Solar Autoclave for Rural Areas

Final Design Review and Project Proposal

November 28, 2012

Team #6

Blake Lawrence Eric Brettner Adam Compton Yuchen Liu Kyle Godwin

Presentation Overview

- Problem Statement
- Need Identification
- Concept Generation
- Engineering Analysis
- Cost Analysis
- Final Design
- Gantt Chart
- Conclusion
- References

Problem Statement

- NEED STATEMENT: Certain developing areas around the world have limited availability to sterilized medical equipment.
- <u>OUR GOAL</u>: To create a solar autoclave that can be easily used at remote clinics in rural areas.

Need Identification

Objectives

- Provide remote clinics in rural areas with the means to sterilize medical equipment
- Create a flexible design from location to location
- Parts can be repaired/replaced from local, readily available materials

Constraints

- Temperature must reach and hold 121°C for at least 15 minutes
- Pressure must reach and hold 2.05 bar for at least 15 minutes

Analytical Hierarchy Process

Table 1: Numerical rating

Judgment of Importance	Numerical Rating
Extremely more important	9
	8
Strongly more important	7
	6
Moderately more important	5
	4
Slightly more important	3
	2
Equally important	1

Table 2: Pairwise comparison matrix

Column1	Thermal Capture	Heat Transfer into Fluid	High Pressure Maintenance	Insulation	Thermal Storage
Thermal Capture	1	1	2	5.00	9.00
Heat Transfer into Fluid	1	1	2	4.00	9.00
High Pressure Maintenance	0.5	0.5	1	6.00	9.00
Insulation	0.2	0.25	0.17	1	5
Thermal Storage	0.11	0.11	0.11	0.2	1
Total	2.81	2.86	1.28	16.20	28.00

Table 3: Overall importance matrix

Column1	Thermal Capture	Heat Transfer into Fluid	High Pressure Maintenance	Insulation	Thermal Storage	Overall Importance
Thermal Capture	0.36	0.35	1.56	0.31	0.32	2.90
Heat Transfer into Fluid	0.36	0.35	1.56	0.25	0.32	2.84
High Pressure Maintenance	0.18	0.17	0.78	0.37	0.32	1.83
Insulation	0.07	0.09	0.13	0.06	0.18	0.53
Thermal Storage	0.04	0.04	0.09	0.01	0.04	0.21

Thermal Capture

Parabolic Trough, Dish and Fresnel Lens

Figure 1: Parabolic Trough Courtesy of Tech Bells http://techbells.blogspot.com/2012/07/working-of-cspparabolic-trough.html

Figure 2: Parabolic Dish Courtesy of Inhabitat http://inhabitat.com/19-year-old-teenagermakes-homemade-solar-death-ray/solarray2/

Figure 3: Fresnel Lens Courtesy of WN http://article.wn.com/view/2008/01/16/Fresnel _lens_sheet_rear_projection_screen_and_rear_pro iectio/

Heat Transfer into Fluid

- Fins
- Boiler at focal point of parabolic trough

Figure 4: Fin Array

Courtesy of Pencom http://www.hellotrade.com/peninsulacomponents/forged-fin-heat-sinks.html

Maintaining High Pressure

- Wing Nuts
- Clamp

Figure 5: Metal Clamp

Courtesy of ElectriDuct http://www.electriduct.com/Arlington-Industries-Steeland-Iron-Beam-Clamps.html

Figure 6: Pressure Cooker

Courtesy of Pressure Cookers Best http://www.pressurecookersbest.com/all-american-15-12-quart-pressure-cooker.html

- Lightweight Insulation
 - Thermablok[®] Aerogel Insulation
 - Styrofoam
 - Fiberglass
 - Mineral Wool
 - Clay-coated straw
 - Phenolic Foam
 - Liquid Cement
 - Cork

Figure 7: Mineral Wool

Courtesy of Unipro http://www.alibaba.com/producttp/12283858/FiberGlass_wool_Insulation

Table 4: Thermal conductivity of possibleinsulation materials

Insulation Material	k value $\left[\frac{W}{mK}\right]$
Thermablok Aerogel	0.014
Balsa wood	0.048
Cork	0.07
Cork, regranulated	0.044
Corkboard	0.043
Fibreglass	0.04
Mineral wool	0.04
Styrofoam	0.033

- Dry Heat Sterilization
 - Pros:
 - Does not require water
 - Lower gauge pressure, meaning safer to use
 - Cons:
 - Takes 2 hours at 160°C to "sterilize" equipment
 - Does not kill all proteins associated with bacteria
- Saturated Steam Sterilization
 - Takes 15 minutes at 121°C to fully sterilize equipment

Thermal Capture

•
$$q_{rad} = \alpha * \rho * G * A_{proj}$$

Where:

 α = absorptivity of pressure vessel ρ = reflectivity of mirror G = solar irradiance, $[\frac{W}{m^2}]$ A_{proj} = projected area, $[m^2]$

Figure 8: Parabolic Trough with Focal Point

Courtesy of Science Direct http://www.sciencedirect.com/science/article/pii/S 1364032110001206

Thermal Capture

•
$$f = \frac{r}{2}$$

Where:

f = focal length, [m]

r = radius of curvature, [m]

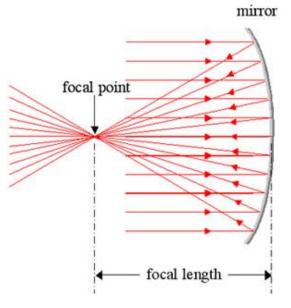
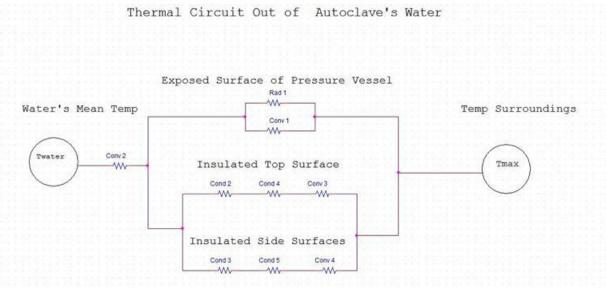
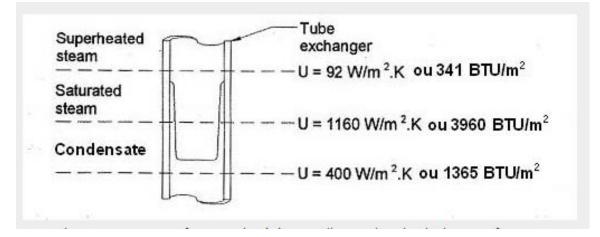
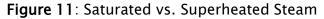


Figure 9: Focal Point Courtesy of DiracDelta http://www.diracdelta.co.uk/science/source/f/o/foc al%20point/image002.jpg

Engineering AnalysisThermal Circuit


Figure 10: Thermal Circuit Out of Autoclave's Water

Governing Equations for Resistance:

$$R_{cond} = \frac{L}{kA} , \ [\frac{K}{W}] \qquad q = \frac{\Delta T}{R} , \ [W]$$
$$R_{conv} = \frac{1}{hA} , \ [\frac{K}{W}]$$

Thermodynamic Properties of Water

Courtesy of Systhermique (http://www.systhermique.com/steamcondensate/services/troubleshooting/superheated-steam/)

Thermodynamic Properties of Water

 Table 6: Saturated vs. Superheated Steam

		Internal Energy, u [$\frac{kJ}{kg}$]	
Temperature [°C]	Pressure [bar]	Saturated Liquid	
20	0.02339	83.95	
121	2.05050	507.752	

$$Q = m \cdot (u_2 - u_1)$$

Where:

Q = Heat transfer, [kJ]

m = Mass, [kg]

 $u = \text{Internal energy, } [\frac{kJ}{ka}]$

Pressure Vessel

Maximum hoop stress:

$$(\sigma_h)_{max} = \frac{pr}{t}$$

Maximum longitudinal stress:

$$(\sigma_l)_{max} = \frac{pr}{2t}$$

Where:

p = pressure inside vessel, [Pa]
r = inner radius of vessel, [m]
t = wall thickness, [m]

Figure 12: Pressure Vessel

Pressure Vessel

The gage pressure creates stress in bolts, defined as:

$$\delta_b = \frac{F_b L}{A_b E_b}$$

 F_b is the force applied at each bolt due to gage pressure, calculated as:

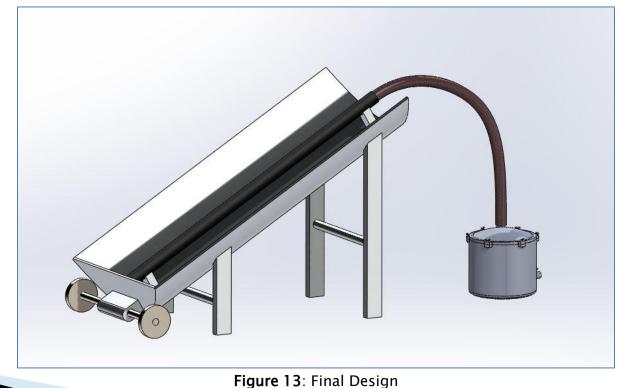
$$F_b = \frac{p(\pi r^2)}{N}$$

Where:

L = overall length of the cylinder, in m A_b = area of each screw, in m E_b = modulus of elasticity, in Pa r = inner radius of the vessel, in m N = number of bolts used

Cost Analysis

List of materials and their costs


Table 7: Cost Analysis of Solar Autoclave

Material	Quantity	Cost
Schedule 40 Galvanized Pipe	1	\$ 30.00
Mylar (Emergency Blanket)	3	\$ 15.00
Steel Sheet (1.2192 X		
2.4384[m])	1	\$ 50.00
Hose (1.5 [m])	1	\$ 10.00
Modified Pot	1	\$ 50.00
Spring Apparatus	2	\$ 20.00
Miscellaneous (Hose Clamps,		
O-rings, etc.)		\$ 75.00
Stand for Trough	1	\$ 50.00
Total		\$ 300.00

Final Design

• For approximately 1 Liter of water:

•
$$Q = m \cdot (u_2 - u_1) = 4.23 \times 10^5 J$$

Final Design

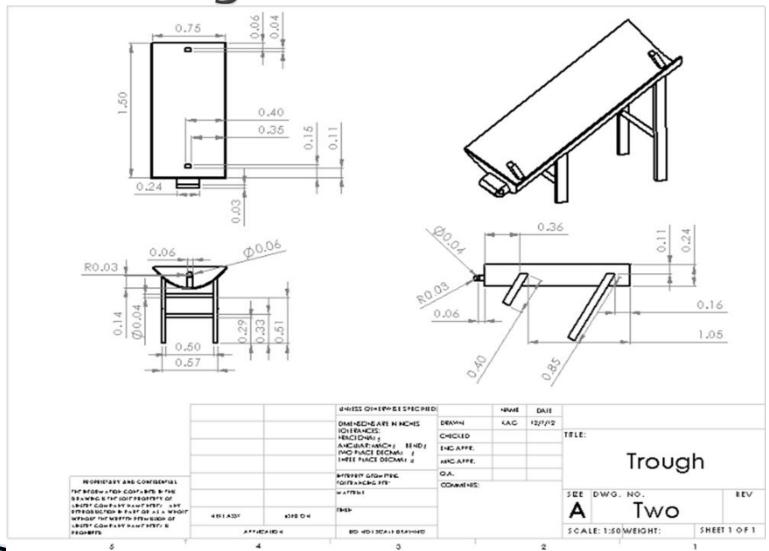
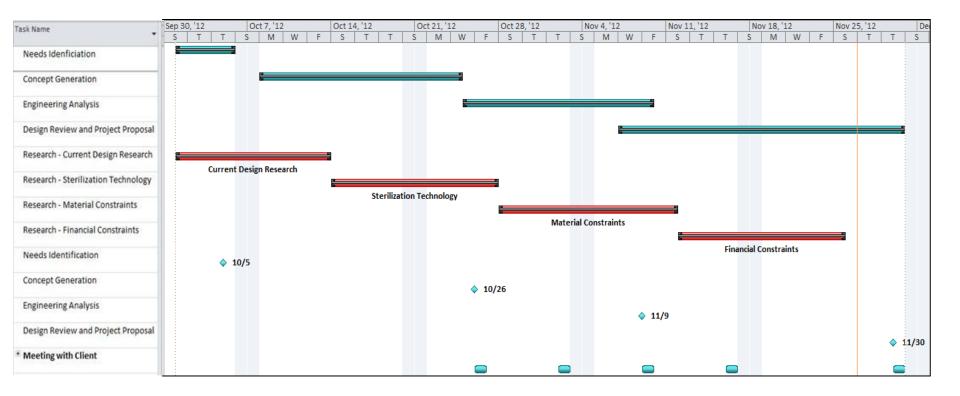



Figure 14: Dimensions for Trough

Team 6

Gantt Chart

Conclusion

- Concept Generation
 - Trough design
 - Boiler provides more efficient sterilization
 - Secondary pressure vessel with medical equipment
- Engineering Analysis
 - Thermal capture
 - Thermal circuit
 - Thermodynamic properties of water
 - Pressure vessel
- Cost Analysis
- Final Design

References

- Sponsor: Dr. Brent Nelson
 - <u>brent.nelson@nau.edu</u>

Text:

- Michael J. Moran and Howard N. Shapiro. Fundamentals of Engineering Thermodynamics 6th. 2008. Print.
- Richard Budynas and Keith Nisbett. Shingley's Mechanical Engineering Design 9th. 2010. Print.
- Project Website:
 - http://www.cefns.nau.edu/interdisciplinary/d4p/EGR486/ME/13-Projects/SolarAutoclave/

Web Sources:

- Centers for Disease Control and Prevention:
 - http://www.cdc.gov/hicpac/Disinfection_Sterilization/13_0Sterilization.html
- Global Challenge:
 - http://globalchallenge.mit.edu/teams/view/171
- Solar Sterilisator:
 - http://www.solare-bruecke.org/projekte-Dateien/Solarsterilisator/summary%20english.html
- TravelState.gov:
 - http://www.travel.state.gov/
- Science Direct:
 - http://www.sciencedirect.com/science/article/pii/S1364032110001206

Questions?

