Solar Autoclave for Rural Areas

Engineering Analysis

November 7th, 2012

Team #6:

Blake Lawrence Eric Brettner Adam Compton Yuchen Liu Kyle Godwin

Presentation Overview

- Problem Statement
- Engineering Analysis
 - Thermal Capture
 - Thermal Circuit
 - Thermodynamic Properties of Water
 - Pressure Vessel
 - Insulation
- Gantt Chart

Problem Statement

- NEED STATEMENT: Certain developing areas around the world have limited availability to sterilized medical equipment.
- <u>Our goal</u>: To create a solar autoclave that can be easily used at remote clinics in rural areas.

Thermal Capture

ho = 1 - $m \epsilon$

Reflective Material	Emissivity, $arepsilon$	Reflectivity, ρ
Aluminum - Highly Polished	0.039	0.961
Aluminum - Commercial Sheet	0.090	0.910
425-3M Aluminum Foil	0.030	0.970
Y9360-3M Aluminized Mylar	0.030	0.970

Table 1: Material properties for thermal capture

Thermal Capture

•
$$q_{rad} = \alpha * \rho * G * A_{proj}$$

Where:

 α = absorptivity of pressure vessel ρ = reflectivity of mirror G = solar irradiance, $[\frac{W}{m^2}]$ A_{proj} = projected area, $[m^2]$

Courtesy of Science Direct http://www.sciencedirect.com/scienc e/article/pii/S1364032110001206

Thermal Capture

• $f = \frac{r}{2}$

Where:

f = focal length, [m]

r = radius of curvature, [m]

Courtesy of DiracDelta http://www.diracdelta.co.uk/science/ source/f/o/focal%20point/image002.j pg

Thermal Circuit

Figure 1: Thermal Circuit

Governing Equations for Resistance:

$$R_{cond} = \frac{L}{kA} , \left[\frac{K}{W}\right] \qquad q = \frac{\Delta T}{R} , \left[W\right]$$
$$R_{conv} = \frac{1}{hA} , \left[\frac{K}{W}\right]$$

Figure 2: Pressure Vessel

Thermodynamic Properties of Water

Saturated steam vs. Superheated steam

Courtesy of Systhermique (http://www.systhermique.com/steamcondensate/services/troubleshooting/superheated-steam/)

Thermodynamic Properties of Water

Table 2 - Properties of Saturated Water (Liquid-Vapor)

		Internal Energy, u [$\frac{kJ}{kg}$]
Temperature [°C]	Pressure [bar]	Saturated Liquid
20	0.02339	83.95
121	2.05050	507.752

$$Q = m \cdot (u_2 - u_1)$$

Where:

 $u = \text{Internal energy, } [\frac{\kappa_j}{ka}]$

Pressure Vessel

Tangential stress max:

$$(\sigma_t)_{max} = \frac{p(d_i + t)}{2t}$$

Longitudinal stress:

$$\sigma_l = \frac{pd_i}{4t}$$

Where:

p = pressure inside vessel, [Pa] $d_i = inner diameter of vessel, [m]$ t = wall thickness, [m]

Figure 3: Pressure Vessel

Pressure Vessel

The gauge pressure creates stress in bolts, defined as:

$$\delta_b = \frac{F_b L}{A_b E_b}$$

 F_b is the force applied at each bolt due to gauge pressure, calculated as:

$$F_b = \frac{p(\pi r^2)}{N}$$

Where:

L = overall length of the cylinder, [m] A_b = area of each screw, [m] E_b = modulus of elasticity, [Pa] r = inner radius of the vessel, [m] N = number of bolts used

Insulation

Table 3: Thermal conductivity of possibleinsulation materials

Insulation Material	k value $\left[\frac{W}{mK}\right]$
Thermablok Aerogel	0.014
Balsa wood	0.048
Cork	0.07
Cork, regranulated	0.044
Corkboard	0.043
Fibreglass	0.04
Mineral wool	0.04
Styrofoam	0.033

Gantt Chart

References

- Sponsor: Dr. Brent Nelson
 - <u>brent.nelson@nau.edu</u>

Text:

- Michael J. Moran and Howard N. Shapiro. Fundamentals of Engineering Thermodynamics 6th. 2008. Print.
- Richard Budynas and Keith Nisbett. Shingley's Mechanical Engineering Design 9th. 2010. Print.
- Project Website:
 - http://www.cefns.nau.edu/interdisciplinary/d4p/EGR486/ME/13-Projects/SolarAutoclave/

Web Sources:

- Centers for Disease Control and Prevention:
 - http://www.cdc.gov/hicpac/Disinfection_Sterilization/13_0Sterilization.html
- Global Challenge:
 - http://globalchallenge.mit.edu/teams/view/171
- Solar Sterilisator:
 - http://www.solare-bruecke.org/projekte-Dateien/Solarsterilisator/summary%20english.html
- TravelState.gov:
 - http://www.travel.state.gov/
- Science Direct:
 - http://www.sciencedirect.com/science/article/pii/S1364032110001206

Questions?

