# 2014-2015 PCI Big Beam Contest



ABDULLAH ALHADDAD, BRIAN BLOOM, MINGYANG CHEN, CATHERINE IRVINE

### Project Management

Senior Engineer– Catherine Irvine

Information Engineer- Abdullah Alhaddad

Design Engineer – Brian Bloom

Engineering Analyst – Mingyang Chen

### Client & Stakeholders

#### Dr. Robin Tuchscherer

• Technical Advisor & Client



### Tpac Kiewit Western Company (Tpac)

• Beam Manufacturer



Prestressed/Precast Concrete Insitute (PCI)Contest host and judge



# Introduction

National competition hosted yearly by the Pre-stressed/Precast Concrete Institute (PCI)

#### Purpose of Project

- Design pre-stressed concrete beam
- Apply education through real design experience



Figure 1: "Pre-stressing Strands"

Picture Credit: ArchiExpo <http://www.archiexpo.com/>

# **Project Description**

Design of a pre-stressed concrete beam

- Maximum simply supported span of 17 ft
- Maximum length of 19 ft

#### Load requirements

- Must crack above 20 kips
- Must fail between 32 and 40 kips

Design judged for lowest weight, lowest cost, and maximum deflection



#### Figure 2: "Permitted Load Configurations"

Picture Credit: PCI Big Beam Contest Official Rules <a href="http://www.pci.org/">http://www.pci.org/</a>>

### Pre-stressed Concrete

Normal concrete tensile strength: 8-14% of compressive strength

• Cracks develop early in life cycle of structure

Pre-stressed concrete extends life of structure prior to crack

• After service load cracks, behaves essentially the same as Ordinary Portland Cement (OPC)

Pre-compresses tension zone of a beam to counter tension



## Concrete Mix Design

#### Two alternatives

- Lightweight (Avg Unit Weight=120 pcf)
  - Lower weight
  - Higher cost
- Normal-weight (Avg Unit Weight=150 pcf)
  - Larger weight
  - Lower cost

Both concrete mixes were used during design process

• Ultimately the final design used lightweight concrete



Picture Credit: Catherine Irvine

Figure 4: "Broken Concrete Mix Cylinders"

### Structural Design Alternatives



### Decision Matrix

| Design                | Weight (lb) | Score | Cost (\$) | Score | Deflection<br>(in) | Score | Total     |
|-----------------------|-------------|-------|-----------|-------|--------------------|-------|-----------|
| Lowest<br>Weight      | 1257        | 10    | 62.57     | 6     | 1.87               | 1     | <u>17</u> |
| Lowest<br>Cost        | 1430        | 6     | 41.85     | 10    | 1.60               | 0     | 16        |
| Highest<br>Deflection | 1735        | 0     | 96.07     | 0     | 5.20               | 10    | 10        |

Table 1. "Decision Matrix"

Score = 10 \* (Value in Entry – Worst Value)

(Best Value – Worst Value)

# Final Design



Picture Credit: Brian Bloom in AutoCad 2013

Figure 8: "Final Design Cross Section"

### Fabrication



Figure 9: "Checking Formwork"



Figure 10: "Checking Measurements"

Picture Credit: Brian Bloom

### Fabrication



Figure 11: "Pouring Concrete"



Figure 12: "Fabrication Process"

Picture Credit: Brian Bloom



#### Picture Credit: Catherine Irvine



Figure 13: "Getting Ready To Drop Beam"

Figure 14: "Beam Ready To Test"



#### Picture Credit: Catherine Irvine



Figure 15: "Axial Compression Test"

Figure 17: "Split Cylinder Test"

### Pre-Test Analysis

### Cylinder Tests

- Axial Compression
- Split Cylinder

### Stress-Strain Curve

- From axial compression test data
- Average of max point on graph

#### Response2000

Provides section response for beam design



Figure 18: "Stress-Strain Curves"

# Predicted Values

#### Deflection

• Virtual Work Method in Excel

• **2.5** in

### Cracking Load

• Based on stress

• **22.1** kips

#### **Ultimate Load**

- Based on ultimate moment, strength of prestressing strand
- 32.3 kips



Figure 19: "Broken Cylinder"

# Final Results

#### Table 3: "Predicted vs Actual Results"

|                        | Predicted | Actual    | %Difference |
|------------------------|-----------|-----------|-------------|
| Cracking<br>Load       | 22.1 kips | 21.2 kips | 4           |
| Ultimate<br>Load       | 32.3 kips | 43.5 kips | -30         |
| Ultimate<br>Deflection | 2.5 in    | 4 in      | -46         |

#### Higher material strength than expected

- Factored into design, but not predictions
- Contest vs Application

#### Ultimate deflection

- Hard to predict
- Virtual Work is an approximate method

# Failure

#### Picture Credit: Catherine Irvine



Figure 20: "Broken Strand"

Figure 21: "Failure Crack"

Figure 22: "Crushing"

### Video



# Project Cost

| Table 2: "Cost Analysis"            |                                   |                |                      |          |  |  |  |  |
|-------------------------------------|-----------------------------------|----------------|----------------------|----------|--|--|--|--|
|                                     | Classification                    | Hours/Quantity | Billing Rate (\$/hr) | Cost     |  |  |  |  |
| I. Personnel                        | Senior Engineer                   | 156            | 110                  | \$17,160 |  |  |  |  |
|                                     | Information Engineer              | 156            | 86                   | \$13,416 |  |  |  |  |
|                                     | Design Engineer                   | 156            | 100                  | \$15,600 |  |  |  |  |
|                                     | Engineering Analyst               | 156            | 100                  | \$15,600 |  |  |  |  |
|                                     | TOTAL HOURS                       | 624            | SUBTOTAL             | \$61,776 |  |  |  |  |
| ll. Travel                          | Trips to Phoenix @ 286<br>mi/trip | 3              | \$0.56/mi            | \$481    |  |  |  |  |
| III. Subcontract*                   | Lightweight Concrete              | 0.42 cu. yd    | \$110/cu. yd         | \$46     |  |  |  |  |
| (Tpac)                              | ½" Prestressing Strand            | 38 ft          | \$0.30/ft            | \$11     |  |  |  |  |
|                                     | Compression Steel                 | 40 lb          | \$0.45/lb            | \$18     |  |  |  |  |
|                                     | Mesh                              | 0.027 lb       | \$0.50/lb            | \$1      |  |  |  |  |
|                                     | Formwork                          | 46 sq. ft      | \$1.25/sq. ft        | \$57     |  |  |  |  |
|                                     |                                   |                | SUBTOTAL             | \$133    |  |  |  |  |
| TOTAL PROJECT COST: <u>\$62,400</u> |                                   |                |                      |          |  |  |  |  |

\*Subcontract cost based on PCI contest rules, not typical cost of prestressed concrete projects

## Project Impacts

#### Educational

- Students learn hands-on design prior to graduation
- Other interested parties learn about pre-stressed concrete

#### Environmental

• Concrete production releases greenhouse gases

#### Economic

- Inexpensive building material (compared to steel structures)
- Pre-stressing extends life of structure under typical service loads

#### Social

• Alternative (to steel) for aesthetic/architectural design

## Thank You



### Acknowledgements

- Dr. Robin Tuchscherer
- Mr. Abdullah Kassab (Tpac)
- NAU Facility Services