorter hose
- Better insulation

Figure 19: Solar Parabolic Trough

Conclusion

- Met client's needs
 - Readily available materials
 - Easily repaired and maintained
 - Interchangeable parts depending upon availability
 - Grid power independent
 - Low cost
- Concept proven successfully

References

Books:

[1] N. Shapiro, Howard and Michael J. Moran. Fundamentals of Engineering Thermodynamics. 6th. Print.

[2] Richard Budynas and Keith Nisbett. Shigley's Mechanical Engineering Design 9th. 2010. Print.

[3] Twidell, John, and Anthony D. Weir. Renewable Energy Resources. London: Taylor & Francis, 2006. Print.

[4] Das, Sarit K. Fundamentals of Heat and Mass Transfer. Oxford, U.K.: Alpha Science International, 2010. Print.

Journal Publications:

[5] "Global Challenge." MIT Ideas Global Challenge. N.p.. Web. 27 Oct 2012. http://globalchallenge.mit.edu/teams/view/171.

[6] Web. 27 Oct. 2012. http://www.solare-bruecke.org/projekte-Dateien/Solarsterilisator/summary english.html.

[7] United States. U.S. Department of State. Web. http://www.travel.state.gov/.

Websites and Images:

[8] Mosaic Glass Solar Panel. N.d. n.p. Web. 27 Oct 2012. <http://inhabitat.com/19-year-old-teenager-makes-homemade-solar-death-ray/solarray2/ >.WN: http://article.wn.com/view/2008/01/16/Fresnel_lens_sheet_rear_projection_screen_and_rear_projectio/
[9] Trough Panel. N.d. n.p. Web. 27 Oct 2012. http://techbells.blogspot.com/2012/07/working-of-csp-parabolic-trough.html.
[10] Fresnel Lens. N.d. n.p. Web. 27 Oct 2012.

http://article.wn.com/view/2008/01/16/Fresnel_lens_sheet_rear_projection_screen_and_rear_projectio/.

[11] Centers for Disease Control and Prevention. Web. 1 October 2012. URL: http://www.cdc.gov/

[12] World Health Organization. Web. 1 October 2012. URL: http://www.who.int/en/

Additional Resources:

[13] Program OrCAD Capture 9.1, Version 2.0, Build 28, Feb 18 2000, OrCAD, Inc.

Project Website:

[14] <u>http://www.cefns.nau.edu/interdisciplinary/d4p/EGR486/ME/13-Projects/SolarAutoclave/</u>

Sponsor: [15] Dr. Brent Nelson. Email: Brent.Nelson@nau.edu

Questions?

Adam Compton