Hydraulic Testing Apparatus

Hydraulic Testing Company (HTC)

Team Members

Brandon Schmalzel Yousef Al Aqeel Ali Abdullah Mariah Paz Benoit Cousineau Cote (Mechanical Engineering) (Mechanical Engineering) (Mechanical Engineering) (Civil Engineering) (Civil Engineering)

Project Overview

Project Purpose

To design and construct a hydraulic testing apparatus that can demonstrate hydraulic principles to the Northern Arizona University engineering students.

Figure 1: Previous Water Resources Project

Project Stakeholders

- Client: Alarick "Lar" Reiboldt
- Technical Advisor: Mark Lamer
- Water Resources and Fluid Mechanics students and professors

Project Parameters

- Free-standing
- Allow for a minimum of 1 minute hydraulic testing time
- Structural materials must be steel
- Interchangeable hydraulic parts
- Allow for testing of free-falling head and constant head

Structural Design

Structural Characteristics

- Scissor jacks to allow for varied hydraulic head
- Steel material for a durable structure
- Heavy duty wheels attached for easy transportation and holding in place
- Steel angles used to create the strongest structure
- Middle level allows for work area and storage
- Fully jacked height is 74.5 inches (6.2 feet)
- Width is 36 inches (3 feet) and length is 60 inches (5 feet)

Structural Analysis

Structural Calculations $M_1 = (F_T)(18")$ $M_2 = (800 \text{ lb})(17")$

Structure begins to tip when

M₁=M₂ F_T=(800 lb)(17")/(18") **F_T=756 lb**

Structural Calculations

- Center of mass of the structure is 18 inches from the top of the structure and 17 inches from the side of the structure.
- Tipping force required to tip the structure is 756 lbs.

Structural Design Views

Purchasing for Structure

	<u>ltem</u>	<u>Total</u> <u>Length</u> <u>(in)</u>
	2"x2" x 1/8" Steel Angles	824
	1"x1" x 1/8" Steel Angles	187
Figure 6: Steel Angles and Steel Tubing	2"x2" x 0.2" Square Tubing	36

Table 1: Steel Purchased from Mayorga's Welding

Purchasing

- Purchased steel material from Mayorga's Welding near downtown Flagstaff
- Purchased fasteners and tools from Home Depot
- Purchased scissor jacks and caster wheels online

Construction of the Structure

Figure 7: Structural Assembly

Construction Phase 1

 Assembly of the steel angles and scissor jacks

Figure 8: Welding of the Structure

Construction Phase 2

• Welding of the steel angles for added structural strength

Construction of the Structure (Continued)

Figure 9: Wheel Installation

Construction Phase 3

 Installation of the caster wheels for easy transportation

Figure 10: Primer and Painting

Construction Phase 4

 Primer and paint added to avoid rusting

Completion of the Structure

Figure 11: Final Structure

Flow Diagram of the System

Figure 12: Flow diagram of the system

Hydraulic Analysis

Hydraulic Calculations

6.2 feet of head

<u>Kinetic Energy = Potential Energy</u> ½ mv²=mgh

> <u>Velocity</u> V=√2gh

 $\frac{\text{Area of Pipe}}{\text{A}=(\pi / 4) d^2}$

Discharge Q=VA

Pressure P=0.433*h*SG

Tank and Pump Sizing						
Pipe Area (in ²)	0.2					
Pressure (psi)	2.7					
Flowrate (gph)	733.5					
Testing Time (s)	63.8					
Pipe Diameter (in)	0.5					
Height (ft)	6.2					
Tank Volume (gallons)	13.0					

Table 2: Tank and Pump Sizing Calculations

Free-Falling Head vs. Constant Head

Free-Falling Head

- Water level in the tank decreases over time
- Decrease of system pressure
- Eventually emptying the tank

Constant Head

- Water elevation in the tank remains constant over time
- Constant system pressure

Pressure in Full Tank

- Head = 6.2 feet
- Pressure = 2.68 psi

Pressure in Near Empty Tank

- Head = 5.2 feet
- Pressure = 2.25 psi

Figure 13: Water System Tank

Purchasing for Water System

Purchasing

Purchased

- Two water tanks from Camping World (Figure 14)
- Top reservoir with dimensions of 12" x 12" x 24" 15 gallon tank
- Bottom reservoir with dimensions of 14" x 20.75" x 22" 26 gallon tank
- 30" x 32" washing mashing drain pan under the top reservoir to allow for constant head to be tested (Figure 15)
- Pond pump with a maximum pumping height of 9 feet and 960 gph (Figure 16)

Construction of the Water System

Construction Phase 1

Placement of the top tank and bottom tank

Construction Phase 2

Installation of pond pump into bottom reservoir and connect to top reservoir

Construction Phase 3

- Connection of overflow pan to bottom reservoir using vinyl tubing.
- Drilled additional overflow holes on top tank

Construction Phase 4

 Installation of main connection from top tank to allow for interchangeability for other students

Figure 17: Water System

Project Material Cost

<u>Category</u>	Cost		
Steel Material	\$302.10		
Water Tanks	\$263.52		
Scissor Jacks	\$107.22		
Caster Wheels	\$180.84		
Washer Draining Pan	\$29.99		
Screws, Bolts, and Nuts	\$24.52		
Pond Pump	\$140.55		
Fittings	\$20.17		
Tubing	\$30.32		
Tools and Equipment	\$33.36		
Extra Piping	\$20.00		
Plywood	\$95.14		

Final Cost

- Projected cost of the project was \$1,000
- Final cost of the project materials was \$1,247.73
- Additional piping and fittings purchased for the students to use

Project Staffing Cost

Classification		Hour	S	Rates (\$/hi	r)	Cost (\$)
Senior Engineer		60		114		6,840.00
Engineer		90		58		5,220.00
Intern		95		21		1,995.00
Administrative Assistant		85		38		3,230.00
Total		330				\$17,285.00
Table 4: Projected Staffing Cost						
Classification	H	lours	R	Rates (\$/hr)		Cost (\$)
Senior Engineer		50		114		5,700.00
Engineer		120		58		6,960.00
Intern		150		21		3,150.00
Administrative Assistant		90		38		3,420.00
Total		410				\$19.230.00

Table 5: Final Staffing Cost

Water Resources 1 Course Testing

17

Questions?