Solar Autoclave for Rural Areas

Needs Assessment

October 8, 2012

Team 6:

Blake Lawrence Eric Brettner Yuchen Liu Kyle Godwin Adam Compton

1

Overview

- Background
- Need Identification
- Problem Definition
- Objectives
- Constraints
- Criteria Tree
- Quality Function Deployment
- House of Quality
- Gantt Chart
- References

Background

What is a solar autoclave?

- An autoclave is a device used to sterilize medical equipment.
- Many 'Westernized' designs currently use electricity to power the autoclave.
- A solar autoclave uses the sun's radiation to sterilize the medical equipment.

Need Identification

- <u>NEED STATEMENT</u>: Certain developing areas around the world have limited availability to sterilized medical equipment.
- Many of these countries have limited access to grid electricity, making solar power a practical solution.

Define the Problem

- OUR GOAL: To create a solar autoclave that can be easily used at remote clinics in rural areas.
- SCOPE: Several regions around the world in need of sterile medical equipment, with ample amounts of sunlight to power the solar autoclave.

Objectives

- Provide remote clinics in rural areas with the means to sterilize medical equipment.
- Create a flexible design from location to location.
- Parts can be repaired/replaced from local, readily available materials.

Objectives

Table 1 - Table of Objectives

Obje ctive	Basis for Measurement	Units	
Provide remote health			
clinics with the means to	Tamparatura & Drasqura	°C & bar	
sterilize medical	remperature & riessure		
equipment			
Create a flexible design	NI/A	N/A	
from location to location	\mathbf{N}/\mathbf{A}		
Parts can be repaired /			
replaced with local,	Cost	\$	
readily available materials			

Constraints

- Temperature must reach and hold 121°C for at least 15 minutes.
- Pressure must reach and hold 2.05 bar for at least 15 minutes.
 - Water boils at 100°C.
 - In order for the phase change to occur, the water must be pressurized.
 - Pressure of 2.05 bar produces saturated steam at 121°C.

Figure 2 – Criteria Tree

Quality Function Deployment

		Engineering Requirements								
		Capacity for Medical Equipment	Cycles per Day	Minimum Temperature Requirement	Thermal Conductivity	Device Absorptivity	Housing Thickness	Efficiency	Pressure	Cost
Customer Requirements	Easy to use	х	х							
	Portable	х								
	Readily Available Materials				х	х		Х		х
	Use Energy as efficiency as Possible		х		х	х		Х		
	Durable						Х			Х
	Achieve the Required Internal Eviornment			Х					х	
	Safe			Х					Х	
	Inexpensive	Х					Х			х
	Units	cm ³	min	°C	W∙m ⁻¹ ∙K ⁻¹	W∙m²	mm	%	bar	\$
				121					2.05	
		Engineering Targets								

Figure 3 - Quality Function Deployment

House of Quality

Figure 4 - House of Quality

Project Plan Gantt Chart

12

References

Sponsor: Dr. Brent Nelson Brent.Nelson@nau.edu

- http://www.cdc.gov/
- http://www.who.int/en/
- www.heartware.nl/rsrch.html
- www.travmed.com
- www.Travel.State.gov
- www.mdtravelhealth.com
- www.doctorswithoutborders.com

Questions?

