Version 1.0

Software Design Document Draft

Team Triaxis

\)

Sponsors:
Dr. Will Grundy, Dr. Audrey Thirouin

Faculty Mentor:
Sambashiva Kethireddy

Team Members:
Eleanor Carlos
Reyna Orendain

Andres Sepulveda

Brandon Visoky

Overview
This document outlines and details the architectural design of the Team Triaxis’ project.

#/\)
/

Table of Contents

1. Introduction
2. Implementation Overview
3. Architectural Overview

4. Module and Interface Descriptions
4.1 Triaxial Ellipsoids
4.2 Fluid Equilibrium
4.3 Graphical User Interface

5. Implementation Plan

6. Conclusion

O 0o NN a1 B

13
15

#/\)
/

1. Introduction

Exploring our galaxy is a journey that often feels like one that is beyond any of our lifetimes.
Something that can only be achieved through science fiction, television shows, and novels. While
this may be true at present, there is amazing work being done every day by scientists and
researchers to observe the galaxy and turn what often feels like fiction, into reality. One of our only
ways to study and research celestial bodies is to visualize them based on observed data. This is
especially true for objects that are far too small and distant from Earth to even consider sending a
man-made craft to study them. Of particular interest to our project, researching asteroids relies
nearly entirely on different forms of visualization because of their distance from our planet.

We are Team Triaxis and we are working with our clients, Dr. Will Grundy and Dr. Audrey Thirouin,
on the project “Complex Asteroid Shapes in Modeling of Binary Asteroid Systems.” We are
responsible for delivering the goals put forth by our clients and Lowell Observatory. Of these goals,
Dr. Will Grundy and Dr. Audrey Thirouin are focused on modeling binary systems in the Kuiper Belt,
and the Licht-cpp software that we are continuing work on helps them visualize and model the data
from light curves in ways that would otherwise be impossible.

This is the third year and third iteration of this project given to us by Lowell Observatory. Team
Triaxis looks forward to continuing the development of this project as left to us by our former
peers, Paired Planet Technologies and Team Andromeda.

Our iteration of this project includes implementing a new module to render binary systems
observed by Lowell Observatory. Our primary objective is to render the components of these
systems as triaxial ellipsoids, a more complex model than the current spheres they are rendering
them as now. While our primary objective is to implement the ellipsoid module, we will also be
expanding upon previous work to create a module for fluid equilibrium, as well as a graphical user
interface (GUI) to vastly improve the functionality of licht-cpp as it was given to us.

To implement these requirements, we must first fix the previous iteration of the ellipsoid module.
At current, it is not rendering lighting correctly for more complex shapes and appears to spin on the
incorrect axis once rendered. This is a high priority issue for us since it means that one of the more
useful modules for our clients is currently unusable. Once fixed, we can expand the use of this
module to implement more complex modules, such as that of fluid equilibrium, that will immensely
improve licht-cpp as a piece of software.

#/\)
/

Our final goal is to build a graphical user interface (GUI) for our clients to interface with the
program in a more efficient manner. All work on this program is currently done through command
line inputs and manual editing of user input files. If we can create a user interface that allows our
clients to use this program from a single working and interactive window, then the quality of life
and ease of access for this software will improve immensely.

#/\)
/

2. Implementation Overview

The end goal of this phase of this project is to deliver a fully functioning and stable release of
licht-cpp to our clients at Lowell Observatory. We will be delivering several bug fixes as well as
some quality of life improvements for our clients, which includes: fixing the ellipsoid module,
implementing a module that renders objects in fluid equilibrium, and if all goes according to plan,
we will develop a graphical user interface for our clients to interface with the NLM as was
developed in the previous semester.

Triaxial Ellipsoid

The triaxial ellipsoid class first developed during the first phase of this project with Team Paired
Planet, and then later completed by Team Andromeda during the second phase. The second
iteration was, unfortunately, nonfunctional by the end of their semester, and so it is our main goal
to have it fixed by the end of our time with this code. The Ellipsoid module will provide
much-needed functionality to our clients, by allowing them to render more complex shapes than a
sphere, while also rendering at a much faster speed than the faceted shapes module would also
provide.

Fluid Equilibrium

The fluid equilibrium submodule will depend on the triaxial ellipsoid submodule since an object in
fluid equilibrium is a triaxial ellipsoid whose shape changes over time.
e asubmodule that will be based on the structure of existing shape modules
e will add functions that will allow shape/radii to change over time based on parameters
given by the user

Graphical User Interface (GUI)

The GUI will rely on wxWidgets 3.1.4+ to render the interface for the user. Both frontend and
backend development, as well as the interface itself, will be dependent on C++ (VERSION), to
simplify the number of dependencies for current and future modules of the licht cpp program.

wxWidgets renders a user interface in a platform-agnostic manner, therefore the GUI would be able
to be rendered regardless of the operating system. The licht cpp program does require the use of
Ubuntu, so it is highly recommended to use a virtual machine if not an actual installation.

#/\)
/

3. Architectural Overview

Userinput.txt \ LichtGUApp
Ty

MonlinearMinimizer.hpp

Parser.hpp

h y

| |

-~ 3

ForwardModelCall.hpp

M, - Fa

| |

F- "

FluidEquilibrium.hpp 1

- ForwardModel.cpp

____.-" h y I

- ~ - = :
Tracer.hpp H Shape.hpp Ellipsoid.hpp W
" Lt - T o+

A

Figure 1: Dependencies of the conceptual modules

To keep a modular structure for this project, licht-cpp is broken into several different modules that
all work together to bring the project into a singular functional state. For the goals in this phase of
the project, the modules we will be working with are the following:

Triaxial Ellipsoid

The Triaxial Ellipsoid module focuses entirely on the rendering of the ellipsoid shape for use within
the forward model. This module finished development during the last iteration of the project but
was left with some minor bugs and flaws within the system which we are to fix. Currently, the
module renders lighting incorrectly when the shape is expanded to more extreme values, and also
spins at the wrong axis.

#/\)
/

Fluid Equilibrium

This module will be responsible for determining how the radii of objects in equilibrium will change
over time. Since this module depends on triaxial ellipsoids, all it will do is change the current radii
as if it was a triaxial ellipsoid and leave the original radii variable unchanged. Then it will be added
as an option in the forward model, which will be called by the NLM so that users can generate
objects in fluid equilibrium by adjusting its parameters.

GUI

The GUI module will extend the functionality of the previously implemented forward model module.
This new model will allow the user to enter parameters into the forward model from the GUI rather
than entering them at the command line, or via .txt file. Additionally, users will be able to see the
predicted light curve directly on the screen and have the option to compare the predicted light
curve to the observed light curve.

#/\)
/

4. Module and Interface Descriptions

To retain modularity as previous teams have done, we shall keep the overall design in separate
modules and submodules. The new modules, fluid equilibrium and the graphic user interface,
remain semi-independent and interact with each other when necessary. As for the triaxial ellipsoid,
it will remain the same, keeping its dependencies unless the solution to the lighting and rotation
issues affect the way it works.

(GUI D—"CForward Model
Triaxial

Y

Fluid
Equilibrium

Figure 2. Conceptual Modules

4.1 Triaxial Ellipsoids

The Triaxial Ellipsoid submodule is the third and final extension of the Shape module. And it will be
the module for the Fluid Equilibrium submodule. The Triaxial Ellipsoid inherits and defines all
functions from the Shape interface. It also uses the Math module for precise calculations.

Dependencies
e Math.hpp
e Shape.hpp
e HapkeModel.hpp

Use cases

e After the forward model has been called, the Shape module uses the calculations from the
Ellipsoid submodule to generate the shape. The shape is then manipulated by the ray

tracer.
Design

Shape

+ Hit(const Ray&, double, double,
HitRecordé&, const
Vector3d&):bool

+ Orient(Vector3d):void

+ Spin(const double, const
double, const double, Vector3d):
void

+ GetPhaseRotation(const double,
const double, canst
double):double

+ SetCenter(const
Vector3d&):void

+ SetScale(const double):void

+ Spin(const double, const
double, const double,
Vector3d):void

+ SetCenter(const
Vector3dé&):void

+ SetScale(const double):void

Ellipsoid

Sphere

Faceted Shape

+ radiusX:double

+ radiusY:double

+ radiusZ:double

+ originalRadiusX:double

+ originalRadiusY:double

+ originalRadiusZ:double

+ M:Eiggen::Matrix3d

+ originalM;:Eiggen::Matrix3d
+ pole:Vector3d

+ ariginalRadius:double

+ mesh:Mesh
+ averageCenter:Vector3d

+ Sphere(const double, const
HapkeModel&)

+ Sphere(const Vector3dé&, const
double, const HapkeModel&)

+ scale:double

HapkeModel&)

+ Ellipsoid(Vector3d, const
HapkeModel&)

+ Ellipsoid(Vector3d, Vector3d,
const HapkeModel&)

Vector3d, const Vector3d&)
+ Ellipsoid(const Vector3dé&,
Vector3d, Vector3d, const
HapkeModel&)

+ Ellipsoid(const HapkeModel&.,

Vector3dé&, const HapkeModel&)

double, const HapkeModel&)

HapkeModel&)

+ std::ostreamé&(std::ostreamé&,
FacetedShape&):friend

+ GetMesh():Meshé&

+ NumFacets():Index

+ NumVertices():Index

+ GetVerticesOfFacet(const
Facet&):TriangleVertices

+ GetAverageCenter():Vector3d
+ GetMaxRadius():double

Facet&): bool
+ Write(): inline void

+ FacetedShape(const std::string&, canst
+ FacetedShape(const std::string&, const

+ FacetedShape(const std:string&, const
Vector3dé&, const double, const double, const

+ FacetedShape(const std::vector<unsigned
int>&, const std::vector<double>&, const

Facet

+ triangle:Triangle
+ material:Material *= nullptr

+ Facet()
+ Facet(const Triangle&)

mesh

facets

Mesh

+ originalVertices:VerticeList

+ FacetHit(const Ray&, const double, const
double, HitRecord&, const Vector3dé&, const

+ verticles:VerticeList
+ facets:std::vector<Facet>

Figure 3. UML diagram describing the relationship of all shape classes

4.2 Fluid Equilibrium

The Fluid Equilibrium module is a submodule to the Triaxial Ellipsoid module. So, Ellipsoid is the
only dependency for this module. It extends the Ellipsoid module by accepting a spin frequency
and density which can both be used in the function for updating the Ellipsoid’s radii.

Dependencies
e Ellipsoid.hpp

Use cases

e When a user uses the forward model, the Shape module calls ellipsoid, which calls fluid
equilibrium to draw the shape

Design

Fluid Equilibrium

+ spinFreq:double
+ density:double

+ FluidEquilibrium(const
HapkeModel&, double, double)
+ FluidEquilibrium(Vector3d,

— = Vector3d, const HapkeModel&,
double, double)

+ FluidEquilibrium(const
HapkeModel&, const Vector3d&,
double, double)

+ FluidEquilibrium(const
Vector3d&, Vector3d, const
HapkeModel&, double, double)
+ UpdateRadii()

Shape

+ Hit(const Ray&, double, double,
HitRecord&, const
Vector3dé):bool

+ Orient(Vector3d):void

+ Spin(const double, const
double, const double, Vector3d):
void

+ GetPhaseRotation(const double,
const double, const
double):double

+ SetCenter(const
Vector3d&):void

+ SetScale(const double):void

+ Spin(const double, const
double, const double,
Vector3d):void

+ SetCenter(const
Vector3d&):void

+ SetScale(const double).void

Ellipsoid

Sphere

Faceted Shape

+ radiusX:double

+ radiusY:double

+ radiusZ:double

+ originalRadiusX:double

+ originalRadiusY:double

+ originalRadiusZ double

+ M:Eiggen::Matrix3d

+ originalM:Eiggen::Matrix3d
+ pole:Vector3d

+ originalRadius:double

+ mesh:Mesh
+ averageCenter:Vector3d

+ Sphere(const double, const
HapkeModel&)

+ Sphere(const Vector3d&, const
double, const HapkeModel&)

+ scale:double

HapkeModel&)

+ Ellipsoid(Vector3d, const
HapkeModel&)

+ Ellipsoid(Vector3d, Vector3d,
const HapkeModel&)

+ Ellipsoid(const HapkeModel&,
Vector3d, const Vector3d&)

+ Ellipsoid(const Vector3d&,
Vector3d, Vector3d, const
HapkeModel&)

Vector3d&, const HapkeModel&)

+ FacetedShape(const std::string&, const

+ FacetedShape(const std::string&, const

+ FacetedShape(const std:string&, const
Vector3d&, const double, const double, const
double, const HapkeModel&)

+ FacetedShape(const std::vector<unsigned
int>&, const std::vector<double>&, const
HapkeModel&)

+ std::ostreamé&(std::ostream&,
FacetedShape&):friend

+ GetMesh():Mesh&

+ NumFacets():Index

+ NumVertices():Index

+ GetVerticesOfFacet(const
Facet&):TriangleVertices

+ GetAverageCenter():Vector3d

+ GetMaxRadius():double

+ FacetHit(const Ray&, const double, const
double, HitRecord&, const Vector3d&, const
Facet&): bool

+ Write(): inline void

Facet

+ triangle:Triangle
+ material:Material *= nullptr

[—
+ Facet()
+ Facet(const Triangle&)
facets
mesh
Mesh
+ originalVertices:VerticeList
_,| * verticles:VerticeList
+ facets:std::vector<Facet> —

Figure 4. UML diagram describing the relation of Fluid Equilibrium within the Shape classes

#/\)
/

Constructors
Given Hapke, spin frequency, and density
e Given pole, Hapke, spin frequency, and density
e Given center, Hapke, spin frequency, and density
e Given center, pole, Hapke, spin frequency, and density
Method
e UpdateRadii: using the equation for objects in fluid equilibrium, update the radii for the
triaxial ellipsoid
Variables
e spinFreq
o The object’s spin frequency
e density
o The object’s density

4.3 Graphical User Interface

The Graphical User Interface (GUI) provides the user the ability to run the forward model with
parameter input from a dedicated interface. Once acceptable parameters are input, the forward
model will generate an estimated light curve. Users can utilize this data to compare observed data
to the estimated light curve and form characteristics about binary systems.

Dependencies
o (C++
e Visual Studio 2019
e WxWidgets 3.1.4
e External C++ Shared Library

Use cases
e The user will be able to plot a graph of the lightcurve data
e The user will be able to output data to CLI for nlm / forward model rendering
e The user will be able to import / export data via .JSON file
o Alternative: The program will be able to read the .txt files formatted by previous
capstone groups.

Design (prototype)

LichtGUIApp

MainFrame()

-m_framel: MainFrame

+ lichtGUIApp()
+ ~lichtGUIApp()
+ Onlnit()

+ panel_parent: wxPanel

+ param_panel: ParamPanel
+ graph_panel: GraphPanel
+ hbox: wxBoxSizer

+ main(nullptr, wxID_ANY,

title_str, wxPoint(30,30), wxSize(

GraphPanel

+ graph_vbox: wxBoxSizer

+ button_vbox: wxBoxSizer

+ tolerance_vbox: wxBoxSizer

+ iter_vbox: wxBoxSizer

+ graph_plot_btn: wxButton

+ graph_cli_output_btn: wxButton

+ graph_export_file_btn: wxButton

+ graph_pane: wxListBox

+ graph_tolerance_label: wxStaticText
+ graph_iter_label: wxStaticText

+ graph_tolerance_spinbtn: wxSpinCtrl
+ graph_iter_spinbtn: wxSpinCtrl

- initButtonHBoX()
- initToleranceVBox()
- initlterCtrlVBox()

800, 600)
+ ~main()

ParamPanel

+ hapke_frame: HapkeFrame

+ param_vbox: wxBoxSizer

+ param_ephemeris_frame_btn: wxButton
+ param_observed_data_frame_btn:
wxButton

+ param_hapke_frame_btn: wxButton

+ param_phase_angle_frame_btn:
wxButton

+ param_ray_tracing_frame_btn:
wxButton

+ param_shape_frame_btn: wxButton

+ param_spin_state_frame_btn: wxButton
+ param_orbit_frame_btn: wxButton

+ param_data_label: wxStaticText

+ param_label: wxStaticText

+ ParamPanel(wxPanel* parent)
+ ~ParamPanel()

+ onHapkeParamBtnClick(
wxCommandEvent& evt)

+ WxDECLARE_EVENT_TABLE()

HapkeFrame

+ hapke_vbox: wxBoxSizer

+ initScatterAlbedoPrimaryHBox()

+ initScatterAlbedoSecondaryHBox()
+ initAmplitudePrimaryHBox()

+ initAmplitudeSecondaryHBox()

+ initCompactionValuePrimaryHBox()
+ initCompactionValueSecondaryHBox()
+ initSurfaceRoughPrimaryHBox()

+ initSurfaceRoughSecondaryHBox()
+ initPhaseAnglePrimaryHBox()

+ initPhaseAngleSecondaryHBox()

+ initH93PrimaryHBox()

+ initH93SecondaryHBox()

Figure 5. UML diagram of the Licht GUI app prototype

Integration with Current Project
The GUI will use the functionality of the already built forward model when possible. Currently, it will
use four main functions from the External C++ Shared Library:

e ForwardModel

o Calls the forward model from the External C++ Shared Library with the parameters

from the Interface object

e ParameterCollection

o Takes in parameter input from the GUI and creates a dictionary with the variable

name, and the data associated.

e Filelnput

o This function allows the user to input a data set from an external file to help
compare the observed data to the predicted data.

e PlotData

#/\) 12

o This function plots the data from either the Filelnput function or the
ParameterCollection function.

GUI Classes)
LichtGUI Creates Panels MainFrame
(WxApp) I to render for (wxFrame)
A

Creates objects

to render for
Forward ParamPanel

l<«——Sends data to4—] l<«——Stores param data in
Model GUIParamData p (wxPanel)

Collects Params

ParamPropGrid
(wxPropertyGrid)

Figure 6. Visual Example of GUI Function / Integration
Parameters

The parameters that will be used are the same parameters used for the forward model. They will be
taken by the ParameterCollection function and sent to the ForwardModel_IDL function within the

C++ Shared Library.

#/\)
/

5. Implementation Plan

The implementation of this project starts with our immediate understanding of the material handed
to us from previous semesters and combing through what needs to be fixed, expanded upon, or
outright replaced. This is the first undertaking we will take in the overarching goal of this project,
and can either be very simple or very complex depending on the scope of the bugs we need to fix.

Due to the overarching goal of this project revolving around the fixing of bugs, this will be the main
timeframe that we must workaround and it is very hard to predict. Such bugs could be fixed in a
short time or could take months of this working semester to search through. Due to this, any
extensions of this project must be delayed until a grasp of the issues at hand are either figured out,
or a fix has been deployed.

As such, the first few weeks of development will largely be spent with trial and error, looking
through previous teams commit history, and discussing with our clients where the issues in the
code may be. Onwards from there, we can begin to split the work among us to tackle different
aspects of the project, such as building the fluid equilibrium into licht-cpp and working on a
graphical user interface. Looking at the Gantt chart below, our major deadlines are based around
the Alpha Prototype that is needed by March 1st.

The first segment of time will be broken into four tasks, refactoring the website to better suit our
mentor’s requirements, fix the issue with the lighting of the ellipsoid module, fix the issue with the
rotation of the faceted object, and then begin intermediate steps into developing the GUI further.

From there, the objective turns to testing our fixes, as well as implementing the fluid equilibrium
module. If all has gone to plan, we will also begin the phase of building in our GUI solution into the
software as we have built it.

The final phase of the project is to implement more in-depth tests, as well as improve the user
manual and Doxygen documentation to match what we have completed during this semester. At
that point, our implementation of the project will be completed and we can approach our user
acceptance tests with our clients.

. .

Capstone / Development Plans

Below are two Gantt charts summarizing the development plan, as well as a big picture
understanding of the tasks that need to be accomplished to successfully complete this capstone
project. It is important we consider both plans as the tasks / goals outlined are to be concurrently
accomplished throughout the semester.

Development Plan - Team Triaxis

13 days — Website Refactor

21 qays [Triaxial Ellipsoid Lighting Fix
2t days [y Faceted Obiject Spin Fix

21 days _ GUI Accordion Implementation

20 days Testing Implemented Fixes
24 days [y Gl Forward Model Integration
Final Testing for

22 days Implemented
Fixes
User Manual

18 days Updates

Product
> Acceptance
> Alpha Prototype > Software Testing Plan Demo
Mar 1 Mar 26 Apr 26

Today

Last Updated: 4 Feb 2021

ﬁ) Team Triaxis - Spring 2021

2021 REW |Feb ‘Mar ‘Apr 2021
A
Today
Software Design Doc - FINAL Feb 5 - Feb 12
UGRADS Registration Feb 19 - Feb 25

Design Review Il Feb 12 - Feb 26

Prototype Demo Mar 1 - Mar 15

Software Testing Plan Mar 8 - Mar 26

Design Review Il Mar 1 - Mar 26

Capstone Poster Mar 29 - Apr 16
Completed Team Website Mar 26 - Apr 16

Dry Run Capstone Presentation Apr 5 - Apr 23
Capstone Conference Mar 29 - Apr 16

Acceptance Test Demo 9 days Qgr 17 - Apr

Final Project Report 21 days /;gr 1-Apr
User Manual 21 days »z“gr 1-Apr

#/\)
/

6. Conclusion

Our knowledge and understanding of space is continuing to grow with the technology we develop
to observe it. Thousands of years ago, humanity did not have a fraction of the understanding we
have of outer space now. Imagine what we will know in another thousand, hundred, or even several
years from now.

This growing knowledge pivots and relies on the thousands of astronomers, including our clients
Dr. Will Grundy and Dr. Audrey Thirouin's, continued research. Of course, this research also
depends on engineers and programmers who can design and build the specialized tools that are
needed day to day.

Asteroids can be a very important and interesting field of study for astronomers for a multitude of
reasons. Since they are much smaller than planets and far too numerous to land spacecraft on
each one, researchers must rely on technology like licht-cpp to continue their research.

This is why we, Team Triaxis, are excited to pick up the torch of previous years’ implementations of
licht-cpp, a software designed specifically for our clients at Lowell Observatory to model the light
curves of binary asteroid systems. Our primary goal is to implement a module to model binary
systems using triaxial ellipsoids. Once this main requirement is met, we will be able to move
forward with further improvements, such as implementing a GUI and GPU parallelization.

We hope that by the end of this project, we can deliver a functioning product with many quality of
life changes and other improvements for our clients at Lowell Observatory. With each iteration of
this project, our clients receive a better and more capable software to conduct their research with,
and Team Triaxis is excited to further this tradition.

