Solar Autoclave for Rural Areas

Concept Generation & Selection

October 24th, 2012

Team #6:

Blake Lawrence Eric Brettner Yuchen Liu Kyle Godwin Adam Compton

Presentation Overview

- Problem Statement
- Concept Generation
- Concept Selection
- Updated Gantt Chart
- Conclusion
- References

Problem Statement

- NEED STATEMENT: Certain developing areas around the world have limited availability to sterilized medical equipment.
- Our goal: To create a solar autoclave that can be easily used at remote clinics in rural areas.

Western Design Autoclave

Courtesy of SciVerse http://www.sciencedirect.com/science/article/pii/S0195670112000 230

Team 6

Concept Generation

- Thermal Capture
- Heat Transfer into Fluid
- Maintaining High Pressure
- Lightweight Insulation
- Thermal Storage

Thermal Capture

Parabolic Trough and Dish

Courtesy of Tech Bells http://techbells.blogspot.com/2012/07/working-of-cspparabolic-trough.html

Courtesy of Inhabitat http://inhabitat.com/19-year-old-teenagermakes-homemade-solar-death-ray/solarray2/

Thermal Capture

• Fresnel Lens

Courtesy of WN http://article.wn.com/view/2008/01/16/Fresnel _lens_sheet_rear_projection_screen_and_rear_pro _jectio/

Team 6

Heat Transfer into Fluid

- Fins
- Metal pipe in parabolic trough
- Boiler at focal point of parabolic trough

Courtesy of Pencom <u>http://www.hellotrade.com/peninsula-</u> <u>components/forged-fin-heat-sinks.html</u>

Maintaining High Pressure

- Wing Nuts
- Clamp

Courtesy of ElectriDuct http://www.electriduct.com/Arlington-Industries-Steeland-Iron-Beam-Clamps.html

Courtesy of Pressure Cookers Best http://www.pressurecookersbest.com/all-american-15-12-quart-pressure-cooker.html

8

Lightweight Insulation

Thermablok[®] Aerogel Insulation

Courtesy of Thermablok http://www.thermablok.com/thermal-insulation/thermablok-contact-form.htm

Lightweight Insulation

- Clay-coated straw
- Mineral Wool
- Styrofoam
- ofoam

Courtesy of Unipro http://www.alibaba.com/product-tp/12283858/FiberGlass_wool_Insulation

- Fiberglass
- Phenolic Foam
- Liquid Cement
- Cork

Team 6

Courtesy of Thermafiber http://www.thermafiber.com/InsulationProducts/CommercialInsulation

Thermal Storage

Sensible heat storage
 Latent heat storage
 phase-change materials (PCM)
 Molten salts

Courtesy of Green Cleaning Ideas http://www.greencleaningideas.com/2011/09/top-10green-technology-ideas-set-to-change-the-world/

11

Concept Selection

Decision Matrix - Thermal Capture

Table 1: Thermal capture decision matrix

Thermal Capture Design Options	Criteria	Column1	Column2
	Reliability	Cost	Flexibility
Parabolic Dish	2	2	3
Parabolic Trough	1	1	2
Fresnel Lens	3	1	3

Table 2: Numerical rating

Judgment of Importance	Numerical Rating
Best Option	1
	2
Worst Option	3

Concept Selection

Decision Matrix - Insulation

 Table 3: Insulation decision matrix

Insulation Design Options	Criteria	Column1	Column2	
	Weight	Cost	Thermal Conductivity	
Aerogel	1	3	1	
Mineral Wool	2	1	3	
Fiberglass	2	1	2	

Analytical Hierarchy Process

Table 4: Numerical rating

Judgment of Importance	Numerical Rating			
Extremely more	9			
important	-			
	8			
Strongly more important	7			
	6			
Moderately more	5			
important	J			
	4			
Slightly more important	3			
	2			
Equally important	1			

Table 5: Pairwise comparison matrix

Column1	Thermal Capture	Heat Transfer into Fluid	High Pressure Maintenance	Insulation	Thermal Storage
Thermal Capture	1	1	2	5.00	9.00
Heat Transfer into Fluid	1	1	2	4.00	9.00
High Pressure Maintenance	0.5	0.5	1	6.00	9.00
Insulation	0.2	0.25	0.17	1	5
Thermal Storage	0.11	0.11	0.11	0.2	1
Total	2.81	2.86	1.28	16.20	28.00

Table 6: Overall importance matrix

Column1	Thermal Capture	Heat Transfer into Fluid	High Pressure Maintenance	Insulation	Thermal Storage	Overall Importance
Thermal Capture	0.36	0.35	1.56	0.31	0.32	2.90
Heat Transfer into Fluid	0.36	0.35	1.56	0.25	0.32	2.84
High Pressure Maintenance	0.18	0.17	0.78	0.37	0.32	1.83
Insulation	0.07	0.09	0.13	0.06	0.18	0.53
Thermal Storage	0.04	0.04	0.09	0.01	0.04	0.21

Updated Gantt Chart

Figure 1: Gantt chart

15

Conclusion

- Thermal capture and heat transfer into fluid are most important
 - Parabolic Trough
- Safely maintain pressure
- Designing for rural, remote clinics
 - Flexible design for different regions

References

- Sponsor: Dr. Brent Nelson (Brent.Nelson@nau.edu)
- Project website:
 - <u>http://www.cefns.nau.edu/interdisciplinary/d4p/EGR486/ME/13-Projects/SolarAutoclave/</u>
- Resources:
 - <u>http://globalchallenge.mit.edu/teams/view/171</u>
 - <u>http://www.solare-bruecke.org/projekte-Dateien/Solarsterilisator/summary%20english.html</u>
 - <u>http://www.travel.state.gov/</u>

Questions?

